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We continue studying the uniform and affine model: let D C RY,
d € {2,3}, be a bounded Lipschitz domain, let f € L?(D), and let

U:=[-1/2,1/2]N := {(a)j>1 : —1/2 < a; < 1/2} be a set of parameters.

Consider the problem of finding, for all y € U, u(:,y) € H3(D) such that

/ a(x,y)Vu(x,y) - Vv(x dx—/ f(x)v(x)dx for all v € H}(D),
D

where the diffusion coefficient has the parameterization

a(x,y) := aop(x —|—Zijj , xeD,yeU,

where we assume
(A1) ag € L**(D) and v; € L>°(D) for all j € N,

(A2) there exist amin, amax > 0 s.t. 0 < amin < a(x,y) < amax < oo for all
xeDandye U,

(A3) X275, H@UJHPW < oo for some p € (0,1).
(Note that (A3) |mpI|es that 3% [[¢jll Lo (py < 00.)
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Let us(-,y) == us(-, ()1,---,¥s,0,0,...)) denote the
dimensionally-truncated PDE solution for y € U (we sometimes also write
us(-,y) fory € [-1/2,1/2)°), and let us p(-,¥) € V} denote the
dimensionally-truncated FE solution in the FE space spanned by piecewise
linear FE basis functions. Let G: H3(D) — R be a bounded linear
functional.

During the last lecture, we split the overall approximation error as

'/[1/21/2]NG u ».Y))dy—*ZG(ush t:))

< ‘ / (G(u(-,y) — us(-,y))) dy‘ (dimension-truncation error)
[~1/2,1/2]"

+ '/ G(us(-,y) — us,h(-,y))dy' (finite element error)
[-1/2,1/2]

(cubature error)

[ Gty dy—{;c(ush
[=1/2,1/2]

and found that it is possible to construct a QMC point set t; := {%}
satisfying the QMC cubature error rate O(p(n)m@{=1/P+1/2,-143}) " \here
the implied coefficient is independent of s, n, and h, and § € (0,1/2) is
arbitrary. Let us consider the other error contributions next.



Some auxiliary results
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Neumann series: “Sufficiently small perturbations of the
identity are still invertible”

We will require the following well-known generalization of the geometric
series formula, named after 19*" century mathematician Carl Neumann.

Theorem (Neumann series)

Let H be a Hilbert space and let A € L(H) be a bounded linear functional
with operator norm ||A|| < 1. Then | — A is invertible in L(H) with

(I—A)_lzl—{—A_|__|_A”_{_:ZAk7
k=0

and this series converges in operator norm.

Proof. Let B, n:= > 7_, A, m < n. Since ||A| < 1, we have

¢ k mm_n k m]' B HAHn—m+1 m,n—o0
1Bmall < > NAIF=IAI™ > IAl* = ||Al L= [A] 0.
k=m k=0

. The partial sums >_7_, A form a Cauchy sequence in L(H).
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Since H is a Hilbert space, £(H) is a Banach space and the limit
T k
B:= an;A € L(H)
exists. We need to prove that (/ — A)B=1= B(l — A). Let
By:=1+A+ -+ A"
Then
(I —A)B, =1 — A",
B,(I — A) =1 — A",
and since ||A|| < 1, [JA™1]| < ||A|"T =2 0, we thus obtain
| — AL 220 1 in £(H)

and

(1= A)B = lim (I = A)B, = = lim By(I — A) = B(I - A).

n—o0

O
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Multinomial theorem

The multinomial theorem is a generalization of Newton’s binomial formula.
Using multi-index notation, it can be expressed as

k!

(X1+"'+Xs)k = E JX
lv|=k
vENG

v

In fact, if x == (x;)2; € 1, then we have

j=1
2\ K k!
D) =D o
v!
Jj=1 lv|=k
vEF

and we will later require the following special case:

D
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The following lemma frequently appears in the context of best N-term
approximation.

Lemma (Stechkin’'s lemma)

Let A\ be a countable index set, let 0 < p < q < 00, and let (a,)yen be a

sequence. Let @ # Ay C N\ be a set of indices containing the N largest
terms of the sequence (a,)ycn- Then

1/q 1/p 1 1
au|? < N°' ay|P , r=—=——.
(3 ) s (Smr) o=

UE/\\/\N

Proof. WLOG, we can relabel the a-sequence so that (a;j);j>1 is
non-increasing, i.e., aj;1 < a; for all j > 1. We obtain

00 1/q 00 1/q S 1/q
( > |aj|"> =( > \aj\q-"ra,-rp) sraw—"/q( 3 rajrp)

J=N+1 j=N+1
e 1/q
< |aN|1—P/q<Z |aj|P) .

j>1

The key is to bound |an|*~P/9 in terms of N. 256



Standard technique: the monotonicity of the a-sequence implies that
Njan|P = [an|P + -+ |aw[P < [arP + -+ [anl? <D la)°
j>1

= anlP < NP gl
j>1

Hence

,
a7 = fanl? < v (lai?)

j>1
Plugging this into the inequality on the previous page yields

o 1/q e 1/q r+1/q
( > |3j|q> S\aN\lp/q<Z\aj\p) SNr(Z!%‘!”)

Jj=N+1 j>1 j>1
1/p
—r
=N ( E :‘aj‘p) )
Jj>1

where the final equality follows from the definition r =1/p — 1/q.
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Dimension truncation error
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Remark about infinite-dimensional integrals

Recall that U := [~1/2,1/2]N. We will be discussing infinite-dimensional
Lebesgue integrals of the form

/U f(y)dy,

where we have the infinite tensor product measure

dy := ® dy;.
j=1

The o-algebra F for dy is generated by finite rectangles Hj’il S;, where
only a finite number of S; are different from [-1/2,1/2] and those that
are different are contained in [-1/2,1/2]. The resulting triplet (U, F,dy)
is a probability space.

For in-depth measure-theoretic considerations cf., e.g., “Measure Theory”
by Halmos.
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For the purposes of this course, we can regard infinite-dimensional
integrals as limits of finite-dimensional integrals in the following sense:

/f(y)dy: lim / f(y1,---5¥s,0,0,...)dys - - dys. (2)
U [-1/2,1/2]

$§—00

The justification for this can be found, e.g., in “Infinite-dimensional
integration and the multivariate decomposition method” by Kuo, Nuyens,
Plaskota, Sloan, and Wasilkowski (J. Comput. Appl. Math., 2017). The
result is stated below without proof. (Homework: verify that the
conditions of the following theorem are valid for our PDE model problem.)
Theorem (Kuo et al. 2017)

Let f: U — R be integrable w.r.t. the measure dy = ®j’il dy;j which
satisfies

im f(y1,.--,¥0,0,...)=f(y) forae ycU,
S—00
f(y1,..,50,0,...)] < |g(y)| forae yecU

for some integrable function g: U — R w.r.t. the measure dy. Then the
characterization (2) holds.
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The following rate was proved in “Dimension truncation in QMC for
affine-parametric operator equations” by Gantner (MCQMC 2016).

Theorem (Dimension truncation error)

Suppose that the assumptions (A1)—(A3) hold and

1/l oo(py = [¥2ll oo (D) = 193]l oo(py > - -+ Then for every f € L?(D)
and every bounded linear functional G: H3(D) — R, there holds

)

fll 2 G
[ 66y~ uynay] < IEOIEEOE
u

dmin

where the constant C > 0 is independent of s, f, and G.
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Intermezzo

The dimension truncation proof is based on recasting the variational
formulation as an affine-parametric operator equation. Specifically, if
u(-,y) denotes the parametric PDE solution and f the source term, we
require for the analysis the (linear) forward operator

Aly):u(y) = f

and the solution operator
Aly) ™ e u( ).

To this end, we need to be careful with the function space setting (the
domains and codomains of A(y) and A(y)™1).
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First of all, let us denote the dual space of H}(D) as
H7Y(D) := (Hy(D)) := {F: H}(D) — R | F is linear and bounded}.

(This is a Hilbert space as a consequence of Riesz representation theorem.)

Let F € HY(D) and v € H}(D). Then the duality pairing of F and v is
defined as

(F,v)-v(py,Ha (D) = F(v):

In a certain sense, the element F € H=Y(D) is defined by its action on the
elements of H}(D). For example, fix some f € L?(D). Then (weighted)
integration over (parts of) the domain D, e.g.,

(Fovmsomor = [ FOOV()dx,

would be an example of an element of H=1(D).
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Let y € U and consider the bilinear form
By(v,w) = / a(x,y)Vv(x) - Vw(x)dx, v,w € Hi(D).
Now ’
By(v,w) < amax”VHHg(D)HWHH(}(D)7 v,w € H3(D), (boundedness)

|By(v,v)| > am;nHva_%(D), v € HY(D). (coercivity)

Then the Lax-Milgram lemma implies that for any F € H=1(D), there
exists a unique element u(-,y) € H3(D) such that
By(u(-,y),v) = F(v) forall veHi(D)
and IFllh-1p
luC ) a0y < 37_()-
Especially, the linear map A(y): H3(D) — H=Y(D), u(y) ~ F, is
boundedly invertible! with

HA(y)HHé(D)_,H—l(D) < 3max and HA(y)_lnH—l(D)—)H(}(D) <

— amin "

tNot trivial! See, e.g., Remark 2.7 in “Theory and Practice of Finite Elements” by
Ern and Guermond.
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Proof (dimension truncation). Let us introduce the operators
Ay), A%(y): Ho(D) — H_1(D),

Ay)::Bo—l-Zijj and As _BO+ZX/ s

j=1
where B;: H}(D) — H™Y(D) are defined by setting
(Bov, W>H*1(D) Hi(D) = (aoVv, VW>L2(D)a
<BjV7 W> H-1(D), Hl(D <1/1JVV VW>L2(D) fOI’j > 1.

The variational problem

/ a(x,y)Vu(x,y) - Vv(x)dx = (F, V>H—1(D)7H3(D) for all v € H}(D),
D
a(x,y) = ao(x) + Zyﬂﬁj(x)

where F ¢ H71 (D) can be expressed as an affine-parametric parametric
operator equation

Aly)u(y)=F.
Our assumptions (A1)—(A3) ensure that both A(y) and A°(y) are
boundedly invertible linear maps for all y € U.
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Suppose that 1 < s < s’. As a consequence of the a priori bound for the
PDE, we have

2116 10y Fll -
[ 6(uty) - uy)ay < TR

2HG”H vyl Fllh-1(py s72/P+1 < 2(|Gllg-1(pyll Fllg-1(py s72/PF1
—2/p1 = (s')~2/pHL’

amln amln

Thus it is sufficient to prove the claim for s > s’ with s’ large enough. To
this end, we assume that s > s’ where s’ is chosen to be large enough such
that

o0

> bi<

Jj=s+1

forall s > ¢ (3)

N~

For future reference, note that (3) also implies for all s > s’ that

o
forall j>s+1 and » b’ < Zbg
Jj=s+1 j=s+1

bjS

(4)

N~
I\J\
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We also have for all y € U that

1AW (D)= H-1(D) < amaxs 1AW (D)= H-1(D) < 3max
1

_ 1 PN
1AW) " -2y i(D) < S IAWY) 1oy trpy < ——

min dmin

For brevity, let us denote

u(y) = U(-,y), ye U,
us(y) == us(-,y), yeU.

Now u(y) = A(y)~1F, us(y) = A(y)~1F, and we can write

Aly) — A(y nyl’ yeU, seN
j=s+1
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Let w € H}(D). Then

HAS(.V)lejWHHg(D) <

[|Bjw | -1
dmin
1 <ijW,VV>L2(D)
- sup billwl 11y,
amin verrongoy  IVIikg(o)
_ Il () ) In

where the sequence b =
consequence,

(bj)j>1 is defined as b :=

Amin

sup [|[A°(y) " Bjll ¢ Hi (D)) < bj

yeU

sup [|[A*(y)”~
yeu

l(A(.V)_A (¥) H/;(Hl (D)) Z b; < — < 1.

Jj=s+1
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It follows from the previous discussion and the assumption s > s’ that the
Neumann series

Aly)™H =1+ A%(y) HAly) = A(9)) T A(y)
=> (A — A(y)) A ()
k=0

is well-defined. Moreover, we have the representation

J

)

(uly) — us(y)) dy = /U G((Aly)™* — A(y) 1)) dy

M

/U G((—A°(y) H(Aly) — A°(y))<us(y)) dy

[ o(( 3 vty )kusm) .

j=s+1

x
Il
i

p"qg

x
||
-
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The integrand can be expanded as

( i yJ'AS(y)‘lBj)kz i (Hyn,> <if[1A5(y)—1Bm>,

Jj=s+1 MyeeeyNk=5+1
where the second product symbol is assumed to respect the order of the
noncommutative operators. By Fubini’s theorem, we obtain

| <(J§1yjAs )kusm) dy
(/ Hyn, dy) (/ ((illes(y)‘an,-) us(y)> dy{l:s})'

=:h =:h

.- mk =s+1

@ /1 > 0 can be written as a product of univariate integrals of the form
0< flﬁz y/"dyj <1, m € N. Note that this vanishes when m = 1.

o [h] < HGHH 10y (TTizr supyeu 1A5() 2 Busll) lus ()l ey
HGH oylIFll
o HoHD )(Hll'(:]. b77i)'

amin
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Earlier we arrived at
o) e’} k

/ G(u(y) — us(y))dy = Z(—l)k/ G<< Z yjAS(y)—13j> us(y)> dy
k=1 u j=s+1

We can estimate the summands as

o (5 e o

j=s+1

16yl Fllwspy & :
. al > [ Tl ) (115
min k=1 i=1

< Mk= =s+1 !

_ 16l Fli-io / 5 (ﬁyn)(_nbm)dy

a
min Snk=s+1 i=1

1Gll 20y | Fll 1 SIAL
_ H (D). H (D)/U< Zyjbj> dy

a
min J:S+1

@) [l Flla-co / > ,’i:( Il yf“)( II bf"/j) v

min | v|=k Jj=s+1 J=s+1
20 vj<s 271
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The integrals vanish whenever v contains an element equal to 1, hence

ot (5 won) )

j=s+1
< G510yl FllH-1(D) 3 L
dmin v!
lv|=k
vj=0 V;<s
l/j;ﬁl Vj>s

We arrive at (note that the summand corresponding to k = 1 vanishes!)

‘/G () dy ‘ IGllH-1(py IIF Il 11 D)Z > ,,l

amln

k=1 |v|=k
vj=0 Vj<s
vj#1 Vj>s
Glly-10) || F |l -1 > Kl s Kl
_ ” HH (D)H HH (D)I:Z Z *bU‘FZ Z b,,:|,
amin = v! — v!
= lv|=k k=2 |v|=k
;=0 Vj<s ;=0 Vj<s
I/j?ﬁl Vj>s I/j?ﬁl Vj>s

where we split the sum into two w.r.t. k' > 3 to be specified later.
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The sum over k > k' can be bounded using the geometric series as

(o) kl [ee) o k
B v
> Y ey (X )
k=K' |v|=k k=k' N j=s+1
l/j:0 VJSS
l/j;él V_]‘>S

00 k'
3 1 i
< . - < ( 1/p+1)

j=s+1 j=s+1~J

where Stechkin's lemma yields >°°  ; b; < (Zle bj’.’) 1/Ps=1/p+1 3nd the

resulting constant C; := 2(21?21 bj'.’)k//p is independent of s, f, and G.
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On the other hand, for the sum over 2 < k < k’, we estimate

k'—1 k'—1

D —b” K-113 Y v

k=2 |v|=k k=2 |v|=k
vj=0 V;<s vj=0 V;<s
vj#l Vj>s vi#l Vj>s

For each 2 < k < k', we obtain
o

o< > b”:H<1+§bf>—1

lv|=k 0#|v|0o <k Jj=s+1
vj=0 Vj<s vj=0 Vj<s
Vj;ﬁl Vj>s I/j;ﬁl Vj>s
o0 1- bt o0
— 2 J 2
=11 <1+bjl_b> —1< [ @+26) -
j=s+1

Jj=s+1

Jj=s+1

where we used €¥ <1+ (e — 1)x for x € [0,1] and Stechkin’s lemma

Y b < (7 bj’-’)l/ps*2/”+1. G, is independent of s, f, and G

< exp <2 > bf) —1< Gs P Gi=2e—1)()_bP e
j=1
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Putting everything together, we conclude that

'/ ) — us(y))dy

< HGHH_l(D ”FHH_I(D) (Clsk/(*l/P‘i’l) + kll(k/ . 2)C25*2/P+1)‘

dmin

The two terms can be balanced by choosing k' := [(2 — p)/(1 — p)],
where [x] := min{k € Z | k > x} is the ceiling function. (Note that
k' > 3 for all p € (0,1).)

Since we already know that the result holds for all s < s/, the assertion for
all s > 1 follows by a trivial adjustment of the constant factors.

Finally, if the source term f € L?(D), we can associate it with an element
F € H7Y(D) defined by

(F, V>H*1(D),H(}(D) = /D f(x)v(x)dx, v e Hi(D).

Especially, ||F||-1(py < Cpl/f||2(p), where Cp > 0 is the Poincaré
constant. U
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Finite element error
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Suppose that D C RY, d € {2,3}, is a bounded, convex polyhedral
domain.

Let {V,}4 be a family of finite element subspaces of H3 (D), indexed by
the mesh size h > 0 and spanned by continuous, piecewise linear finite
element basis functions over a sequence of regular, simplicial meshes in D
obtained from an initial, regular triangulation of D by recursive, uniform
bisection of simplices.

In this setup, it is known (cf., e.g., Gilbarg and Trudinger) that for
functions v € H3(D) N H?(D), there exists a constant C; > 0 such that

V,:gf/ |lv — VhHHl ) < CthvH,_p (D)nH2(py s h =0, (5)

where [[V]] o)) == U1V o) + 18] )2

Note that we need higher H?(D) regularity of the PDE solution in order to
derive the asymptotic convergence rate as h — oo. This can be ensured,
e.g., when the diffusion coefficient is Lipschitz, f € L2(D), and the domain
D is a bounded, convex polyhedron.
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Proposition (Elliptic regularity)
Suppose that ag € W1>°(D) and ¢; € WY°(D) for all j > 1 such that
Cy = ijl ||1/1j||W1,oo(D) < 00, where

[v][wree(py := max{[|v| te(Dy [V V][Lo(D) }-

Then there exists a constant C, > 0 independent of y and f such that the
solution u(-,y) € H3(D) of the parametric PDE problem satisfies

luC )z oynre0y < Cellfllizpy  forally € U. (6)

v

Proof (sketch). Standard ellipticity theory implies that u(-,y) € H&(D) is
such that 3Au(-,y) € L2(D) for all y € U. Since now
lla(, ¥)llwr.eo(py < oo for all y € U, we obtain
=V (a(x,y)Vu(x,y)) = f(x) (V- (¥Vp) =V - Vo +pAp)
= —a(x,y)Au(x,y) = f(X) + Va(x,y) : VU(X,y)
< HfJL-Z(D) n HVa(nY)HLM(D)HU(,

min Amin

= ||AU('7J/)HL2(D) 7Y)||Hg(o)

< 11l 20y n llaol|w.00 () + Cy Crllfll2(p)

= G|fllizpy. O

Amin Amin Amin 278



Dimensionally-truncated finite element solution

Let as(x,y) := a(x,(y1,...,¥0,0,...)) fory € U. Fory € U,
Us h(-, ¥) € Vp is the dimensionally-truncated finite element solution if

/ as(x,y)Vusp(x,y) - Vv(x)dx = / f(x)v(x)dx forall v € V.
D D
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Finite element error in H} (D)

Recall that by Céa’s lemma, the finite element solution is a quasi-optimal
approximation in the following sense:

lusC+y) = ts.n( ) g0y < Cly) inf flus(y) = vallmy(o),

VhE

where the constant C(y) := % < dmax —: (3 < 00 can be

bounded independently of y € U due to our uniform ellipticity assumption.
Combining this with the approximation property (5) and the elliptic
regularity shift (6) yields

lus(,y) — usp( ¥) 120y < G Vhigf/h l[us(-, ) = vhllny (o)

(5)

< GGhllus(, ¥) 12 (oynH ()

(6)

< C3C1C2h||f”L2(D) as h— 0. (7)

However, if we measure the error in the L2(D) norm, the finite element
convergence rate can be improved by an order of magnitude.



Finite element error in L?(D)

Proposition

Under the same assumptions as the previous proposition, there exists a
constant C > 0 independent of s, h, f, and y such that

lus(-,y) = usn( ¥)lizpy < CH(Ifll 20y as h— 0.

Proof. Let g € L?(D). Fory € U, let ugs(-,y) € H}(D) denote the
solution to

/ as(x,y)Vugs(-,y) - Vv(x)dx = / g(x)v(x)dx for all v € H3(D),
D D

where as(-,y) .= a(-, ()1,--,¥s,0,0,...)). We test this against
v=us(-,y) — usn(-,y) and let v, € V}, be arbitrary.
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It follows from Galerkin orthogonality of the finite element solution that
(g,us(,y) — us (-, ¥)) 2(D)
— / 3s(xa}’)vug,s(xa}’) ’ V(US(X,y) - Us’h(x,y)) dx
D

= /Das(x,y)V(ug,s(XJ) — va(x)) - V(us(x,y) — us n(x, y)) dx

< amax|| g s(-, ¥) = Vallm oy llus (5 ) = usn (5 ¥) w0y
In consequence,
(g:us(-,y) — usn(- ¥))12(D)

. 8
< oY)t Doy i el ) = vallgoy:

where g € L?(D) is arbitrary. We now use the Aubin—Nitsche trick: recall
from the exercises of week 2(!) that the following identity holds
HFHL2(D) = sup (g, F)ppy forall Fe L2(D).

gel?(D)
||g||L2(D)§1

We take the supremum over {g € L2(D): lgll2(py < 1} in (8) to obtain...
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Hus('vy) - Us,h('a

.Y)||L2(D)
= sup (g, us(-,y) — ush(,¥)) 2Dy
gel*(D)
lgll2(py<1

< amaxHUs('7y) - us,h('ay)HH&(D

sup  (inf ugs-3) ~ vhlp(o)
geL?(D)  VhEVh
(QC Ol el 2(py<1
<GGGAh|fl2p 3Cth“gvs('w")”Hé(D)mHZ( )
(6)
<G Ghllgll2(p)
2
< Ch°|If |l 2Dy,

where the constant C := amax(C1C)? G is independent of s, h, f, and
y.

L]
Note especially that if G: L2(D) — R is a bounded linear operator, then

/U 1G(us(+y) — usn9) dy < ClIG 20y Flliz(o

2
L
where C > 0 is independent of s, h, and f
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Overall error

Let I(F) := [, F

Theorem

Let D C RY, d € {2,3}, be a bounded polyhedron, assume (A1)—(A3),
WlHLwSD) > ||| LoDy = 1%l Loo(p) = -+ -, and suppose that

ag € WH**(D) and ¢; € WH°(D) with 3222, [[¢jllwreo(py < 00. Let

G: L?(D) — R be a bounded linear functional and define b; := Hw’!::
Then using the CBC algorithm with the POD weights

2 ifpe(2/3.1),

2/(1+X) :
by A=
(‘u‘ Hjeu 2)\)/(271'2) ) {2_125 ifpe (0’2/3]’

as inputs to construct a randomly shifted rank-1 lattice rule
QAL(F) = ZZ;(I) F({ + A} - %) A € [0,1]°, we have the overall error

VEAI(G(1)) — QA(G(us 1)) PEC(p(n)m{-/PH1/2- 148} g2/ p2)

where the constant C > 0 is independent of s, n, and h.




Proof. We have the total error decomposition?

Ea[l/(G(1)) = Qus(us )] <9I = 15)(G(u))I?
+9|ls(G(us — u57h))|2
+9EA[/5(G(us)) — Qns(G(usp))?]-
We have already proved, under the stated assumptions, that there hold
(1 = 1)(G ()| = O(s*/P*1),
[Is(G(us — us,n))| = O(hz)v
Eal|ls(G(us ) — Qns(G(us )] = O(nm{=1/pH1/2.7150k),

from which the claim immediately follows.

tLet a,b,c > 0. Then

a+ b+ c<3max{a,b,c} =3y/max{a, b,c}? < 3va>+ b? + c2
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Extension of QMC theory to the full PDE solution without
a bounded linear quantity of interest G

Earlier, we discussed the QMC approximation for integrals of the form

E[Gus]—/ Gus(-y)) dy.

where G: H}(D) — R (or G: L?(D) — R) is a bounded linear functional
(quantity of interest).

But what if we wanted to approximate

Efus(x, )] = / us(x, y) dy

s

without a linear quantity of interest instead?

Idea: recall the variational characterization

||f||L2(D): sup <Gvf>L2(D)
Gel?(D)
||G||L2(D)S1

of the L2 norm from earlier.

286



By Fubini's theorem, we have that

1s(us) = Qms(us)lizpy = sup (G, hs(us) — @ms(us)) 12(p)|
Gel?(D)
||G||L2(D)S1

= sup |IS(<G7 u5>L2(D)) - QnA,s(<Gv US>L2(D))|

Gel?(D)
||G||L2(D)§1

<ens(z;A) sup |G, us)
Gel?(D)
HGHL2(D)<1

where e, s(z; A) denotes the worst-case error of the shifted lattice
{ti+A:ie{l,...,n}}. Especially:

\/EAH/s(us QA(us)lI72py < ene(2)  sup (G, us)i2(pyls-

Gel?(D)
||G||L2(D)S1

The shift-averaged worst-case error € (z) is precisely the same object
that we have considered in the past, i.e.,

€8 (2)2 = 13 s e ino T p [ B2 ({4 }).
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In summary, even in this setting, we have the CBC search criterion

CHOEEEDY ’YuZH&({kZJ})

o#uC{l:s}  k=0j€u

The generating vector obtained using the CBC algorithm satisfies the
estimate

1 2¢(22)\ [ /™
Ballk(u) - Q& < (5 X ()
\/ o(n) it N7
x sup |G, us)i2(pylls~
Gel?(D)
||G||L2(D)§1

for all A € (1/2,1].
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Precisely the same analysis that we carried out before shows that choosing
the weights

>2/(1+)\) {2_Pp if pe(2/3,1),

s A=
5755 T PE (0,2/3],

b:
" <““jeHu NeToyeED:

with arbitrary § > 0, yields the QMC convergence rate

\/EAHI us) — QA (us)l|22p) = O(p(n)m{-1/p+1/2,-1+8}y

where the implied coefficient is independent of the dimension s.

Naturally, the dimensionally-truncated PDE solution in the above formula
can be replaced by the dimensionally-truncated FE solution us j (provided
that we use a conforming FE method, i.e., the domain D is a polygon and
we use, e.g., piecewise linear finite element basis functions to span the
finite element space V}).
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