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Recap: Suppose that f ∈ Hs,γ for all γ = (γu)u⊆{1:s}. The unanchored,
weighted Sobolev space Hs,γ is equipped with the norm

∥f ∥2s,γ :=
∑

u⊆{1:s}

1

γu

∫
[0,1]|u|

(∫
[0,1]s−|u|

∂|u|

∂yu

f (y) dy−u

)2

dyu.

For any given sequence of weights γ, we can use the CBC algorithm
(implementational details were considered during the 7th lecture) to obtain
a generating vector for a randomly shifted rank-1 lattice QMC rule
satisfying the error bound√

E∆|Is f − Q∆
n,s f |2 ≤

(
1

φ(n)

∑
∅̸=u⊆{1:s}

γλu

(
2ζ(2λ)

(2π2)λ

)|u|)1/(2λ)

∥f ∥s,γ (1)

for all λ ∈ (1/2, 1]. We can use the following strategy:

For a given integrand f , estimate the norm ∥f ∥s,γ .
Find weights γ which minimize the error bound (1).

Using the optimized weights γ as input, use the CBC algorithm to
find a generating vector which satisfies the error bound (1).
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Application to parametric PDE problems
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For the application of QMC methods to parametric PDE problems, we
follow the survey papers

F. Y. Kuo and D. Nuyens. Application of quasi-Monte Carlo methods
to elliptic PDEs with random diffusion coefficients - a survey of
analysis and implementation. Found. Comput. Math. 16:1631–1696,
2016. arXiv version: https://arxiv.org/abs/1606.06613

F. Y. Kuo and D. Nuyens. Application of quasi-Monte Carlo methods
to PDEs with random coefficients – an overview and tutorial. In:
A. Owen and P. Glynn (eds), Monte Carlo and Quasi-Monte Carlo
Methods 2016, pp. 53–71. arXiv version:
https://arxiv.org/abs/1710.10984
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Let us first consider applying QMC for the uniform and affine model
problem discussed during week 4.
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Recall the uniform and affine model: let D ⊂ Rd , d ∈ {2, 3}, be a
bounded Lipschitz domain, let f ∈ L2(D), and let
U := [−1/2, 1/2]N := {(aj)j≥1 : −1/2 ≤ aj ≤ 1/2} be a set of parameters.
Consider the problem of finding, for all y ∈ U, u(·, y) ∈ H1

0 (D) such that∫
D
a(x , y)∇u(x , y) · ∇v(x) dx =

∫
D
f (x)v(x)dx for all v ∈ H1

0 (D),

where the diffusion coefficient has the parameterization

a(x , y) := a0(x) +
∞∑
j=1

yjψj(x), x ∈ D, y ∈ U,

where a0 ∈ L∞(D), there exist amin, amax > 0
s.t. 0 < amin ≤ a(x , y) ≤ amax <∞ for all x ∈ D and y ∈ U, and the
stochastic fluctuations ψj : D → R are functions of the spatial variable
such that

ψj ∈ L∞(D) for all j ∈ N,∑∞
j=1 ∥ψj∥L∞(D) <∞,∑∞
j=1 ∥ψj∥pL∞(D) <∞ for some p ∈ (0, 1).
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Total error decomposition

In practice, we need to truncate the infinite-dimensional parametric vector
y ∈ [−1/2, 1/2]N to a finite number of terms. Moreover, the PDE needs
to be discretized spatially using, e.g., the finite element method.

Let us(y) := us(y1, . . . , ys , 0, 0, . . .) denote the dimensionally-truncated
PDE solution for y ∈ [−1/2, 1/2]N (we often abuse notation and also
write us(y) for y ∈ [−1/2, 1/2]s), and let us,h(·, y) ∈ Vh denote the
dimensionally-truncated FE solution in the FE subspace spanned by
piecewise linear FE basis functions. Furthermore, let {t i}ni=1 be a QMC
point set in [−1/2, 1/2]s .
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Total error decomposition

For simplicity, let us consider the problem of computing E[G (u)], where
u(·, y) ∈ H1

0 (D) is the PDE solution for y ∈ U and G : H1
0 (D) → R is a

linear functional (quantity of interest). We decompose the total error as∫
[−1/2,1/2]N

G (u(·, y))dy − 1

n

n∑
i=1

G (us,h(·, t i ))

=

∫
[−1/2,1/2]N

(G (u(·, y)− us(·, y)))dy

+

∫
[−1/2,1/2]s

G (us(·, y)− us,h(·, y))dy

+

∫
[−1/2,1/2]s

G (us,h(·, y))dy − 1

n

n∑
i=1

G (us,h(·, t i )).
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Using the triangle inequality, we are left with the total error decomposition∣∣∣∣ ∫
[−1/2,1/2]N

G (u(·, y))dy − 1

n

n∑
i=1

G (us,h(·, t i ))
∣∣∣∣

≤
∣∣∣∣ ∫

[−1/2,1/2]N
(G (u(·, y)− us(·, y))dy

∣∣∣∣ (dimension-truncation error)

+

∣∣∣∣ ∫
[−1/2,1/2]s

G (us(·, y)− us,h(·, y))dy
∣∣∣∣ (finite element error)

+

∣∣∣∣ ∫
[−1/2,1/2]s

G (us,h(·, y))dy − 1

n

n∑
i=1

G (us,h(·, t i ))
∣∣∣∣. (cubature error)

Let us focus today on the cubature error.
Remarks:

We’ll discuss the other error contributions (dimension truncation and
finite element errors) later. Furthermore, we’ll see how the analysis
differs in the lognormal setting.
It turns out that if we can control the error for all linear quantities of
interest G : H1

0 (D) → R, we can control the error for the full PDE
solution with respect to the ∥ · ∥H1

0 (D) norm using a duality argument.
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Multi-index notation

We introduce the set of finitely-supported multi-indices

F := {ν ∈ NN
0 : |supp(ν)| <∞},

where the support of a multi-index ν is defined as the set

supp(ν) := {i ∈ N : νi ̸= 0}.

As before, the order of a multi-index is defined as

|ν| :=
∑
j≥1

νj

and we use the special multi-index notations

∂ν := ∂νy :=
∏

j∈supp(ν)

∂νj

∂y
νj
j

, xν :=
∏

j∈supp(ν)

x
νj
j ,

(
ν

m

)
:=

∏
j∈supp(ν)

(
νj
mj

)
.
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Recursive bound

Consider the weak formulation∫
D
a(x , y)∇u(x , y) · ∇v(x) dx =

∫
D
f (x)v(x) dx . (2)

Noting that

∂νa(x , y) =


a(x , y) if ν = 0,

ψj(x) if ν = e j ,

0 otherwise,

then by differentiating (2) on both sides with ∂ν and using the Leibniz
product rule† yields

∂ν

∫
D

a(x , y)∇u(x , y) · ∇v(x) dx = 0

⇔
∑
m≤ν

(
ν

m

)∫
D

∂ma(x)∇∂ν−mu(x , y) · ∇v(x) dx = 0

⇔
∫
D

a(x , y)∇∂νu(x , y) · ∇v(x)dx = −
∑

j∈supp(ν)

νj

∫
D

ψj(x)∇∂ν−e j u(x , y) · ∇v(x)dx .

†∂ν(fg) =
∑

m≤ν

(
ν
m

)
∂mf ∂ν−mg (exercise) 236



Testing this against v = ∂νu(x , y) yields

amin∥∂νu(·, y)∥2H1
0 (D)

≤
∫
D
a(x , y)∥∇∂νu(x , y)∥2 dx

≤
∑

j∈supp(ν)

νj∥ψj∥L∞(D)∥∂ν−e ju(·, y)∥H1
0 (D)∥∂νu(·, y)∥H1

0 (D)

Thus we obtain the recursive relation

∥∂νu(·, y)∥H1
0 (D) ≤

∑
j∈supp(ν)

νj
∥ψj∥L∞(D)

amin︸ ︷︷ ︸
=:bj

∥∂ν−e ju(·, y)∥H1
0 (D).

For later convenience, we introduce here the sequence b := (bj)j≥1 defined

by bj :=
∥ψj∥L∞(D)

amin
. Recall that by the assumptions we placed on the

uniform and affine model, there holds b ∈ ℓp for some p ∈ (0, 1).
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Parametric regularity

Proposition

For all y ∈ [−1/2, 1/2]N and ν ∈ F , there holds

∥∂νu(·, y)∥H1
0 (D) ≤

CP∥f ∥L2(D)

amin
bν |ν|!,

where CP is the Poincaré constant satisfying ∥v∥L2(D) ≤ CP∥v∥H1
0 (D) for

all v ∈ H1
0 (D).

Proof. By induction w.r.t. the order of the multi-index ν ∈ F . If ν = 0, then this is the
ordinary Lax–Milgram a priori bound

amin

∫
D

|∇u(x , y)|2 dx︸ ︷︷ ︸
=∥u(·,y)∥2

H1
0
(D)

≤
∫
D

a(x , y)∇u(x , y) · ∇u(x , y)dx =

∫
D

f (x)u(x , y) dx

≤ ∥f ∥L2(D)∥u(·, y)∥L2(D) ≤ CP∥f ∥L2(D)∥u(·, y)∥H1
0 (D)

whence

∥u(·, y)∥H1
0 (D) ≤

CP∥f ∥L2(D)

amin
.
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Next, let ν ∈ F and suppose that the claim has been proved for all
multi-indices with order less than |ν|. Then using the recursive relation we
derived previously, we obtain

∥∂νu(·, y)∥H1
0 (D) ≤

∑
j∈supp(ν)

νjbj∥∂ν−e ju(·, y)∥H1
0 (D)

≤
CP∥f ∥L2(D)

amin

∑
j∈supp(ν)

νjbj |ν − e j |!bν−e j

=
CP∥f ∥L2(D)

amin
bν(|ν| − 1)!

∑
j≥1

νj

=
CP∥f ∥L2(D)

amin
bν |ν|!,

as desired.
Remark. Note that the same regularity bound holds for the
dimensionally-truncated FE solution us,h as long as a (conforming)
Galerkin FE discretization has been used to construct the FE
approximation. This is due to the fact that the weak formulation of the
Galerkin discretization is exactly the same (only the function space differs).
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Now that we know the regularity of the PDE problem, we can analyze the
QMC cubature error! Let G : H1

0 (D) → R be a linear and bounded
functional, us,h the dimensionally-truncated FE solution, and define
F (y) := G (us,h(·, y − 1

2)) for y ∈ [0, 1]s . Let γ = (γu)u⊆{1:s} be a
sequence of positive weights. Then we know that the generating vector
obtained by the CBC algorithm satisfies the error bound√

E∆|IsF − Q∆
n,sF |2 ≤

(
1

φ(n)

∑
∅̸=u⊆{1:s}

γλu

(
2ζ(2λ)

(2π2)λ

)|u|)1/(2λ)

∥F∥s,γ

for all λ ∈ (1/2, 1], where

∥F∥2s,γ =
∑

u⊆{1:s}

1

γu

∫
[0,1]|u|

(∫
[0,1]s−|u|

∂|u|

∂xu
F (y) dy−u

)2

dyu

≤
(
CP∥G∥H1

0 (D)→R∥f ∥L2(D)

amin

)2 ∑
u⊆{1:s}

1

γu
(|u|!)2

∏
j∈u

b2j .

Plugging this norm bound back into the QMC error bound yields...
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√
E∆|IsF − Q∆

n,sF |2 ≲
(

1

φ(n)

)1/(2λ)( ∑
∅̸=u⊆{1:s}

γλu

(
2ζ(2λ)

(2π2)λ

)|u|)1/(2λ)

×
( ∑

u⊆{1:s}

1

γu
(|u|!)2

∏
j∈u

b2j

)1/2

.

The upper bound can be minimized by choosing the POD weights

γu :=

(
|u|!

∏
j∈u

bj√
2ζ(2λ)
(2π2)λ

)2/(1+λ)

,

as explained by the following lemma.
Lemma

Let (αi ) and (βi ) be sequences of positive real numbers. The expression

g(γ) :=

(∑
i

αiγ
λ
i

)1/λ(∑
i

βiγ
−1
i

)

is minimized by γi = c
( βi
αi

)1/(1+λ)
for arbitrary c > 0.
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Proof. Let us find out when the gradient vanishes:

0 = ∂jg(γ) =
1

λ

(∑
i

αiγ
λ
i

)1/λ−1

λαjγ
λ−1
j

(∑
i

βiγ
−1
i

)

− βjγ
−2
j

(∑
i

αiγ
λ
i

)1/λ

.

After some trivial simplifications, we can see that this is equivalent to

γλ+1
j =

βj
αj

∑
i αiγ

λ
i∑

i βiγ
−1
i

.

Furthermore, this condition is satisfied if

γj = c

(
βj
αj

)1/(1+λ)

,

where c > 0 is arbitrary.

242



Note that plugging γi = c
( βi
αi

)1/(1+λ)
into

(∑
i αiγ

λ
i

)1/(2λ)(∑
i βiγ

−1
i

)1/2
yields the expression

(∑
i α

1/(1+λ)
i β

λ/(1+λ)
i

)(1+λ)/(2λ)
. Thus, plugging the

optimal POD weights into the QMC error bound results in√
E∆|IsF − Q∆

n,sF |2 ≲
(

1

φ(n)

)1/(2λ)

C (s,γ, λ)(1+λ)/(2λ),

where

C (s,γ, λ) :=
∑

u⊆{1:s}

(
2ζ(2λ)

(2π2)λ

)|u|/(1+λ)
(|u|!)2λ/(1+λ)

∏
j∈u

b
2λ/(1+λ)
j .

This is the punchline:

Lemma

By choosing

λ =

{
p

2−p when p ∈ (2/3, 1)
1

2−2δ for arbitrary δ ∈ (0, 1/2) when p ∈ (0, 2/3],

there exists a constant C (γ, λ) <∞ independently of s
s.t. C (s,γ, λ) ≤ C (γ, λ) <∞.
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Proof. First observe that

C (s,γ, λ) =
∑

u⊆{1:s}

(
2ζ(2λ)

(2π2)λ

)|u|/(1+λ)
(|u|!)2λ/(1+λ)

∏
j∈u

b
2λ/(1+λ)
j

=
s∑
ℓ=0

(
2ζ(2λ)

(2π2)λ

)ℓ/(1+λ)
(ℓ!)2λ/(1+λ)

∑
|u|=ℓ

u⊆{1:s}

∏
j∈u

b
2λ/(1+λ)
j

≤
∞∑
ℓ=0

(
2ζ(2λ)

(2π2)λ

)ℓ/(1+λ)
(ℓ!)2λ/(1+λ)−1

(∑
j≥1

b
2λ/(1+λ)
j

)ℓ
where we used the inequality

∑
|u|=ℓ,u⊆Z+

∏
j∈u cj ≤

1
ℓ!

(∑
j≥1 cj

)ℓ
.

Case 1: p ∈ (2/3, 1). We choose p = 2λ
1+λ ⇔ λ = p

2−p ∈ (1/2, 1), and

C (s,γ, λ) ≤
∞∑
ℓ=0

(
2ζ(2λ)

(2π2)λ

)ℓ/(1+λ)
(ℓ!)p−1

(∑
j≥1

bpj

)ℓ
︸ ︷︷ ︸

=:aℓ

It is easy to see that aℓ+1

aℓ

ℓ→∞−−−→ 0. By the ratio test, this upper bound is
finite independently of s.
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Case 2: p ∈ (0, 2/3]. Let δ ∈ (0, 1/2) be arbitrary. We choose
λ = 1

2−2δ ∈ (1/2, 1). Now 2λ
1+λ = 2

3−2δ ∈ (2/3, 1). Especially,
∥b∥ℓ2λ/(1+λ) ≤ ∥b∥ℓp , and we obtain from the estimate on the previous
slide that

C (s,γ, λ) ≤
∞∑
ℓ=0

(
2ζ(2λ)

(2π2)λ

)ℓ/(1+λ)
(ℓ!)2λ/(1+λ)−1

(∑
j≥1

b
2λ/(1+λ)
j

)ℓ

≤
∞∑
ℓ=0

(
2ζ(2λ)

(2π2)λ

)ℓ/(1+λ)
(ℓ!)2/(3−2δ)−1

(∑
j≥1

bpj

)2ℓ/((3−2δ)p)

︸ ︷︷ ︸
=:aℓ

Again, aℓ+1

aℓ

ℓ→∞−−−→ 0, so by the ratio test this upper bound is finite
independently of s.
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Theorem

Let δ ∈ (0, 1/2) be arbitrary. By choosing the POD weights

γu :=

(
|u|!

∏
j∈u

bj√
2ζ(2λ)
(2π2)λ

)2/(1+λ)

, λ :=

{
p

2−p if p ∈ (2/3, 1),
1

2−2δ if p ∈ (0, 2/3],

then the QMC approximation for the expected value of the PDE problem
satisfies

R.M.S. error ≲

{(
1

φ(n)

)1/p−1/2
if p ∈ (2/3, 1),(

1
φ(n)

)1−δ
if p ∈ (0, 2/3],

where the implied coefficient is independent of the dimension s.

Remark: We have the following dimension-independent convergence rates:

n is prime ⇒ 1
φ(n) =

1
n−1 ⇒ QMC rate O(nmax{−1/p+1/2,−1+δ}).

n = 2k ⇒ 1
φ(n) =

2
n ⇒ QMC rate O(nmax{−1/p+1/2,−1+δ}).

For general composite n, the dimension-independent QMC rate is at
best essentially linear up to a double logarithmic factor of n.
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Remarks on implementation

Let G : H1
0 (D) → R be a bounded linear functional. Consider the problem

of approximating

E[G (us,h)] =

∫
[−1/2,1/2]s

G (us,h(·, y))dy ,

where us,h is the dimensionally-truncated FE approximation to the elliptic
PDE with a uniform and affine diffusion coefficient.

Our QMC approximation is guaranteed to satisfy the R.M.S. error bound
from the previous slide if we plug the theoretically derived weights as input
to the fast CBC algorithm. This produces a generating vector z ∈ Ns . The
generating vector is designed to be used to compute the estimate

Qn,s,RG (us,h) :=
1

R

R−1∑
r=0

Q∆r
n,sG (us,h),

where Q∆r
n,sF := 1

n

∑n−1
i=0 f ({t i +∆r} − 1

2), tk := {kz
n }, and

∆0, . . . ,∆R−1 are independent random shifts drawn from U([0, 1]s).
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Typically, the number of random shifts is taken to be rather small,
e.g., 8 ≤ R ≤ 64.

A practical estimate for the R.M.S. error is given by the formula

√
E∆|IsF − Q∆

n,sF |2 ≈

√√√√ 1

R(R − 1)

R−1∑
r=0

(Q∆r
n,sF − Qn,s,RF )2.

For the computation of the variance, note that

Var[G (us,h)] = E[G (us,h)
2]− E[G (us,h)]

2.

We already know how to approximate E[G (us,h)] using QMC, but the
weights need to be updated if we wish to construct a QMC rule with
a dimension-independent convergence rate for E[G (us,h)

2] (exercise).

If a QMC rule converges independently of s for the approximation of
E[G (us,h)

2], then the same rule will have dimension-independent
convergence for E[G (us,h)] as well.

If we instead wish to estimate E[us,h(x , ·)] or Var[us,h(x , ·)] (i.e., leave
out the quantity of interest G : H1

0 (D) → R), the same weights can be
used as input to the CBC algorithm (but we still need to prove this).
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