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Practical matters

Lecture notes and MATLAB programs are available at
https://www.iki.fi/vesakaar/winterschool24

Schedule:
Wednesday Thursday

09:10-09:30 Coffee/Opening Coffee

09:30-10:50 V. Kaarnioja D. Walter

10:50-11:10 Coffee Break Coffee Break

11:10-12:30 V. Kaarnioja D. Walter

12:30-13:30 Lunch Break Lunch Break

13:30-14:50 D. Walter V. Kaarnioja

14:50-15:10 Coffee Break Coffee Break

15:10-16:30 D. Walter V. Kaarnioja
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Uncertainty in groundwater flow

Risk analysis of radwaste disposal or CO2 sequestration.

Darcy’s law q(x) + a(x)∇p(x) = f (x)
mass conservation law ∇ · q(x) = 0

in D ⊂ Rd , d ∈ {1, 2, 3}
together with boundary conditions

Uncertainty in a(x ,ω) leads to uncertainty in q(x ,ω) and p(x ,ω)
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Criticality problem for nuclear reactors

−∇ · ( a(x)︸︷︷︸
diffusion

∇u(x)) + b(x)︸︷︷︸
absorption

u(x) = λc(x)︸︷︷︸
fission

u(x)

The smallest eigenvalue λ1 ∈ R measures criticality of a reactor.
Eigenfunction u1(x) is the neutron flux at the point x .

Source: Argonne National
Laboratory on Flickr

λ1 ≈ 1 ⇒ operating efficiently

λ1 > 1 ⇒ not self-sustaining

λ1 < 1 ⇒ supercritical

4

https://www.flickr.com/photos/35734278@N05/3954062594/
https://www.flickr.com/photos/35734278@N05/3954062594/


Domain uncertainty quantification

Three realizations of a random spatial domain
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Electrical impedance tomography

Use measurements of current and voltage collected at electrodes covering
part of the boundary to infer the interior conductivity of an object/body.


∇ · (σ∇u) = 0 in D,

σ ∂u∂n = 0 on ∂D \
⋃L

k=1 Ek ,

u + zkσ
∂u
∂n = Uk on Ek , k ∈ {1, . . . , L},∫

Ek
σ ∂u∂n dS = Ik , k ∈ {1, . . . , L},
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Consider the elliptic PDE problem:{
−∇ ·

(
a(x)∇u(x)

)
= f (x) for x ∈ D,

+boundary conditions.

In practice, one or several of the material/system parameters may be
uncertain or incompletely known and modeled as random fields:

PDE coefficient a may be uncertain;

Source term f may be uncertain;

Boundary conditions may be uncertain;

The domain D itself may be uncertain.

In forward uncertainty quantification, one is interested in assessing how
uncertainties in the inputs of a mathematical model affect the output.
⇒ If the uncertain inputs are modeled as random fields, then the output
of the PDE is also a random field. One may be interested in assessing the
statistical response of the system, for example, the expectation or variance
of the PDE solution (or some other quantity of interest thereof).
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High-dimensional numerical integration∫
[0,1]s

f (y) dy ≈
n∑

i=1

wi f (t i )
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Figure: Tensor product grid, sparse grid, Monte Carlo nodes (not QMC rules)
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Figure: Sobol′ points, lattice rule (examples of QMC rules) 8



Quasi-Monte Carlo (QMC) methods are a class of equal weight cubature
rules ∫

[0,1]s
f (y) dy ≈ 1

n

n∑
i=1

f (t i ),

where (t i )ni=1 is an ensemble of deterministic nodes in [0, 1]s .

The nodes (t i )ni=1 are NOT random! Instead, they are deterministically
chosen.

QMC methods exploit the smoothness and anisotropy of an integrand in
order to achieve better-than-Monte Carlo rates.
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1. Preliminaries
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Elliptic PDE

Many physical phenomena can be modeled using elliptic partial differential
equations of the form{

−∇ · (a(x)∇u(x)) = f (x), x ∈ D,

+boundary conditions

Uncertainties can appear in the material parameter a, source term f ,
boundary conditions, or the domain D.

For the purposes of analysis, we consider the weak formulation of the
PDE. Under certain conditions, the solution to the weak formulation
can be shown to exist and be uniquely defined.

When we solve the PDE numerically using the finite element method,
we are actually approximating the solution to the the weak
formulation of the PDE problem.

Under suitably strong regularity assumptions (D convex Lipschitz
domain, f ∈ L2(D), and a Lipschitz), the weak solution satisfies
−∇ · (a(x)∇u(x)) = f (x) for a.e. x ∈ D with u|∂D = 0.
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Let D ⊂ Rd , d ∈ {1, 2, 3}, be a nonempty open set.

L2(D) := {v : D → R | v is measurable, ∥v∥L2(D) :=
( ∫

D
|v(x)|2 dx

)1/2
<∞},

H1(D) := {v ∈ L2(D) | ∂jv ∈ L2(D) for all j ∈ {1, . . . , d}},

with ∥v∥H1(D) := (∥v∥2L2(D) + ∥∇v∥2L2(D))
1/2,

C∞
0 (D) := {v ∈ C∞(D) | supp(v) ⊂ D is a compact set},

where supp(v) := {x ∈ D | v(x) ̸= 0},

H1
0 (D) := clH1(D)(C

∞
0 (D)),

H−1(D) := H1
0 (D)′ := {A : H1

0 (D) → R | A linear and bounded}.

The spaces L2(D), H1(D), H1
0 (D), and H−1(D) are Hilbert spaces.

The duality pairing ⟨f , v⟩H−1(D),H1
0 (D) represents the bounded, linear functional v 7→ f (v)

for f ∈ H−1(D) and v ∈ H1
0 (D).

Poincaré’s inequality: if D ⊂ Rd is a bounded domain, then there exists a constant
CP > 0 (depending on the domain D) such that

∥v∥L2(D) ≤ CP∥∇v∥L2(D) for all v ∈ H1
0 (D).

Therefore, we can define an equivalent norm in H1
0 (D) by setting

∥v∥H1
0 (D) := ∥∇v∥L2(D).

This induces exactly the same topology in H1
0 (D) as the usual Sobolev norm ∥ · ∥H1(D).
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Trace theorem and boundary values

Lipschitz domain: A nonempty domain D ⊂ Rd is said to be a Lipschitz
domain if, for every x ∈ ∂D, there exists a rigid transformation (i.e., a
rotation plus a translation) f : Rd → Rd , a radius r > 0, and a Lipschitz
function ξ : Rd−1 → R such that

f (D)∩B(f (x), r) = {(y1, . . . , yd) ∈ Rd | yd < ξ(y1, . . . , yd−1)}∩B(f (x), r),
where B(x , r) denotes the open ball of radius r centered at x .
Trace theorem: Let D be a bounded Lipschitz domain. Then the trace
operator

γ : C∞(D) → C∞(∂D), γu = u|∂D ,
has a unique extension to a bounded linear operator γ : H1(D) → L2(∂D).

This means that even though u ∈ H1(D) is not well-defined over a set of
measure zero, we can interpret its restriction to the boundary of the
domain D as the trace γu ∈ L2(∂D).

Especially, Sobolev functions u ∈ H1(D) with zero trace are precisely the
elements of H1

0 (D):

u ∈ H1
0 (D) ⇔ γu = 0: ∂D → R.

16



Q: How to solve such PDE problems in practice?
A: We consider the weak formulation of the PDE problem: given
f ∈ H−1(D), find u ∈ H1

0 (D) such that∫
D
a(x)∇u(x) · ∇v(x)dx︸ ︷︷ ︸

=:B(u,v)

= ⟨f , v⟩H−1(D),H1
0 (D) for all v ∈ H1

0 (D). (1)

If there exist amin, amax > 0 s.t. 0 < amin ≤ a(x) ≤ amax <∞ for all
x ∈ D, then the bilinear form B : H1

0 (D)× H1
0 (D) → R is bounded, i.e.,

|B(u, v)| =
∣∣∣∣ ∫

D
a(x)∇u(x) · ∇v(x)dx

∣∣∣∣ ≤ amax∥u∥H1
0 (D)∥v∥H1

0 (D)

for all u, v ∈ H1
0 (D), and coercive, i.e.,

B(u, u) =

∣∣∣∣ ∫
D
a(x)∇u(x) ·∇u(x) dx

∣∣∣∣ ≥ amin∥u∥H1
0 (D) for all u ∈ H1

0 (D),

then the Lax–Milgram lemma ensures that there exists a unique solution
u ∈ H1

0 (D) to (1).
17



Galerkin method

To solve the system approximately, let Vm ⊂ H1
0 (D) be a

finite-dimensional subspace of the solution space H1
0 (D).

The Galerkin solution um ∈ Vm of the system (1) is the unique solution
such that∫

D
a(x)∇um(x) · ∇v(x)dx = ⟨f , v⟩H−1(D),H1

0 (D) for all v ∈ Vm.

Let Vm be spanned by ϕ1, . . . , ϕm. We can write the solution as
um =

∑m
i=1 ciϕi . The above system reduces to the linear system of

equations


∫
D a(x)∇ϕ1(x) · ∇ϕ1(x)dx · · ·

∫
D a(x)∇ϕ1(x) · ∇ϕm(x) dx

...
. . .

...∫
D a(x)∇ϕm(x) · ∇ϕ1(x) dx · · ·

∫
D a(x)∇ϕm(x) · ∇ϕm(x) dx


c1

...
cm

=


⟨f , ϕ1⟩H−1(D),H1

0 (D)

...
⟨f , ϕm⟩H−1(D),H1

0 (D)

.

Solving this system and plugging the expansion coefficients back into the
expression for um yields the Galerkin solution.

18



Céa’s lemma

The solution to the Galerkin system is quasi-optimal in the following sense:

∥u − um∥H1
0 (D) ≤

amax

amin
inf

vm∈Vm

∥u − vm∥H1
0 (D).

That is, the H1
0 (D) error between the true PDE solution u and the

Galerkin approximation um differs from the optimal approximation in Vm

up to a constant factor.
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Finite element method

The finite element method is a particular method of constructing the
finite-dimensional subspaces Vm of the solution space H1

0 (D).

Construct a triangulation for the computational domain D.

The space Vm is spanned by piecewise linear functions ϕ1, . . . , ϕm
which are constructed to satisfy

ϕi (nj) =

{
1 if i = j ,

0 otherwise,

where n1, . . . ,nm are the interior nodes of the triangulation.

The finite element solution can be written as
um(x) =

∑m
i=1 ciϕi (x) ∈ Vm, where the expansion coefficients are

solved from the Galerkin system. Note that um(nj) = cj .

If vm(x) =
∑m

i=1 ciϕi (x) ∈ Vm, then, e.g., ∥vh∥L2(D) =
√

cTMc ,
where c := [c1, . . . , cm]

T and M = [Mi ,j ]
m
i ,j=1 is the mass matrix

defined elementwise by Mi ,j :=
∫
D ϕi (x)ϕj(x)dx , i , j ∈ {1, . . . ,m}.

20



Figure: Left: An illustration of global, piecewise linear FE basis functions
spanning Vm over a regular, uniform triangulation of (0, 1)2. Right: Bird’s-eye
view of the same global FE basis functions.
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Random field

Definition

Let D ⊂ Rd and let (Ω,F , µ) be a probability space. A function
A : D × Ω → X is called a random field if A(x , ·) is an X -valued random
variable for all x ∈ D.

Definition

We call a random field A : D × Ω → X square-integrable if∫
Ω
|A(x , ω)|2 µ(dω) <∞ for all x ∈ D.

Our goal will be to model (infinite-dimensional) input random fields using
finite-dimensional expansions with s variables.

Comment on notation: In what follows, s will always refer to the
“stochastic dimension” (dimension of the stochastic/parametric space)
while d will refer to the “spatial dimension” (dimension of the spatial
Lipschitz domain D ⊂ Rd , d ∈ {1, 2, 3}).
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Mercer’s theorem

Let a(x , ω) be a square-integrable random field with mean

a(x) =
∫
Ω

a(x , ω)µ(dω), x ∈ D,

and a continuous, symmetric, positive definite† covariance

K(x , x ′) =

∫
Ω

(a(x , ω)− a(x))(a(x ′, ω)− a(x ′))µ(dω).

Mercer’s theorem: the covariance operator C : L2(D) → L2(D),

(Cu)(x) =
∫
D

K(x , x ′)u(x ′) dx ′, x ∈ D,

has a countable sequence of eigenvalues {λk}k≥1 and corresponding eigenfunctions
{ψk}k≥1 satisfying Cψk = λkψk such that λ1 ≥ λ2 ≥ · · · ≥ 0 and λk → 0 and the
eigenfunctions form an orthonormal basis for L2(D).
Note that this means:∫

D

K(x , x ′)ψk(x ′) dx ′ = λkψk(x),
∫
D

ψk(x)ψℓ(x) dx = δk,ℓ.

†In this context, positive definite means: for all choices of finitely many points
x1, . . . , xk ∈ D, k ∈ N, the Gram matrix G := [K(xi , xj)]

k
i,j=1 is positive semidefinite.
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The Karhunen–Loève (KL) expansion of a random field

Theorem

Let (Ω,F , µ) be a probability space, let D ⊂ Rd be closed and bounded,
and let a : D × Ω → R be a square-integrable random field with
continuous, symmetric, positive definite covariance
K (x , x ′) = E[(a(x , ·)− a(x))(a(x ′, ·)− a(x ′))]. Then the eigensystem
(λk , ψk) ∈ R+ × L2(D) of the covariance operator C : L2(D) → L2(D), as
described on the previous slide, can be used to write

a(x , ω) = a(x) +
∞∑
k=1

√
λkξk(ω)ψk(x),

where ξk(ω) =
1√
λk

∫
D
(a(x , ω)− a(x))ψk(x) dx ,

where the convergence is in L2 w.r.t. the stochastic parameter and uniform
in x . Furthermore, the random variables ξk are zero-mean uncorrelated
random variables with unit variance, i.e.,

E[ξk ] = 0 and E[ξkξℓ] = δk,ℓ.

24



The Karhunen–Loève (KL) expansion of random field a(x , ω) can be
written as

a(x , ω) = a(x) +
∞∑
k=1

√
λkξk(ω)ψk(x).

The KL expansion minimizes the mean-square truncation error:∥∥a(x , ω)−a(x)−
∑s

k=1

√
λkξk(ω)ψk(x)

∥∥
L2(Ω,µ;L2(D))

=
(∑∞

k=s+1 λk
)1/2

.

The random variables ξk are centered and uncorrelated, but not
necessarily independent.
If the random field a(x , ω) is Gaussian – by definition, this means that
(a(x1, ω), . . . , a(xk , ω)) is a multivariate Gaussian random variable for
all x1, . . . , xk ∈ D, k ∈ N – then the random variables ξk are
independent.
The KL expansion is an effective method of representing input
random fields when their covariance structure is known. If the
(infinite-dimensional) input random field has a known covariance
(which satisfies the conditions of Mercer’s theorem), then we can use
the KL expansion to find a finite-dimensional approximation, optimal
in the mean-square error sense. 25



Modeling assumptions

In engineering and practical applications, the idea is that we have some a priori
knowledge/belief that the unknown input random field is distributed according to some
known probability distribution with a known covariance.

If the input random field is Gaussian with a known, nice covariance function†, then
we use the KL expansion to find a reasonable finite-dimensional approximation of
the true input. Since the KL expansion decorrelates the stochastic variables, and
uncorrelated jointly Gaussian random variables are independent, we can exploit the
independence of the stochastic variables to parameterize the model problem.

If the input random field is not Gaussian, then the stochastic variables in the KL
expansion are uncorrelated but not necessarily independent. For the purposes of
mathematical analysis, we typically assume that the random variables in the input
random field are independent so that we can parameterize the model problem.
(Transforming dependent random variables into independent random variables can
be done using, e.g., the Rosenblatt transformation, but this is computationally
expensive.)

Note especially that in the Gaussian setting we do not need to make any “extra” effort
to ensure the independence of the stochastic variables in the KL expansion.

†Matérn covariance is an especially popular choice.
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Example (Lognormal input random field)

Let D ⊂ Rd , d ∈ {1, 2, 3}, be a Lipschitz domain and consider the PDE
problem {

−∇ · (a(x , ω)∇u(x , ω)) = f (x) for x ∈ D,

u(·, ω)|∂D = 0,

where f : D → R is a fixed (deterministic) source term. We can represent
a lognormally distributed random diffusion coefficient a : D × Ω → R using
the KL expansion, e.g., as

a(x , ω) = a0(x) exp
( ∞∑

k=1

yk(ω)ψk(x)
)
, yk ∼ N (0, 1),

where a0 ∈ L∞(D) is such that a0(x) > 0 and the random variables yk are
uncorrelated (and thus independent in the Gaussian case).

Due to the independence, we can consider the above as a parametric PDE
with a(x , y) ≡ a(x , y(ω)) and u(x , y) ≡ u(x , y(ω)), where (formally)
y ∈ RN is a parametric vector endowed with a product Gaussian measure.
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Example (Uniform and affine input random field)

Let D ⊂ Rd , d ∈ {1, 2, 3}, be a Lipschitz domain, f : D → R is a fixed
(deterministic) source term, and consider the PDE problem{

−∇ · (a(x , ω)∇u(x , ω)) = f (x) for x ∈ D,

u(·, ω)|∂D = 0.

We can represent a uniformly distributed random diffusion coefficient
a : D × Ω → R using the KL expansion, e.g., as

a(x , ω) = a0(x) +
∞∑
k=1

yk(ω)ψk(x), yk ∼ U(−1
2 ,

1
2),

where the random variables yk are uncorrelated. Unlike the Gaussian
setting, the random variables yk are generally not independent!

In numerical analysis, the random variables yk are often assumed to be
independent – this allows us to consider the above as a parametric PDE
with a(x , y) ≡ a(x , y(ω)) and u(x , y) ≡ u(x , y(ω)), where y ∈ [−1

2 ,
1
2 ]

N

is a parametric vector endowed with a uniform probability measure.
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To estimate the statistical response, note that in the lognormal model the
expected value of the PDE solution is (formally) given by

E[u(x , ·)] = lim
s→∞

∫
Rs

u(x , y)
s∏

j=1

e−
1
2
y2
j

√
2π

dy

while in the affine and uniform model the expected value of the PDE
solution is (formally) given by

E[u(x , ·)] = lim
s→∞

∫
[−1/2,1/2]s

u(x , y) dy .

In practice, we need to truncate these infinite-dimensional integrals
into finite-dimensional ones, incurring the so-called dimension
truncation error. Since the PDE is solved numerically using the finite
element method, this also incurs a finite element discretization error.

To compute the resulting high-dimensional integrals for the
dimensionally-truncated, finite element discretized PDE solution we
use a quasi-Monte Carlo (QMC) method.

29



2. Quasi-Monte Carlo (QMC) methods

30



Lattice rules

Rank-1 lattice rules

Qn,s(f ) =
1

n

n∑
i=1

f (t i )

have the points

t i =
{
iz
n

}
= mod

(
iz
n
, 1

)
, i ∈ {1, . . . , n},

where the entire point set is determined by
the generating vector z ∈ Ns , with all
components coprime to n. The braces {·}
denote the componentwise fractional part of
a vector.

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Lattice rule with z = (1, 55) and n = 89
nodes in [0, 1]2

The quality of the lattice rule is determined by the choice of z .
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Worst-case error

In the classical study of quadrature and cubature rules, we usually consider
the so-called worst-case error. Suppose that f ∈ H, where H is a Hilbert
space continuously embedded in C ([0, 1]s). Let Is : H → R be an integral
operator

Is f :=

∫
[0,1]s

f (x)dx

and let Qn,s : H → R be a QMC rule

Qn,s f :=
1

n

n−1∑
i=0

f (t i ),

where P := {t i ∈ [0, 1]s | 0 ≤ i ≤ n − 1} is a collection of cubature nodes.
The worst-case error of cubature rule Qn,s in H is defined by

en,s(P;H) := sup
f ∈H

∥f ∥H≤1

|Is f − Qn,s f |.

Note that this is precisely the operator norm of ∥Is − Qn,s∥H→R.
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Since the worst-case error is just the operator norm of Is − Qn,s , we can
express the cubature error as

|Is f − Qn,s f | ≤ en,s(P;H)∥f ∥H .

Worst-case errors are in general hard to compute – except for the special
case, when H is a reproducing kernel Hilbert space (RKHS).

Our strategy will be to choose the Hilbert space H (where our integrand f
lives) to be such that it is possible to write down the expression for
en,s(P;H) explicitly given a family of QMC rules. This allows us to
analyze the dependence of the cubature error w.r.t. n and s.

We will end up taking H as an unanchored, weighted Sobolev space since
this choice turns out to be “compatible” with the family of (randomly
shifted) lattice rules!
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Reproducing kernel Hilbert space (RKHS)

Let H be a Hilbert space of functions on D ⊆ Rs , with the property that
every point evaluation is a bounded linear functional. That is, for any
y ∈ D, let

Ty (f ) := f (y) for all f ∈ H.

Then, since Ty is a bounded linear functional, by Riesz representation
theorem there exists a unique representer ay := K (·, y) ∈ H such that

Ty (f ) = ⟨f , ay ⟩ = ⟨f ,K (·, y)⟩ for all f ∈ H.

The function K (x , y) is known as the reproducing kernel of H.

Definition (Reproducing kernel)

A reproducing kernel of a Hilbert space H of functions on D ⊆ Rs is a
function K : D × D → R which satisfies

K (·, y) ∈ H for all y ∈ D

and f (y) = ⟨f ,K (·, y)⟩ for all f ∈ H and y ∈ D.

The latter property is known as the reproducing property. 46



Remarks

A reproducing kernel Hilbert space (RKHS) is a Hilbert space
equipped with a reproducing kernel, or equivalently, it is a Hilbert
space in which every point evaluation is a bounded linear functional.

For any other bounded linear functional A : H → R, its representer
a ∈ H satisfying A(f ) = ⟨f , a⟩ for all f ∈ H is given by

a(y) = ⟨a,K (·, y)⟩ = ⟨K (·, y), a⟩ = A(K (·, y)) for all y ∈ D.

Any reproducing kernel K (x , y) is symmetric in its arguments:

K (x , y) = K (y , x) for all x , y ∈ D.

Proof. For fixed y ∈ D, apply the reproducing property to the
function f = K (·, y) to get

K (x , y) = f (x) = ⟨f ,K (·, x)⟩ = ⟨K (·, y),K (·, x)⟩
= ⟨K (·, x),K (·, y)⟩ = K (y , x).
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Example

Suppose that we have a Hilbert space containing continuous functions on
[0, 1] with square-integrable first order derivatives, equipped with the inner
product

⟨f , g⟩ =
(∫ 1

0
f (x) dx

)(∫ 1

0
g(x)dx

)
+

∫ 1

0
f ′(x)g ′(x) dx .

Then this space has the reproducing kernel

K (x , y) = 1 + η(x , y), η(x , y) = 1
2B2(|x − y |) + (x − 1

2)(y − 1
2),

where B2(x) := x2 − x + 1
6 denotes the Bernoulli polynomial of degree 2.

That is, we claim that

⟨f ,K (·, y)⟩ = f (y) for all y ∈ [0, 1].
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Example (continued)

By observing that∫ 1

0

K(x , y)dx = 1 and
∂

∂x
K(x , y) = x − 1

2
− 1

2
sign(x − y),

there holds

⟨f ,K(·, y)⟩ =
(∫ 1

0

f (x)dx

)(∫ 1

0

K(x , y) dx

)
︸ ︷︷ ︸

=1

+

∫ 1

0

f ′(x)

(
x − 1

2
− 1

2
sign(x − y)

)
dx

=

∫ 1

0

f (x)dx +

∫ 1

0

f ′(x)x dx − 1

2

∫ 1

0

f ′(x) dx +
1

2

∫ y

0

f ′(x) dx − 1

2

∫ 1

y

f ′(x)dx

=
��

���
∫ 1

0

f (x)dx +��f (1)−
��

���
∫ 1

0

f (x)dx −
�
��

1

2
f (1) +

�
��

1

2
f (0) +

1

2
f (y)−

�
��

1

2
f (0)−

�
��

1

2
f (1) +

1

2
f (y)

= f (y)

for all y ∈ [0, 1], as desired.
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Theorem

Let H := Hs(K ) be an RKHS and let K : [0, 1]s × [0, 1]s → R be a
reproducing kernel that satisfies∫

[0,1]s

∫
[0,1]s

K (x , y) dx dy <∞.

Then

e2n,s(P;Hs(K )) =

∫
[0,1]s

∫
[0,1]s

K (x , y) dx dy − 2

n

n−1∑
i=0

∫
[0,1]s

K (t i , y) dy

+
1

n2

n−1∑
i=0

n−1∑
j=0

K (t i , t j).

(2)
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Proof. For f ∈ H, we apply the reproducing property f (tk) = ⟨f ,K (·, tk)⟩H
and average the results to obtain

Qn,s f =
1

n

n−1∑
k=0

f (tk) =
1

n

n−1∑
k=0

⟨f ,K (·, tk)⟩H =

〈
f ,

1

n

n−1∑
k=0

K (·, tk)
〉

H

. (3)

Similarly, we find that

Is f =

∫
[0,1]s

f (x) dx =

∫
[0,1]s

⟨f ,K (·, x)⟩H dx =

〈
f ,

∫
[0,1]s

K (·, x) dx
〉

H

,

(4)

which holds provided that
∫
[0,1]s K (·, x) dx ∈ H. However, this is

guaranteed by our assumption since∥∥∥∥∫
[0,1]s

K (·, x)dx
∥∥∥∥2
H

=

∫
[0,1]s

∫
[0,1]s

⟨K (·, x),K (·, y)⟩H dx dy

=

∫
[0,1]s

∫
[0,1]s

K (x , y) dx dy <∞,

which will hold for all the kernels we shall consider.
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Taking the difference of (3) and (4) yields

Is f − Qn,s f =

〈
f ,

∫
[0,1]s

K (·, x)dx − 1

n

n−1∑
i=0

K (·, t i )
〉

H

= ⟨f , ξ⟩H ,

where

ξ(y) :=
∫
[0,1]s

K (x , y) dx − 1

n

n−1∑
i=0

K (y , t i ), y ∈ [0, 1]s ,

is called the representer of the integration error since

en,s(P;H) = sup
∥f ∥≤1

|⟨f , ξ⟩H | = ∥ξ∥H .

Especially, the supremum is attained by f = ξ/∥ξ∥H ∈ H and we obtain

e2n,s(P;H) =

∥∥∥∥∫
[0,1]s

K (·, x) dx − 1

n

n−1∑
i=0

K (x , t i )
∥∥∥∥2

=

∫
[0,1]s

∫
[0,1]s

K (x , y) dx dy− 2

n

n−1∑
i=0

∫
[0,1]s

K (x , t i ) dx+
1

n2

n−1∑
i=0

n−1∑
j=0

K (t i , t j),

as desired.
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Randomly shifted rank-1 lattice points

In what follows, we will discuss randomly shifted QMC rules.

Consider the rank-1 lattice point set tk := {kz
n } for some generating vector

z ∈ Ns and fixed n ∈ N. Given a vector ∆ ∈ [0, 1]s , known as the shift,
the ∆-shift of the QMC points t0, . . . , tn−1 is defined as the point set

{tk +∆}, k = 0, . . . , n − 1.

Shifting preserves the lattice structure. In practice, we will generate a
number of independent random shifts ∆0, . . . ,∆R−1 from U([0, 1]s) and
take the average of ∆0, . . . ,∆R−1-shifted QMC rules as our
approximation of Is .

Advantages:

Leads to a shift-invariant kernel (advantageous for high-dimensional
computation).

Randomization yields an unbiased estimator of the integral.

Randomization provides a practical error estimate.
53



Shifted rank-1 lattice rules have points{
kz
n

+∆

}
, k = 0, . . . , n − 1.

Use a number of random shifts for error estimation.
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Lattice rule shifted by ∆ = (0.1, 0.3).
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Randomization in practice

Generate R independent random shifts ∆0, . . . ,∆R−1 from U([0, 1]s).
For a given QMC rule with points (t i )n−1

i=0 ⊂ [0, 1]s , form the

approximations Q
(0)
n,s f , . . . ,Q

(R−1)
n,s f , where

Q∆r
n,s f =

1

n

n−1∑
i=0

f ({t i +∆r}), r = 0, . . . ,R − 1,

is the approximation of the integral using a ∆r -shift of the original
QMC rule.
We take the average

Qn,s,R f =
1

R

R−1∑
r=0

Q∆r
n,s f

as our final approximation of the integral.
An unbiased estimate for the mean-square error of Qn,s,R f is given by

E∆|Is f − Q∆
n,s f |2 ≈

1

R(R − 1)

R−1∑
r=0

(Q∆r
n,s f − Qn,s,R f )

2.
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Q∆0
n,s f = 1

n

∑n−1
i=0 f ({t i +∆0}), Q∆1

n,s f = 1
n

∑n−1
i=0 f ({t i +∆1}), Q∆2

n,s f = 1
n

∑n−1
i=0 f ({t i +∆2})

QMC approximation with 3 random shifts: Qn,s,3f =
Q

∆0
n,s f+Q

∆1
n,s f+Q

∆2
n,s f

3
.
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Q∆0
n,s f = 1

n

∑n−1
i=0 f ({t i +∆0}), Q∆1

n,s f = 1
n

∑n−1
i=0 f ({t i +∆1}), Q∆2

n,s f = 1
n

∑n−1
i=0 f ({t i +∆2})

QMC approximation with 3 random shifts: Qn,s,3f =
Q

∆0
n,s f+Q

∆1
n,s f+Q

∆2
n,s f

3
.
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Q∆0
n,s f = 1

n

∑n−1
i=0 f ({t i +∆0}), Q∆1

n,s f = 1
n

∑n−1
i=0 f ({t i +∆1}), Q∆2

n,s f = 1
n

∑n−1
i=0 f ({t i +∆2})

QMC approximation with 3 random shifts: Qn,s,3f =
Q

∆0
n,s f+Q

∆1
n,s f+Q

∆2
n,s f

3
.
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Q∆0
n,s f = 1

n

∑n−1
i=0 f ({t i +∆0}), Q∆1

n,s f = 1
n

∑n−1
i=0 f ({t i +∆1}), Q∆2

n,s f = 1
n

∑n−1
i=0 f ({t i +∆2})

QMC approximation with 3 random shifts: Qn,s,3f =
Q

∆0
n,s f+Q

∆1
n,s f+Q

∆2
n,s f

3
.
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Q∆0
n,s f = 1

n

∑n−1
i=0 f ({t i +∆0}), Q∆1

n,s f = 1
n

∑n−1
i=0 f ({t i +∆1}), Q∆2

n,s f = 1
n

∑n−1
i=0 f ({t i +∆2})

QMC approximation with 3 random shifts: Qn,s,3f =
Q

∆0
n,s f+Q

∆1
n,s f+Q

∆2
n,s f

3
.
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Shift-averaged worst-case error

For any QMC point set P = {t0, . . . , tn−1} and any shift ∆ ∈ [0, 1]s , let

P +∆ := {{t i +∆} | i = 0, 1, . . . , n − 1}
denote the shifted QMC point set, and let Q∆

n,s f denote a corresponding
shifted QMC rule (over the point set P +∆). For any integrand f ∈ H, it
follows from the definition of the worst-case error that

|Is f − Qn,s(∆; f )| ≤ en,s(P +∆;H)∥f ∥H ,
where en,s(P +∆;H) := sup∥f ∥H≤1 |Is(f )− Q∆

n,s f |. We deduce a bound
for the root-mean-square error√

E∆|Is f − Q∆
n,s f |2 ≤ eshn,s(P;H)∥f ∥H ,

where the expected value E∆ is taken over the random shift ∆ which is
uniformly distributed over [0, 1]s and the quantity

eshn,s(P;H) :=

√∫
[0,1]s

e2n,s(P +∆;H) d∆

is called the shift-averaged worst-case error. 61



Theorem (Formula for the shift-averaged worst-case error)

[eshn,s(P;Hs(K ))]2 = −
∫
[0,1]s

∫
[0,1]s

K (x , y)dx dy +
1

n2

n−1∑
i=0

n−1∑
j=0

K sh(t i , t j),

where

K sh(x , y) :=
∫
[0,1]s

K ({x +∆}, {y +∆})d∆, x , y ∈ [0, 1]s .

Proof. The definition of shift-averaged WCE and (2) imply

[eshn,s(P;Hs(K))]2 =

∫
[0,1]s

e2n,s(P +∆;H)d∆

=

∫
[0,1]s

∫
[0,1]s

K(x , y)dx dy − 2

n

n−1∑
i=0

∫
[0,1]s

∫
[0,1]s

K({t i +∆}, y) d∆dy

+
1

n2

n−1∑
i=0

n−1∑
j=0

∫
[0,1]s

K({t i +∆}, {t j +∆}) d∆.

The result follows by a change of variables x = {t i +∆} in the second term.
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Remarks

K sh(x , y) :=
∫
[0,1]s

K ({x +∆}, {y +∆})d∆, x , y ∈ [0, 1]s .

The function K sh is actually a reproducing kernel, with the
shift-invariant property

K sh(x , y) = K sh({x +∆}, {y +∆}) for all x , y ,∆ ∈ [0, 1].

Equivalently,

K sh(x , y) = K sh({x − y}, 0) for all x , y ∈ [0, 1].

The function K sh is called the shift-invariant kernel associated with K .
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Weighted Sobolev spaces
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Unanchored, weighted Sobolev space

For our purposes, the relevant function space setting will be the
unanchored, weighted Sobolev space. For any given collection (γu)u⊆{1:s}
of positive numbers (called weights), we associate a space Hs,γ containing
continuous functions on [0, 1]s whose mixed first partial derivatives are
square-integrable. It is defined by the reproducing kernel

Ks,γ(x , y) =
∑

u⊆{1:s}

γu
∏
j∈u

η(xj , yj), η(x , y) := 1
2B2(|x−y |)+(x−1

2)(y−
1
2),

where B2(x) := x2 − x + 1
6 is the Bernoulli polynomial of degree 2 and we

use the notation {1 : s} := {1, . . . , s}.
The norm ∥f ∥s,γ =

√
⟨f , f ⟩s,γ is induced by the inner product

⟨f , g⟩s,γ =
∑

u⊆{1:s}

1

γu

∫
[0,1]|u|

(∫
[0,1]s−|u|

∂|u|

∂xu
f (x) dx−u

)

×
(∫

[0,1]s−|u|

∂|u|

∂xu
g(x) dx−u

)
dxu,

where dxu :=
∏

j∈u dxj and dx−u :=
∏

j∈{1:s}\u dxj . 65



Remarks

We sum over all 2s possible subsets of the indices {1 : s}. By
convention, an empty product is 1.

Each term of the sum corresponds to a subset of variables
xu = {xj | j ∈ u}. We refer to these as the “active” variables, and
denote the remaining “inactive” variables by x−u.

The cardinality |u| of the set u is referred to as the “order” of the
subset of variables xu. There is a weight parameter γu associated
with every subset of variables xu. The weights together model the
relative importance between different subsets of variables. A small

weight γu means that the L2 norm of ∂
|u|f
∂xu

must also be small.

Note that ∥ · ∥s,γ and ∥ · ∥s,cγ are equivalent norms for any c > 0.†

Therefore we do not lose any generality by assuming that the weights
have been normalized s.t. γ∅ = 1. WLOG, we will always use the
convention that γ∅ := 1.

†Here, cγ = (cγu)u⊆{1:s}.
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Special forms of weights

Product weights: we have a sequence of numbers satisfying
γ1 ≥ γ2 ≥ · · · and we take

γu =
∏
j∈u

γj .

In this case, the reproducing kernel is given by the product

Ks,γ(x , y) =
s∏

j=1

(
1 + γjη(xj , yj)

)
.

Finite order weights: there exists q ∈ N s.t. γu = 0 for all |u| > q.
Order dependent weights: we have a sequence of numbers Γ1, Γ2, . . .,
and take

γu = Γ|u|.

Product-and-order dependent (POD) weights: we have two sequences
γ1, γ2, . . . and Γ1, Γ2, . . ., and take

γu = Γ|u|
∏
j∈u

γj .
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Why weighted spaces are interesting

Theorem (Sloan and Woźniakowski 1998)

Consider Hs,γ equipped with product weights γu =
∏

j∈u γj . Then there
exist point sets Pn ⊂ [0, 1]s for n = 1, 2, . . . such that the worst-case error
en,s(Pn;Hs,γ) is bounded independently of s if and only if

∞∑
j=1

γj <∞. (5)

To be more precise, the result has two parts:

If condition (5) does not hold, then no matter how the points are
chosen, the worst-case error is unbounded as s → ∞.

However, if (5) holds, then “good points” exist (although the result
does not say how to find them).
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Recall that Hs,γ is defined via the reproducing kernel

Ks,γ(x , y) =
∑

u⊆{1:s}

γu
∏
j∈u

η(xj , yj), η(x , y) := 1
2B2(|x−y |)+(x−1

2)(y−
1
2),

where B2(x) := x2 − x + 1
6 is the Bernoulli polynomial of degree 2.

Lemma ∫
[0,1]s

Ks,γ(x , y)dy = 1,∫
[0,1]s

∫
[0,1]s

Ks,γ(x , y)dx dy = 1,∫
[0,1]s

Ks,γ(x , x) dx =
∑

u⊆{1:s}

γu(
1
6)

|u|.
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Recall that Hs,γ is defined via the reproducing kernel

Ks,γ(x , y) =
∑

u⊆{1:s}

γu
∏
j∈u

η(xj , yj), η(x , y) := 1
2B2(|x−y |)+(x−1

2)(y−
1
2),

where B2(x) := x2 − x + 1
6 is the Bernoulli polynomial of degree 2.

For our analysis, we will need the shift-invariant kernel associated with Ks,γ .

Lemma

K sh
s,γ(x , y) :=

∫
[0,1]s

Ks,γ({x +∆}, {y +∆})d∆

=
∑

u⊆{1:s}

γu
∏
j∈u

B2(|xj − yj |).

Proof. This is an immediate consequence of∫ 1

0
η({x +∆}, {y +∆}) d∆ = B2(|x − y |).
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Let

P =

{{
kz
n

}
| k = 0, . . . , n − 1

}
be a rank-1 lattice point set corresponding to generating vector z ∈ Ns

and n ∈ N.

When dealing with the shift-invariant kernel corresponding to the
unanchored, weighted Sobolev space Hs,γ , we use the shorthand notation

eshn,s(z) := eshn,s(P;Hs,γ).
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Lemma

The shift-averaged worst-case error for a rank-1 lattice rule in the
weighted unanchored Sobolev space satisfies

[eshn,s(z)]
2 =

1

n

∑
∅̸=u⊆{1:s}

γu

n−1∑
k=0

∏
j∈u

B2

({
kzj
n

})
.

Proof. Let t j =
{ jz

n

}
. We have the kernel

Ks,γ(x , y) =
∑

u⊆{1:s}

γu
∏
j∈u

η(xj , yj), η(x , y) := 1
2B2(|x−y |)+(x−1

2)(y−
1
2),

which satisfies
∫
[0,1]s

∫
[0,1]s Ks,γ(x , y) dx dy = 1. We showed that the

shift-invariant kernel related to K is given by

K sh
s,γ(x , y) =

∑
u⊆{1:s}

γu
∏
k∈u

B2(|xk − yk |).

Moreover, we showed that the shift-averaged WCE is given by

[eshn,s(z)]
2 = −

∫
[0,1]s

∫
[0,1]s

Ks,γ(x , y) dx dy +
1

n2

n−1∑
i=0

n−1∑
j=0

K sh
s,γ(t i , t j).
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Making the obvious substitutions, we arrive at

[eshn,s(z)]
2 =− 1 +

1

n2

n−1∑
i=0

n−1∑
j=0

∑
u⊆{1:s}

γu
∏
k∈u

B2

({
(i − j)zk

n

})
(γ∅ := 1)

=
1

n2

n−1∑
i=0

n−1∑
j=0

∑
∅̸=u⊆{1:s}

γu
∏
k∈u

B2

({
mod(i − j , n)zk

n

})

=
1

n2

∑
∅̸=u⊆{1:s}

γu

n−1∑
i=0

n−1∑
j=0

∏
k∈u

B2

({
mod(i − j , n)zk

n

})
︸ ︷︷ ︸

=n
∑n−1

ℓ=0

∏
k∈u B2

({
ℓzk
n

})
.

Final step: as i and j range from 0 to n − 1, the values of mod(i − j , n)
are just 0, . . . , n − 1 in a different order (see next slide for illustration),
with each value occurring n times. Thus

[eshn,s(z)]
2 =

1

n

n−1∑
ℓ=0

∑
∅̸=u⊆{1:s}

γu
∏
k∈u

B2

({
ℓzk
n

})
,

as desired.
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An illustration of the counting argument used on the
previous slide

i/j 0 1 2 3 4 · · · n − 1

0 f (0) f (1) f (2) f (3) f (4) · · · f (n − 1)
1 f (n − 1) f (0) f (1) f (2) f (3) · · · f (n − 2)
2 f (n − 2) f (n − 1) f (0) f (1) f (2) · · · f (n − 3)
3 f (n − 3) f (n − 2) f (n − 1) f (0) f (1) · · · f (n − 4)
4 f (n − 4) f (n − 3) f (n − 2) f (n − 1) f (0) · · · f (n − 5)
...

...
...

...
...

...
. . .

...
n − 1 f (1) f (2) f (3) f (4) f (5) · · · f (0)

Table of the values f (mod(i − j , n)), when i , j ∈ {0, 1, . . . , n − 1}.

By a simple counting argument we can write

n−1∑
i=0

n−1∑
j=0

f (mod(i − j , n)) = n
n−1∑
ℓ=0

f (ℓ)

for any function f : {0, 1, . . . , n − 1} → R.
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Component-by-component construction

The components of the generating vector z can be restricted to the set

Un := {z ∈ Z | 1 ≤ z ≤ n − 1 and gcd(z , n) = 1},

whose cardinality is given by the Euler totient function φ(n) := |Un|.
When n is prime, φ(n) takes its largest value n − 1.

We know that for f ∈ Hs,γ , there holds√
E∆|Is f − Q∆

n,s f |2 ≤ eshn,s(z)∥f ∥s,γ .

Finding z∗ = argminz∈Un
eshn,s(z) is not computationally feasible: the

search space contains altogether up to (n − 1)s possible choices for z .
However, the component-by-component (CBC) construction provides a
feasible way to obtain good lattice generating vectors.
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CBC construction

CBC construction. Given n, s, and weights (γu)u⊆{1:s}.
1. Set z1 = 1.
2. For k = 2, 3, . . . , s, choose zk ∈ Un to minimize [eshn,k(z1, . . . , zk)]

2.
Remarks:

Note that we have the (in principle computable) expression

[eshn,k(z)]
2 =

1

n

∑
∅̸=u⊆{1:k}

γu

n−1∑
ℓ=0

∏
j∈u

B2

({
ℓzj
n

})
. (6)

We will show that when the weights (γu)u⊆{1:s} are so-called product-and-order
dependent (POD) weights, i.e., they can be written in the form

γu := Γ|u|
∏
j∈u

γj , u ⊆ {1 : s},

where γ∅ := 1, (Γk)
∞
k=1 and (γj)

∞
j=1 are sequences of positive numbers, then the

value of (6) can be obtained in O(s n log n + s2n) time using the so-called fast
CBC algorithm. This is quadratic, not exponential, w.r.t. the dimension s.

The CBC algorithm is a greedy algorithm: in general, it will not produce a
generating vector which minimizes eshn,s(z). Regardless, we can produce an error
estimate for the QMC rule based on a generating vector constructed by the CBC
algorithm!
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Theorem (CBC error bound)

The generating vector z ∈ Us
n constructed by the CBC algorithm,

minimizing the squared shift-averaged worst-case error [eshn,s(z)]2 for the
weighted unanchored Sobolev space in each step, satisfies

[eshn,s(z)]
2 ≤

(
1

φ(n)

∑
∅̸=u⊆{1:s}

γλu

(
2ζ(2λ)

(2π2)λ

)|u|)1/λ

for all λ ∈ (1/2, 1],

where ζ(x) :=
∑∞

k=1 k
−x denotes the Riemann zeta function for x > 1.
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Significance: Suppose that f ∈ Hs,γ for all γ = (γu)u⊆{1:s}. Then for any
given sequence of weights γ, we can use the CBC algorithm to obtain a
generating vector satisfying the error bound√

E∆|Is f − Q∆
n,s f |2 ≤

(
1

φ(n)

∑
∅̸=u⊆{1:s}

γλu

(
2ζ(2λ)

(2π2)λ

)|u|)1/(2λ)

∥f ∥s,γ (7)

for all λ ∈ (1/2, 1]. We can use the following strategy:

For a given integrand f , estimate the norm ∥f ∥s,γ .
Find weights γ which minimize the error bound (7).
Using the optimized weights γ as input, use the CBC algorithm to
find a generating vector which satisfies the error bound (7).

Remarks:

If n is prime, then 1
φ(n) =

1
n−1 . If n = 2k , then 1

φ(n) =
2
n . For general

(composite) n ≥ 3, 1
φ(n) ≤

eγ log log n+ 3
log log n

n , where

γ = 0.57721566 . . . (Euler–Mascheroni constant).
The optimal convergence rate close to O(n−1) is obtained with
λ→ 1/2, but note that λ = 1/2 is not permitted since ζ(2λ) → ∞
as λ→ 1/2.
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3. Constructing lattice rules
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Näıve CBC construction
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We write the error criterion as

[eshn,d(z1, . . . , zd)]
2 =

1

n

n−1∑
k=0

∑
∅ ̸=u⊆{1:d}

γu
∏
j∈u

B2

({
kzj
n

})

=
1

n

n−1∑
k=0

d∑
ℓ=1

∑
|u|=ℓ

u⊆{1:d}

γu
∏
j∈u

B2

({
kzj
n

})
︸ ︷︷ ︸

=:pd,ℓ(k)

.

By plugging in the POD weights γu := Γ|u|
∏

j∈u γj , note that we have the following
recursion (we split the sum over u in two parts depending on whether d ∈ u):

pd,ℓ(k) =
∑
|u|=ℓ

u⊆{1:d}

Γℓ

(∏
j∈u

γjB2

({
kzj
n

}))

=
∑
|u|=ℓ

u⊆{1:d−1}

Γℓ

(∏
j∈u

γjB2

({
kzj
n

}))

+
∑

|u|=ℓ−1
u⊆{1:d−1}

ΓℓγdB2

({
kzd
n

})(∏
j∈u

γjB2

({
kzj
n

}))

= pd−1,ℓ(k) +
Γℓ

Γℓ−1
γdB2

({
kzd
n

})
pd−1,ℓ−1(k).
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Plugging the recurrence

pd ,ℓ(k) = pd−1,ℓ(k) +
Γℓ
Γℓ−1

γdB2

({
kzd
n

})
pd−1,ℓ−1(k)

into the expression for the squared shift-averaged WCE yields

[eshn,d(z1, . . . , zd)]
2 =

1

n

n−1∑
k=0

d∑
ℓ=1

pd ,ℓ(k)

=
1

n

n−1∑
k=0

d∑
ℓ=1

pd−1,ℓ(k) +
1

n

n−1∑
k=0

d∑
ℓ=1

Γℓ
Γℓ−1

γdB2

({
kzd
n

})
pd−1,ℓ−1(k)

= [eshn,d−1(z1, . . . , zd−1)]
2 +

1

n

n−1∑
k=0

B2

({
kzd
n

}) d∑
ℓ=1

Γℓ
Γℓ−1

γdpd−1,ℓ−1(k).

Recall that in the d th step of the CBC algorithm, the components
z1, . . . , zd−1 are fixed and it is therefore sufficient to find zd ∈ Un which
minimizes the expression

∑n−1
k=0 B2

({
kzd
n

})∑d
ℓ=1

Γℓ
Γℓ−1

γdpd−1,ℓ−1(k).
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Let us introduce the matrix Ωn :=
[
B2

({
kz
n

})]
z∈Un

k∈{0,...,n−1}
and define a set

of n-vectors recursively via

pd ,ℓ = pd−1,ℓ + γd
Γℓ
Γℓ−1

Ωn(zd , :). ∗ pd−1,ℓ−1

starting from the initial values

pd ,0 = 1n for all d ≥ 1,

pd ,ℓ = 0n for all d ≥ 1 and ℓ > d ,

with .∗ denoting the componentwise product between two vectors.

Then the value of
∑n−1

k=0 B2

({
kzd
n

})∑d
ℓ=1

Γℓ
Γℓ−1

γdpd−1,ℓ−1(k) in the d th

step of the CBC algorithm can be obtained for all zd ∈ Un via

Ωnx , where x =
d∑
ℓ=1

Γℓ
Γℓ−1

γdpd−1,ℓ−1.
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CBC algorithm – näıve version

1. Define the matrix Ωn :=
[
B2

({
kz
n

})]
z∈Un

k∈{0,...,n−1}
and initialize the

n-vectors

pd ,0 = 1n for all d ≥ 1,

pd ,ℓ = 0n for all d ≥ 1 and ℓ > d .

for d = 1, . . . , s, do
2. Pick the value zd ∈ {1, . . . , n − 1} corresponding to the smallest entry

in the matrix-vector product

Ωnx , where x =
d∑

ℓ=1

Γℓ
Γℓ−1

γdpd−1,ℓ−1. (8)

3. Update pd,ℓ = pd−1,ℓ + γd
Γℓ

Γℓ−1
Ωn(zd , :). ∗ pd−1,ℓ−1.

end for

Remarks: We only need the ratio aℓ :=
Γℓ

Γℓ−1
for the implementation, e.g.,

for Γℓ = ℓ! this is aℓ = ℓ. The computational bottleneck is the dense
matrix-vector product Ωnx in (8), which has complexity O(n2). The fast
CBC algorithm reduces this product down to O(n log n) complexity.
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Fast CBC algorithm
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What makes fast CBC fast?

The matrix-vector product Ωnx has time complexity O(n2), which is too
slow if n is, say, of the order of a million or more. (Not to mention the
problem of storing a dense matrix of such size!)

However, the matrix Ωn has a lot of structure. It turns out that we can
implement the matrix-vector product Ωnx in O(n log n) time using some
sophisticated mathematical tools.

In a nutshell, we let n ≥ 3 be prime and do the following:

Using some natural symmetries of Ωn, we can ignore the first column
(since it corresponds to shifting the objective functional in the CBC
minimization step by a constant value) and it will be sufficient to
consider only the top-left block Ω′

n := Ωn(1 : m, 2 : m+ 1), where
m := (n − 1)/2.
For prime n, we can find a generator g (primitive root modulo n) and
use this to permute Ω′

n into a circulant matrix.
A circulant matrix implements a circular convolution, so a
matrix-vector product (in the permuted indexing) can be implemented
in O(n log n) time using the fast Fourier transform (FFT). 86



Before getting to the implementational details of fast CBC, we will need to

discuss an algorithm to find a primitive root modulo n;

discuss how to compute a circulant matrix-vector product using FFT.
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Primitive root modulo n

Definition

Let g , n ∈ N. The number g is called a primitive root modulo n if for any
integer a ∈ N such that gcd(a, n) = 1, there exists an integer k (called the
index) such that

gk ≡ a (mod n).

Such a number g is the generator of the multiplicative group of integers
modulo n, i.e., (Z/nZ)×.

Theorem (Gauss 1801)

A primitive root modulo n exists if and only if

n is 1, 2, 4, or

n = pk , where p ≥ 3 is a prime and k ∈ N, or
n = 2pk , where p ≥ 3 is a prime and k ∈ N.

Note especially that a primitive root modulo n exists whenever n is prime.
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Recall that the Euler totient function is defined by
φ(n) := |{k ∈ N | 1 ≤ k ≤ n − 1, gcd(k , n) = 1}|. We have the following.

Proposition

The number g is a primitive root modulo n if and only if the smallest
positive integer k for which gk ≡ 1 (mod n) is precisely k = φ(n).

Lagrange’s theorem: the smallest k satisfying gk ≡ 1 (mod n) divides
φ(n). Therefore, it is enough to check for all proper divisors d |φ(n) that
gd ̸≡ 1 (mod n).

However, we can do even better!
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Find the prime number factorization φ(n) = pa11 · · · paℓℓ . It turns out that it

is enough to check that gd ̸≡ 1 (mod n) for all d ∈
{φ(n)

p1
, . . . , φ(n)pℓ

}
. To

see this, let d be any proper divisor of φ(n). Then there exists j such that

d |φ(n)pj
, meaning that dk = φ(n)

pj
for some k ∈ N. However, if

gd ≡ 1 (mod n), we would get

g
φ(n)
pj ≡ gdk ≡ (gd)k ≡ 1k ≡ 1 (mod n).

That is, if g was not a primitive root, then one could find a number of the

form φ(n)
pj

for which g
φ(n)
pj ≡ 1 (mod n).

∴ It is enough to check that g
φ(n)
pj ̸≡ 1 (mod n) for all j ∈ {1, . . . , ℓ}.
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Algorithm for finding a primitive root modulo n

1. Find the prime number factorization φ(n) = pa11 · · · paℓℓ .

Iterate through all numbers g = 1, 2, . . . , n − 1 and, for each number,
check whether it is a primitive root by doing the following:

2. Calculate mod(g
φ(n)
pj , n) for all j ∈ {1, . . . , ℓ}.

3. If all the calculated values are different from 1, then g is a primitive
root.

Remark: In MATLAB, the quantities in step 2 can be computed, e.g., via
powermod(g,eulerPhi(n)/pj,n)
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Discrete and fast Fourier transform

The discrete Fourier transform of (complex) vector x := (xj)
n
j=1 is defined

as the vector y := (yj)
n
j=1 with

yj =
n∑

k=1

xke
−2πi(j−1)(k−1)/n, j ∈ {1, . . . , n},

and the inverse discrete Fourier transform is given by

xj =
1

n

n∑
k=1

yke
2πi(j−1)(k−1)/n, j ∈ {1, . . . , n}.

The fast Fourier transform (FFT) can be used to carry out these operations
in O(n log n) time. In MATLAB, one has y = fft(x) and x = ifft(y).
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Circular convolution

Let x := (xi )
n
i=1 and y := (yi )

n
i=1 be (complex) vectors. Then the

sequence z := (zi )
n
i=1 defined by

zi =
n∑

k=1

xkymod(i−k,n)+1, i ∈ {1, . . . , n},

is called the circular convolution of x and y and we denote it by z := x ⋆ y .

Similarly to the continuous convolution, we have the following identity
using discrete/fast Fourier transform:

fft(x ⋆ y) = fft(x).∗fft(y),

where x .∗y := (xiyi )
n
i=1 is the pointwise product of two vectors.

93



Circular convolution and circulant matrices

A matrix A ∈ Rn×n is called circulant if it has the form

A =


a0 an−1 · · · a2 a1
a1 a0 an−1 a2
... a1 a0

. . .
...

an−2
. . .

. . . an−1

an−1 an−2 · · · a1 a0

 .

Each row is equal to the row above shifted to the right by one
(wrapping around the edge in a periodic way).

The first column/row contains all information about the matrix.

A circulant matrix implements a circular convolution:

Ax = a ⋆ x , (9)

where a := [a0, a1, . . . , an−1]
T is the first column of matrix A.

The identity (9) implies that a circulant matrix-vector product can be
implemented in O(n log n) time as Ax = ifft(fft(a).∗fft(x)).
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Putting it all together

The matrix-vector product Ωnx in the CBC loop costs O(n2) operations.
However, it was shown by Kuo, Nuyens, and Cools (2006) that the blocks
of Ωn can be permuted into circulant form → the matrix-vector product
can be implemented in O(n log n) operations using FFT.

Figure: Example with Ω17. Note that the first column is a constant and can be
left out (the components of Ωnx are shifted by a constant → the smallest
component stays invariant). Noting the obvious symmetries in the remaining four
blocks, we can focus on the top left block.
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When n is prime, it is possible to use the so-called Rader transformation to
permute the top-left m ×m matrix Ω′ into circulant form:

Ωg
n(i , j) = Ω′

n(g
i , (g−1)j), i , j ∈ {1, . . . ,m},

where g is the primitive root modulo n. Here, g−1 denotes the modular
multiplicative inverse gg−1 ≡ 1 (mod n).

Figure: The original block matrix is multiplied from both sides by Rader
permutation matrices (the black elements indicate the value 1 and white elements
indicate the value 0) to obtain a circulant matrix.
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Example with n = 1009

Figure: LHS: Original Ω1009. RHS: top left block of Ω1009 (sans first column).

Figure: Rader transformation turns the top left block matrix circulant.
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The overall cost of the CBC algorithm with POD weights is
O(s n log n + s2n).

For simplicity, we considered only the case where n is prime. An
extension for composite n was discussed by Nuyens and Cools
(J. Complexity 2006). The idea for composite n is that the complete
matrix Ωn can be partitioned in blocks which have a circulant or
block-circulant structure. The special case of n being a power of 2
has been discussed by Cools, Kuo, and Nuyens (SIAM
J. Sci. Comput. 2006).

There also exist freely available software implementing the fast CBC
construction, cf., e.g.,
https://people.cs.kuleuven.be/~dirk.nuyens/qmc4pde/,
https://people.cs.kuleuven.be/~dirk.nuyens/fast-cbc/,
https://qmcpy.org/, ...
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4. QMC methods for forward and inverse uncertainty quantification of
elliptic PDEs with random coefficients
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Uniform and affine model
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Uniform and affine model: let D ⊂ Rd , d ∈ {1, 2, 3}, be a bounded
Lipschitz domain, let f ∈ H−1(D), and let
U := [−1/2, 1/2]N := {(aj)j≥1 : −1/2 ≤ aj ≤ 1/2} be a set of parameters.
Consider the problem of finding, for all y ∈ U, u(·, y) ∈ H1

0 (D) such that∫
D
a(x , y)∇u(x , y) · ∇v(x) dx = ⟨f , v⟩H−1(D),H1

0 (D) for all v ∈ H1
0 (D),

where the diffusion coefficient has the parameterization

a(x , y) := a0(x) +
∞∑
j=1

yjψj(x), x ∈ D, y ∈ U,

where a0 ∈ L∞(D), there exist amin, amax > 0
s.t. 0 < amin ≤ a(x , y) ≤ amax <∞ for all x ∈ D and y ∈ U, and the
stochastic fluctuations ψj : D → R are functions of the spatial variable
such that

ψj ∈ L∞(D) for all j ∈ N,∑∞
j=1 ∥ψj∥L∞(D) <∞,∑∞
j=1 ∥ψj∥pL∞(D) <∞ for some p ∈ (0, 1).
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Total error decomposition

In practice, we need to truncate the infinite-dimensional parametric vector
y ∈ [−1/2, 1/2]N to a finite number of terms. Moreover, the PDE needs
to be discretized spatially using, e.g., the finite element method.

Let us(·, y) := us(y1, . . . , ys , 0, 0, . . .) denote the dimensionally-truncated
PDE solution for y ∈ [−1/2, 1/2]s , and let us,h(·, y) ∈ Vh denote the
dimensionally-truncated FE solution in the FE subspace spanned by
piecewise linear FE basis functions. Furthermore, let
(t i )ni=1 = ({ iz

n } −
1
2)

n
i=1 be a QMC point set in [−1/2, 1/2]s .
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Total error decomposition

For simplicity, let us consider the problem of computing E[G (u)], where
u(·, y) ∈ H1

0 (D) is the PDE solution for y ∈ [−1/2, 1/2]N and
G : H1

0 (D) → R is a linear functional (quantity of interest). We decompose
the total error as∫

[−1/2,1/2]N
G (u(·, y))dy − 1

n

n∑
i=1

G (us,h(·, t i ))

=

∫
[−1/2,1/2]N

(G (u(·, y)− us(·, y≤s))) dy

+

∫
[−1/2,1/2]s

G (us(·, y)− us,h(·, y))dy

+

∫
[−1/2,1/2]s

G (us,h(·, y))dy − 1

n

n∑
i=1

G (us,h(·, t i )).
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Using the triangle inequality, we are left with the total error decomposition∣∣∣∣ ∫
[−1/2,1/2]N

G (u(·, y))dy − 1

n

n∑
i=1

G (us,h(·, t i ))
∣∣∣∣

≤
∣∣∣∣ ∫

[−1/2,1/2]N
(G (u(·, y)− us(·, y≤s))dy

∣∣∣∣ (dimension-truncation error)

+

∣∣∣∣ ∫
[−1/2,1/2]s

G (us(·, y)− us,h(·, y))dy
∣∣∣∣ (finite element error)

+

∣∣∣∣ ∫
[−1/2,1/2]s

G (us,h(·, y))dy − 1

n

n∑
i=1

G (us,h(·, t i ))
∣∣∣∣. (cubature error)

We focus on the cubature error.
If ∥ψ1∥L∞(D) ≥ ∥ψ2∥L∞(D) ≥ · · · , then the dimension truncation error decays like

O(s−2/p+1) [Gantner (2018)].

If D is a convex polygon (2d)/polyhedron (3d) and we have additional regularity,
e.g., f ,G ∈ L2(D), a is Lipschitz, and the family {Vh}h of first-order finite element
spaces, indexed by the mesh size h > 0, is a sequence of regular, simplicial meshes
in D obtained from an initial, regular triangulation of D by recursive, uniform
bisection of simplices, then the L2 finite element error satisfies O(h2) as h → 0
independently of s [Kuo, Schwab, Sloan (2012)].
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Multi-index notation

We introduce the set of finitely-supported multi-indices

F := {ν ∈ NN
0 : |supp(ν)| <∞},

where the support of a multi-index ν is defined as the set

supp(ν) := {i ∈ N : νi ̸= 0}.

As before, the order of a multi-index is defined as

|ν| :=
∑
j≥1

νj

and we use the special multi-index notations

∂ν := ∂νy :=
∏

j∈supp(ν)

∂νj

∂y
νj
j

, xν :=
∏

j∈supp(ν)

x
νj
j ,

(
ν

m

)
:=

∏
j∈supp(ν)

(
νj
mj

)
.
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Recursive bound

Consider the weak formulation∫
D
a(x , y)∇u(x , y) · ∇v(x) dx = ⟨f , v⟩H−1(D),H1

0 (D). (10)

Noting that

∂νa(x , y) =


a(x , y) if ν = 0,

ψj(x) if ν = e j ,

0 otherwise,

we let ν ∈ F \ {0} and differentiate (10) on both sides with ∂ν and use
the Leibniz product rule† to obtain

∂ν

∫
D

a(x , y)∇u(x , y) · ∇v(x) dx = 0

⇔
∑
m≤ν

(
ν

m

)∫
D

∂ma(x)∇∂ν−mu(x , y) · ∇v(x) dx = 0

⇔
∫
D

a(x , y)∇∂νu(x , y) · ∇v(x)dx = −
∑

j∈supp(ν)

νj

∫
D

ψj(x)∇∂ν−e j u(x , y) · ∇v(x)dx .

†∂ν(fg) =
∑

m≤ν

(
ν
m

)
∂mf ∂ν−mg 106



Testing this against v = ∂νu(x , y) yields

amin∥∂νu(·, y)∥2H1
0 (D)

≤
∫
D
a(x , y)∥∇∂νu(x , y)∥2 dx

≤
∑

j∈supp(ν)

νj∥ψj∥L∞(D)∥∂ν−e ju(·, y)∥H1
0 (D)∥∂νu(·, y)∥H1

0 (D)

Thus we obtain the recursive relation

∥∂νu(·, y)∥H1
0 (D) ≤

∑
j∈supp(ν)

νj
∥ψj∥L∞(D)

amin︸ ︷︷ ︸
=:bj

∥∂ν−e ju(·, y)∥H1
0 (D).

For later convenience, we introduce here the sequence b := (bj)j≥1 defined

by bj :=
∥ψj∥L∞(D)

amin
. Recall that by the assumptions we placed on the

uniform and affine model, there holds b ∈ ℓp for some p ∈ (0, 1).
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Parametric regularity

Proposition

For all y ∈ [−1/2, 1/2]N and ν ∈ F , there holds

∥∂νu(·, y)∥H1
0 (D) ≤

∥f ∥H−1(D)

amin
bν |ν|!.

Proof. By induction w.r.t. the order of the multi-index ν ∈ F . If ν = 0, then this is the
ordinary Lax–Milgram a priori bound

amin

∫
D

|∇u(x , y)|2 dx︸ ︷︷ ︸
=∥u(·,y)∥2

H1
0
(D)

≤
∫
D

a(x , y)∇u(x , y) · ∇u(x , y)dx = ⟨f , u(·, y)⟩H−1(D),H1
0 (D)

≤ ∥f ∥H−1(D)∥u(·, y)∥H1
0 (D)

whence

∥u(·, y)∥H1
0 (D) ≤

∥f ∥H−1(D)

amin
.
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Next, let ν ∈ F \ {0} and suppose that the claim has been proved for all
multi-indices with order less than |ν|. Then using the recursive relation we
derived previously, we obtain

∥∂νu(·, y)∥H1
0 (D) ≤

∑
j∈supp(ν)

νjbj∥∂ν−e ju(·, y)∥H1
0 (D)

≤
∥f ∥H−1(D)

amin

∑
j∈supp(ν)

νjbj |ν − e j |!bν−e j

=
∥f ∥H−1(D)

amin
bν(|ν| − 1)!

∑
j≥1

νj

=
∥f ∥H−1(D)

amin
bν |ν|!,

as desired.
Remark. Note that the same regularity bound holds for the
dimensionally-truncated FE solution us,h as long as a (conforming)
Galerkin FE discretization has been used to construct the FE
approximation. This is due to the fact that the weak formulation of the
Galerkin discretization is exactly the same (only the function space differs).
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Now that we know the regularity of the PDE problem, we can analyze the
QMC cubature error! Let G : H1

0 (D) → R be a linear and bounded
functional, us,h the dimensionally-truncated FE solution, and define
F (y) := G (us,h(·, y − 1

2)) for y ∈ [0, 1]s . Let γ = (γu)u⊆{1:s} be a
sequence of positive weights. Then we know that the generating vector
obtained by the CBC algorithm satisfies the error bound√

E∆|IsF − Q∆
n,sF |2 ≤

(
1

φ(n)

∑
∅̸=u⊆{1:s}

γλu

(
2ζ(2λ)

(2π2)λ

)|u|)1/(2λ)

∥F∥s,γ

for all λ ∈ (1/2, 1], where

∥F∥2s,γ =
∑

u⊆{1:s}

1

γu

∫
[0,1]|u|

(∫
[0,1]s−|u|

∂|u|

∂xu
F (y) dy−u

)2

dyu

≤
(∥G∥H−1(D)∥f ∥H−1(D)

amin

)2 ∑
u⊆{1:s}

1

γu
(|u|!)2

∏
j∈u

b2j .

Plugging this norm bound back into the QMC error bound yields...
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√
E∆|IsF − Q∆

n,sF |2 ≲
(

1

φ(n)

)1/(2λ)( ∑
∅̸=u⊆{1:s}

γλu

(
2ζ(2λ)

(2π2)λ

)|u|)1/(2λ)

×
( ∑

u⊆{1:s}

1

γu
(|u|!)2

∏
j∈u

b2j

)1/2

.

The upper bound can be minimized by choosing the POD weights

γu :=

(
|u|!

∏
j∈u

bj√
2ζ(2λ)
(2π2)λ

)2/(1+λ)

,

as explained by the following lemma.
Lemma

Let (αi ) and (βi ) be sequences of positive real numbers. The expression

g(γ) :=

(∑
i

αiγ
λ
i

)1/λ(∑
i

βiγ
−1
i

)

is minimized by γi = c
( βi
αi

)1/(1+λ)
for arbitrary c > 0.
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Proof. Let us find out when the gradient vanishes:

0 = ∂jg(γ) =
1

λ

(∑
i

αiγ
λ
i

)1/λ−1

λαjγ
λ−1
j

(∑
i

βiγ
−1
i

)

− βjγ
−2
j

(∑
i

αiγ
λ
i

)1/λ

.

After some trivial simplifications, we can see that this is equivalent to

γλ+1
j =

βj
αj

∑
i αiγ

λ
i∑

i βiγ
−1
i

.

Furthermore, this condition is satisfied if

γj = c

(
βj
αj

)1/(1+λ)

,

where c > 0 is arbitrary.
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Note that plugging γi = c
( βi
αi

)1/(1+λ)
into

(∑
i αiγ

λ
i

)1/(2λ)(∑
i βiγ

−1
i

)1/2
yields the expression

(∑
i α

1/(1+λ)
i β

λ/(1+λ)
i

)(1+λ)/(2λ)
. Thus, plugging the

optimal POD weights into the QMC error bound results in√
E∆|IsF − Q∆

n,sF |2 ≲
(

1

φ(n)

)1/(2λ)

C (s,γ, λ)(1+λ)/(2λ),

where

C (s,γ, λ) :=
∑

u⊆{1:s}

(
2ζ(2λ)

(2π2)λ

)|u|/(1+λ)
(|u|!)2λ/(1+λ)

∏
j∈u

b
2λ/(1+λ)
j .

This is the punchline:

Lemma

By choosing

λ =

{
p

2−p when p ∈ (2/3, 1)
1

2−2δ for arbitrary δ ∈ (0, 1/2) when p ∈ (0, 2/3],

there exists a constant C (γ, λ) <∞ independently of s
s.t. C (s,γ, λ) ≤ C (γ, λ) <∞.
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Proof. First observe that

C (s,γ, λ) =
∑

u⊆{1:s}

(
2ζ(2λ)

(2π2)λ

)|u|/(1+λ)
(|u|!)2λ/(1+λ)

∏
j∈u

b
2λ/(1+λ)
j

=
s∑
ℓ=0

(
2ζ(2λ)

(2π2)λ

)ℓ/(1+λ)
(ℓ!)2λ/(1+λ)

∑
|u|=ℓ

u⊆{1:s}

∏
j∈u

b
2λ/(1+λ)
j

≤
∞∑
ℓ=0

(
2ζ(2λ)

(2π2)λ

)ℓ/(1+λ)
(ℓ!)2λ/(1+λ)−1

(∑
j≥1

b
2λ/(1+λ)
j

)ℓ
where we used the inequality

∑
|u|=ℓ,u⊆Z+

∏
j∈u cj ≤

1
ℓ!

(∑
j≥1 cj

)ℓ
.

Case 1: p ∈ (2/3, 1). We choose p = 2λ
1+λ ⇔ λ = p

2−p ∈ (1/2, 1), and

C (s,γ, λ) ≤
∞∑
ℓ=0

(
2ζ(2λ)

(2π2)λ

)ℓ/(1+λ)
(ℓ!)p−1

(∑
j≥1

bpj

)ℓ
︸ ︷︷ ︸

=:aℓ

It is easy to see that aℓ+1

aℓ

ℓ→∞−−−→ 0. By the ratio test, this upper bound is
finite independently of s.
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Case 2: p ∈ (0, 2/3]. Let δ ∈ (0, 1/2) be arbitrary. We choose
λ = 1

2−2δ ∈ (1/2, 1). Now 2λ
1+λ = 2

3−2δ ∈ (2/3, 1). Especially,
∥b∥ℓ2λ/(1+λ) ≤ ∥b∥ℓp , and we obtain from the estimate on the previous
slide that

C (s,γ, λ) ≤
∞∑
ℓ=0

(
2ζ(2λ)

(2π2)λ

)ℓ/(1+λ)
(ℓ!)2λ/(1+λ)−1

(∑
j≥1

b
2λ/(1+λ)
j

)ℓ

≤
∞∑
ℓ=0

(
2ζ(2λ)

(2π2)λ

)ℓ/(1+λ)
(ℓ!)2/(3−2δ)−1

(∑
j≥1

bpj

)2ℓ/((3−2δ)p)

︸ ︷︷ ︸
=:aℓ

Again, aℓ+1

aℓ

ℓ→∞−−−→ 0, so by the ratio test this upper bound is finite
independently of s.
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Theorem

Let δ ∈ (0, 1/2) be arbitrary. By choosing the POD weights

γu :=

(
|u|!

∏
j∈u

bj√
2ζ(2λ)
(2π2)λ

)2/(1+λ)

, λ :=

{
p

2−p if p ∈ (2/3, 1),
1

2−2δ if p ∈ (0, 2/3],

then the QMC approximation for the expected value of the PDE problem
satisfies

R.M.S. error ≲

{(
1

φ(n)

)1/p−1/2
if p ∈ (2/3, 1),(

1
φ(n)

)1−δ
if p ∈ (0, 2/3],

where the implied coefficient is independent of the dimension s.

Remark: We have the following dimension-independent convergence rates:

n is prime ⇒ 1
φ(n) =

1
n−1 ⇒ QMC rate O(nmax{−1/p+1/2,−1+δ}).

n = 2k ⇒ 1
φ(n) =

2
n ⇒ QMC rate O(nmax{−1/p+1/2,−1+δ}).

For general composite n, the dimension-independent QMC rate is at
best essentially linear up to a double logarithmic factor of n.
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Remarks on implementation

Let G : H1
0 (D) → R be a bounded linear functional. Consider the problem

of approximating

E[G (us,h)] =

∫
[−1/2,1/2]s

G (us,h(·, y))dy ,

where us,h is the dimensionally-truncated FE approximation to the elliptic
PDE with a uniform and affine diffusion coefficient.

Our QMC approximation is guaranteed to satisfy the R.M.S. error bound
from the previous slide if we plug the theoretically derived weights as input
to the fast CBC algorithm. This produces a generating vector z ∈ Ns . The
generating vector is designed to be used to compute the estimate

Qn,s,RG (us,h) :=
1

R

R−1∑
r=0

Q∆r
n,sG (us,h),

where Q∆r
n,sF := 1

n

∑n−1
i=0 f ({t i +∆r} − 1

2), tk := {kz
n }, and

∆0, . . . ,∆R−1 are independent random shifts drawn from U([0, 1]s).
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Typically, the number of random shifts is taken to be rather small,
e.g., 8 ≤ R ≤ 64.

A practical estimate for the R.M.S. error is given by the formula

√
E∆|IsF − Q∆

n,sF |2 ≈

√√√√ 1

R(R − 1)

R−1∑
r=0

(Q∆r
n,sF − Qn,s,RF )2.

If we instead wish to estimate E[us,h(x , ·)] (i.e., leave out the
quantity of interest G : H1

0 (D) → R), the same weights can be used
as input to the CBC algorithm.
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Numerical example

Let us consider the PDE problem

−∇ · (a(x , y)∇u(x , y)) = x1, u(·, y)|∂D = 0,

in the physical domain D = (0, 1)2 with the diffusion coefficient

a(x , y) = 1 +
s∑

j=1

yjψj(x), x ∈ D, yj ∈ [−1
2 ,

1
2 ],

where ψj(x) = j−2 sin(jπx1) sin(jπx2). We compute E[G (u)] using QMC
with R = 8 random shifts, where G (v) =

∫
D v(x) dx .
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Figure: QMC with s = 100 constructed using the weights

γu =
(
|u|!

∏
j∈u

bj√
2ζ(2λ)/(2π2)λ

) 2
1+λ , λ = 1

2−2δ , δ = 0.05, for all u ⊆ {1, . . . , s}.
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Lognormal model (briefly)
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Lognormal model: let D ⊂ Rd , d ∈ {1, 2, 3}, be a bounded Lipschitz
domain, and let f ∈ H−1(D). Let ψj ∈ L∞(D) and bj := ∥ψj∥L∞ for
j ∈ N such that

∑∞
j=1 bj <∞, and set

Ub :=

{
y ∈ RN :

∞∑
j=1

bj |yj | <∞
}
.

Consider the problem of finding, for all y ∈ U, u(·, y) ∈ H1
0 (D) such that∫

D
a(x , y)∇u(x , y) · ∇v(x) dx = ⟨f , v⟩H−1(D),H1

0 (D) for all v ∈ H1
0 (D),

where the diffusion coefficient is assumed to have the parameterization

a(x , y) := a0(x) exp
( ∞∑

j=1

yjψj(x)
)
, x ∈ D, y ∈ Ub,

where a0 ∈ L∞(D) is such that a0(x) > 0, x ∈ D.
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Standing assumptions for the lognormal model

(B1) We have a0 ∈ L∞(D) and
∑∞

j=1 bj <∞.

(B2) For every y ∈ Ub, the expressions amax(y) := maxx∈D a(x , y) and
amin(y) := minx∈D a(x , y) are well-defined and satisfy
0 < amin(y) ≤ a(x , y) ≤ amax(y) <∞.

(B3)
∑∞

j=1 b
p
j <∞ for some p ∈ (0, 1).

Remark: Note that in the lognormal case, a(x , y) can take values which
are arbitrarily close to 0 or arbitrarily large. Thus, the best we can do is to
find y -dependent lower and upper bounds amin(y) and amax(y). This will
lead to a y -dependent a priori bound and, consequently, y -dependent
parametric regularity bounds. This will make the QMC analysis more
involved, leading one to consider “special” weighted, unanchored Sobolev
spaces.
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In this setting, we have

Is(F ) :=

∫
Rs

F (y)
s∏

j=1

ϕ(yj)dy =

∫
(0,1)s

F (Φ−1(w))dw .

where ϕ(y) := 1√
2π
e−

1
2
y2

is the probability density function of N (0, 1) and

Φ−1(w) = [Φ−1(w1), . . . ,Φ
−1(ws)]

T denotes the corresponding
(componentwise) inverse cumulative distribution function. We use the
randomly shifted QMC rules

Q∆r
n,s (F ) =

1

n

n∑
k=1

F (Φ−1({tk +∆r})),

Qn,R(F ) :=
1

R

R∑
r=1

Q∆r
n,s (F ),

where we have R independent random shifts ∆1, . . . ,∆R drawn from
U([0, 1]s), tk := {kz

n }, with generating vector z ∈ Ns .
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The appropriate function space for unbounded integrands is a “special”
weighted, unanchored Sobolev space equipped with the norm

∥F∥s,γ =

[ ∑
u⊆{1:s}

1

γu

∫
R|u|

(∫
Rs−|u|

∂|u|

∂yu

F (y)
( ∏

j∈{1:s}\u

ϕ(yj)

)
dy−u

)2

×
(∏

j∈u
ϖ2

j (yj)

)
dyu

]1/2
where we have the weights

ϖ2
j (y) := exp(−2αj |yj |), αj > 0.
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Theorem (Graham, Kuo, Nichols, Scheichl, Schwab, Sloan (2015))

Let F belong to the special weighted space over Rs with weights γ, with ϕ
being the standard normal density, and the weight functions ϖj defined as
above. A randomly shifted lattice rule in s dimensions with n being a
prime power can be constructed by a CBC algorithm such that√

E∆|IsF − Q∆
n,sF |2 ≤

(
2

n

∑
∅̸=u⊆{1:s}

γλu
∏
j∈u

ϱj(λ)

)1/(2λ)

∥F∥s,γ ,

where λ ∈ (1/2, 1] and

ϱj(λ) = 2

( √
2π exp(α2

j /η∗)

π2−2η∗(1− η∗)η∗

)λ
ζ(λ+ 1

2) and η∗ =
2λ− 1

4λ
,

with ζ(x) :=
∑∞

k=1 k
−x denoting the Riemann zeta function for x > 1.

The steps for QMC analysis are the same as in the uniform case: (1)
estimate ∥ · ∥s,γ for a given integrand (2) find weights γ which minimize
the upper bound (3) plug the weights into the new error bound and
estimate the constant (which ideally can be bounded independently of s). 126



Proposition (Parametric regularity bound for the lognormal model
Graham, Kuo, Nichols, Scheichl, Schwab, Sloan (2015))

For all y ∈ Ub and ν ∈ F , there holds

∥∂νu(·, y)∥H1
0 (D) ≤

∥f ∥H−1(D)

minx∈D a0(x)
|ν|!

(log 2)|ν| b
ν
∏
j≥1

exp(bj |yj |).

This parametric regularity bound is valid also for the dimensionally-truncated finite
element solution us,h. If G : H1

0 (D) → R is a bounded linear functional and
F (y) := G(us,h(·, y)) for y ∈ Rs , then

∥F∥2s,γ ≤
∑

u⊆{1:s}

(|u|!)2

γu

( s∏
j=1

2 exp(2b2
j )Φ(2bj)

)(∏
j∈u

b2
j

2(log 2)2 exp(2b2
j )Φ(2bj)(αj − bj)

)
.

By choosing αj =
1
2
(bj +

√
b2
j + 1− 1

2λ
) and using the POD weights

γu :=

(
|u|!
∏
j∈u

bj

2(log 2) exp(b2
j /2)Φ(bj)

√
(αj − bj)ϱj(λ)

) 2
1+λ

, λ :=

{
p

2−p
if p ∈ (2/3, 1),

1
2−2δ

if p ∈ (0, 2/3],

as inputs to the CBC algorithm yields a randomly shifted rank-1 lattice rule satisfying
the R.M.S. error √

E∆|IsF − Q∆
n,sF |2 ≲ nmax{−1/p+1/2,−1+δ},

where the constant is independent of the dimension.
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Similarly to the uniform and affine setting, the truncation of the input
random series and the finite element discretization incur a dimension
truncation error and a finite element discretization error, respectively.
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Numerical example

Let us consider the PDE problem

−∇ · (a(x , y)∇u(x , y)) = x1, u(·, y)|∂D = 0,

in the physical domain D = (0, 1)2 with the diffusion coefficient

a(x , y) = exp

( s∑
j=1

yjψj(x)
)
, x ∈ D, yj

i.i.d.∼ N (0, 1),

where ψj(x) = j−2 sin(jπx1) sin(jπx2). We compute E[G (u)] using QMC
with R = 8 random shifts, where G (v) =

∫
D v(x)dx .

129



10
2

10
3

10
4

10
5

10
6

n

10
-7

10
-6

10
-5

10
-4

10
-3

e
rr

o
r

QMC error (s = 100)

QMC error

slope: -0.94712

Figure: QMC with s = 100 constructed using the weights

γu =
(
|u|!

∏
j∈u

bj

2(log 2) exp(b2
j /2)Φ(bj )

√
(αj−bj )ϱj (λ)

) 2
1+λ , λ = 1

2−2δ , δ = 0.05, for all

u ⊆ {1, . . . , s}.
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Computational implementation

Consider the task of approximating
∫
[0,1]s f (y)dy using a randomly shifted

rank-1 lattice rule with R random shifts.

Once a generating vector z ∈ Ns has been obtained for a given number n
of QMC nodes and dimension s (using, e.g., the CBC algorithm), then:

for r = 1, . . . ,R, do
draw ∆(r) ∼ U([0, 1]s);
initialize Qr = 0;

for i = 1, . . . , n, do

set t i = mod
(
iz
n
+∆(r), 1

)
;

set Qr = Qr + f (t i );
end for

set Qr = Qr/n;

end for

return Q = Q1+···+QR
R ;

(This is the QMC estimator
with R random shifts.)

Remarks:

If integrating∫
Rs f (y)

∏s
j=1

e
− 1

2 y
2
j√

2π
dy

then use t i = Φ−1(mod( izn +∆(r), 1)),
where Φ−1 is the (componentwise)
inverse cumulative distribution function
of N (0, 1).

The R.M.S. error can be estimated by

R.M.S. error

≈
√

1
R(R−1)

∑R
r=1(Q − Qr )

2.
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Some perspectives on applying QMC for Bayesian inverse problems
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Let U ⊆ Rs be a nonempty set of parameters and let G : U → Rk be a
forward mapping depending on some (unknown) parameter y ∈ U.

Measurement model:
δ = G (y) + η,

where δ ∈ Rk is the measurement data and η ∈ Rk is Gaussian noise such
that η ∼ N (0, Γ), where Γ ∈ Rk×k is a symmetric, positive definite
covariance matrix.

If we endow y with a prior density πpr and y and η are independent, then
Bayes’ formula yields the posterior distribution with density

π(y |δ) ∝ π(δ|y)πpr(y),

where we have the likelihood π(δ|y)∝e−
1
2
(δ−G(y))TΓ−1(δ−G(y)).

The conditional mean (CM) estimator of the unknown parameter is

yCM=

∫
U

y π(y |δ) dy =

∫
U y e−

1
2
(δ−G(y))TΓ−1(δ−G(y))πpr(y)dy∫

U e−
1
2
(δ−G(y))TΓ−1(δ−G(y))πpr(y)dy

.
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For simplicity, let us make the following standing assumptions:

We have U = Us = [−1
2 ,

1
2 ]

s and there is a constant C ≥ 1 and a sequence
b := (bj)j≥1 ∈ ℓp of nonnegative real numbers for some p ∈ (0, 1) such
that

(A1) the forward model satisfies

∥∂νG (y)∥Rk ≤ C |ν|!bν for all ν ∈ F and y ∈ U, and

(A2) πpr(y) = 1 for y ∈ U and 0 otherwise.

(A3) The smallest eigenvalue of Γ is bounded from below by 0 < µmin ≤ 1.
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Example

Let D ⊂ Rd , d ∈ {1, 2, 3}, be a nonempty, bounded Lipschitz domain and
let f ∈ H−1(D). For each y ∈ U, there exists a weak solution
u(·, y) ∈ H1

0 (D) to{
−∇ · (a(x , y)∇u(x , y)) = f (x), x ∈ D, y ∈ U,

u(x , y) = 0, x ∈ ∂D, y ∈ U,

where we assume that y = (yj)
s
j=1 are i.i.d. uniformly distributed in

[−1/2, 1/2], and

a(x , y) = a0(x) +
s∑

j=1

yjψj(x), x ∈ D, y ∈ [−1/2, 1/2]s ,

with a0 ∈ L∞(D) and ψj ∈ L∞(D), j ≥ 1, such that
0 < amin ≤ a(x , y) ≤ amax <∞ for all x ∈ D, y ∈ [−1/2, 1/2]s .

Let Oj : H
1
0 (D) → R be linear, bounded observation operators for

j = 1, . . . , k . Then G (y) = [Oj(u(·, y))]kj=1 with

∥∂νG (·, y)∥Rk ≤ C |ν|!bν , where C :=
(∑k

j=1 ∥Oj∥2H−1(D)

)1/2
and

bj :=
∥ψj∥L∞(D)

amin
.
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We are interested in the CM estimate

yCM =
1

Z
Z ′,

where

Z ′ =

∫
U

y e−
1
2
(δ−G(y))TΓ−1(δ−G(y)) dy ,

Z =

∫
U
e−

1
2
(δ−G(y))TΓ−1(δ−G(y)) dy .

It can be shown that

|∂νe−
1
2
(δ−G(y))TΓ−1(δ−G(y))| ≤ 3.82k · C |ν|2|ν|−1µ

−|ν|/2
min |ν|!bν for ν ̸= 0

and ∣∣∣∣ ∂|u|∂yu

yℓe
− 1

2
(δ−G(y))TΓ−1(δ−G(y))

∣∣∣∣
≤ 3.82k · C |u|2|u|−1µ

−|u|/2
min |u|!

(
1 +

1

bs

)∏
j∈u

bj

for ∅ ̸= u ⊆ {1 : s}.
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For the QMC approximation of both the numerator and the denominator,
this suggests choosing the weights

γu =

(
|u|!

∏
j∈u

βj√
2ζ(2λ)
(2π2)λ

)2/(1+λ)

, λ =

{
p

2−p if p ∈ (2/3, 1),
1

2−2δ if p ∈ (0, 2/3],

where δ ∈ (0, 1/2] is arbitrary and

βj = 2Cµ
−1/2
min bj , j = 1, . . . , s,

as inputs to the CBC algorithm. The QMC rule obtained in this way has

a dimension-independent QMC convergence rate
O(nmax{−1/p+1/2,−1+δ}) for the denominator when the number of
QMC nodes n is a prime power.

a dimension-dependent QMC convergence rate
O
((
1 + 1

bℓ

)
nmax{−1/p+1/2,−1+δ}) for the ℓth component of the vector

Z ′ when the number of QMC nodes n is a prime power.
For example, if bs ∝ s−2, then (1 + 1

bs
) ∝ s2.

(Note that the constant in the error bounds also depends on k, the
dimension of the measurement data!)
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Numerical example

Let us consider the PDE problem

−∇ · (a(x)∇u(x)) = x1, u|∂D = 0,

in the physical domain D = (0, 1)2, where the diffusion coefficient is
assumed to be unknown.

Given some noisy observations y = [u1, . . . , uk ]
T of the PDE solution

G (u) = [O1(u), . . . ,Ok(u)]
T = [u(x1), . . . , u(xk)]

T over a point set
x1, . . . , xk ∈ D, we wish to recover the diffusion coefficient which caused
the observations.
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We model the uncertain diffusion coefficient using the affine
parameterization

a(x , y) = 1 +
30∑
j=1

yjψj(x), yj ∈ (−1
2 ,

1
2),

where ψj(x) = 1
(k2

j +ℓ
2
j )

1.1 sin(πkjx1) sin(πℓjx2) and the sequence (kj , ℓj)j≥1

is an ordering of the elements of N× N so that the sequence
(∥ψj∥L∞(D))j≥1 is non-increasing. This implies that ∥ψj∥L∞(D) ∼ j−1.1.

As the reconstruction, we compute the CM estimate yCM ∈ [−1/2, 1/2]30

of the parametric diffusion coefficient which fits the observations and plot
a(x , yCM). The observations were simulated using a FE mesh with
h = 2−7 and contaminated with 1% relative white noise. The CM estimate
was approximated using QMC with a single random shift and n = 214

nodes, and the PDE was discretized using a coarser FE mesh h = 2−5 in
order to avoid the so-called “inverse crime”.
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noisy measurements u1, . . . , uk were collected with k = 193.
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Left: the ground truth diffusion with abackground ≡ 1 and ainclusion ≡ 2.
Right: the reconstruction a(x , yCM).

141



0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.98

1.00

1.02

1.04

1.06

1.08

1.10

1.12
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