
Uncertainty Quantification and Quasi-Monte Carlo
Sommersemester 2025

Vesa Kaarnioja
vesa.kaarnioja@fu-berlin.de

FU Berlin, FB Mathematik und Informatik

Seventh lecture, May 26, 2025

Let f ∈ Hs,γ , where we assume that the positive weights γ := (γu)u⊆{1:s}
have the following product-and-order dependent (POD) form

γu := Γ|u|
∏
j∈u

γj , u ⊆ {1 : s},

where (Γk)
s
k=0 and (γj)

s
j=1 are positive numbers such that Γ0 = 1 and the

empty product is interpreted as 1.

A randomly shifted rank-1 lattice rule with generating vector z ∈ Ns

satisfies the error bound√
E∆|Is f − Q∆

n,s f |2 ≤ eshn,s(z)∥f ∥s,γ ,

where the squared shift-averaged worst-case error in the weighted
unanchored Sobolev space is given by the formula

[eshn,s(z)]
2 =

1

n

n−1∑
k=0

∑
∅̸=u⊆{1:s}

γu
∏
j∈u

B2

({
kzj
n

})
,

with B2(x) = x2 − x + 1
6 denoting the Bernoulli polynomial of degree 2.

203

The components of the generating vector z can be restricted to the set

Un := {z ∈ Z | 1 ≤ z ≤ n and gcd(z , n) = 1},

whose cardinality is given by the Euler totient function φ(n) := |Un|.
Component-by-component (CBC) construction.
Given n, s, and weights (γu)u⊆{1:s}, do

1. Set z1 = 1.

2. With z1 fixed, choose z2 ∈ Un to minimize [eshn,2(z1, z2)]
2.

3. With z1 and z2 fixed, choose z3 ∈ Un to minimize [eshn,3(z1, z2, z3)]
2.

...

From the previous lecture, we know that the generating vector obtained
using the CBC algorithm satisfies a certain a priori cubature error bound.

This week’s lecture: How to implement the CBC algorithm efficiently for
POD weights and prime n?

Remark: The so-called POD weights arise in the context of elliptic PDEs
with random coefficients (next week’s lecture), hence our interest in
weights having this abstract form.

204

Our strategy will be as follows:

First, we will describe a computationally inefficient version of the
CBC algorithm. This will serve as a basis for a more efficient
implementation.

We will address the computational bottlenecks inherent in the näıve
implementation of the CBC algorithm in order to construct an
implementation of the so-called fast CBC algorithm.

For the fast CBC algorithm, we will require some sophisticated
mathematical machinery (specifically, an algorithm for computing a
primitive root modulo n and carrying out circulant matrix-vector
multiplication using the fast Fourier transform), which will be discussed
later on.

205

Näıve CBC construction

206

We write the error criterion as

[eshn,d(z1, . . . , zd)]
2 =

1

n

n−1∑
k=0

∑
∅ ̸=u⊆{1:d}

γu
∏
j∈u

B2

({
kzj
n

})

=
1

n

n−1∑
k=0

d∑
ℓ=1

∑
|u|=ℓ

u⊆{1:d}

γu
∏
j∈u

B2

({
kzj
n

})
︸ ︷︷ ︸

=:pd,ℓ(k)

.

By plugging in the POD weights γu := Γ|u|
∏

j∈u γj , note that we have the following
recursion (we split the sum over u in two parts depending on whether d ∈ u):

pd,ℓ(k) =
∑
|u|=ℓ

u⊆{1:d}

Γℓ

(∏
j∈u

γjB2

({
kzj
n

}))

=
∑
|u|=ℓ

u⊆{1:d−1}

Γℓ

(∏
j∈u

γjB2

({
kzj
n

}))

+
∑

|u|=ℓ−1
u⊆{1:d−1}

ΓℓγdB2

({
kzd
n

})(∏
j∈u

γjB2

({
kzj
n

}))

= pd−1,ℓ(k) +
Γℓ

Γℓ−1
γdB2

({
kzd
n

})
pd−1,ℓ−1(k).

207

Plugging the recurrence

pd ,ℓ(k) = pd−1,ℓ(k) +
Γℓ
Γℓ−1

γdB2

({
kzd
n

})
pd−1,ℓ−1(k)

into the expression for the squared shift-averaged WCE yields

[eshn,d(z1, . . . , zd)]
2 =

1

n

n−1∑
k=0

d∑
ℓ=1

pd ,ℓ(k)

=
1

n

n−1∑
k=0

d∑
ℓ=1

pd−1,ℓ(k) +
1

n

n−1∑
k=0

d∑
ℓ=1

Γℓ
Γℓ−1

γdB2

({
kzd
n

})
pd−1,ℓ−1(k)

= [eshn,d−1(z1, . . . , zd−1)]
2 +

1

n

n−1∑
k=0

B2

({
kzd
n

}) d∑
ℓ=1

Γℓ
Γℓ−1

γdpd−1,ℓ−1(k).

Recall that in the d th step of the CBC algorithm, the components
z1, . . . , zd−1 are fixed and it is therefore sufficient to find zd ∈ Un which
minimizes the expression

∑n−1
k=0 B2

({
kzd
n

})∑d
ℓ=1

Γℓ
Γℓ−1

γdpd−1,ℓ−1(k).

208

Let us introduce the matrix Ωn :=
[
B2

({
kz
n

})]
z∈Un

k∈{0,...,n−1}
and define a set

of n-vectors recursively via

pd ,ℓ = pd−1,ℓ + γd
Γℓ
Γℓ−1

Ωn(zd , :). ∗ pd−1,ℓ−1

starting from the initial values

pd ,0 = 1n for all d ≥ 1,

pd ,ℓ = 0n for all d ≥ 1 and ℓ > d ,

with .∗ denoting the componentwise product between two vectors.

Then the value of
∑n−1

k=0 B2

({
kzd
n

})∑d
ℓ=1

Γℓ
Γℓ−1

γdpd−1,ℓ−1(k) in the d th

step of the CBC algorithm can be obtained for all zd ∈ Un via

Ωnx , where x =
d∑

ℓ=1

Γℓ
Γℓ−1

γdpd−1,ℓ−1.

209

CBC algorithm – näıve version

1. Define the matrix Ωn :=
[
B2

({
kz
n

})]
z∈Un

k∈{0,...,n−1}
and initialize the

n-vectors

pd ,0 = 1n for all d ≥ 1,

pd ,ℓ = 0n for all d ≥ 1 and ℓ > d .

for d = 1, . . . , s, do
2. Pick the value zd ∈ {1, . . . , n − 1} corresponding to the smallest entry

in the matrix-vector product

Ωnx , where x =
d∑

ℓ=1

Γℓ
Γℓ−1

γdpd−1,ℓ−1. (1)

3. Update pd,ℓ = pd−1,ℓ + γd
Γℓ

Γℓ−1
Ωn(zd , :). ∗ pd−1,ℓ−1.

end for

Remarks: We only need the ratio aℓ :=
Γℓ

Γℓ−1
for the implementation, e.g.,

for Γℓ = ℓ! this is aℓ = ℓ. The computational bottleneck is the dense
matrix-vector product Ωnx in (1), which has complexity O(n2). The fast
CBC algorithm reduces this product down to O(n log n) complexity.

210

Fast CBC algorithm

211

What makes fast CBC fast?

The matrix-vector product Ωnx has time complexity O(n2), which is too
slow if n is, say, of the order of a million or more. (Not to mention the
problem of storing a dense matrix of such size!)

However, the matrix Ωn has a lot of structure. It turns out that we can
implement the matrix-vector product Ωnx in O(n log n) time using some
sophisticated mathematical tools.

In a nutshell, we let n ≥ 3 be prime and do the following:

Using some natural symmetries of Ωn, we can ignore the first column
(since it corresponds to shifting the objective functional in the CBC
minimization step by a constant value) and it will be sufficient to
consider only the top-left block Ω′

n := Ωn(1 : m, 2 : m+ 1), where
m := (n − 1)/2.
For prime n, we can find a generator g (primitive root modulo n) and
use this to permute Ω′

n into a circulant matrix.
A circulant matrix implements a circular convolution, so a
matrix-vector product (in the permuted indexing) can be implemented
in O(n log n) time using the fast Fourier transform (FFT). 212

Before getting to the implementational details of fast CBC, we will need to

discuss an algorithm to find a primitive root modulo n;

discuss how to compute a circulant matrix-vector product using FFT.

213

Primitive root modulo n

Definition

Let g , n ∈ N. The number g is called a primitive root modulo n if for any
integer a ∈ N such that gcd(a, n) = 1, there exists an integer k (called the
index) such that

gk ≡ a (mod n).

Such a number g is the generator of the multiplicative group of integers
modulo n, i.e., (Z/nZ)×.

Theorem (Gauss 1801)

A primitive root modulo n exists if and only if

n is 1, 2, 4, or

n = pk , where p ≥ 3 is a prime and k ∈ N, or
n = 2pk , where p ≥ 3 is a prime and k ∈ N.

Note especially that a primitive root modulo n exists whenever n is prime.
214

Recall that the Euler totient function is defined by
φ(n) := |{k ∈ N | 1 ≤ k ≤ n, gcd(k, n) = 1}|. We have the following.

Proposition

The number g is a primitive root modulo n if and only if the smallest
positive integer k for which gk ≡ 1 (mod n) is precisely k = φ(n).

Lagrange’s theorem: the smallest k satisfying gk ≡ 1 (mod n) divides
φ(n). Therefore, it is enough to check for all proper divisors d |φ(n) that
gd ̸≡ 1 (mod n).

However, we can do even better!

215

Find the prime number factorization φ(n) = pa11 · · · paℓℓ . It turns out that it

is enough to check that gd ̸≡ 1 (mod n) for all d ∈
{φ(n)

p1
, . . . , φ(n)pℓ

}
. To

see this, let d be any proper divisor of φ(n). Then there exists j such that

d |φ(n)pj
, meaning that dk = φ(n)

pj
for some k ∈ N. However, if

gd ≡ 1 (mod n), we would get

g
φ(n)
pj ≡ gdk ≡ (gd)k ≡ 1k ≡ 1 (mod n).

That is, if g was not a primitive root, then one could find a number of the

form φ(n)
pj

for which g
φ(n)
pj ≡ 1 (mod n).

∴ It is enough to check that g
ϕ(n)
pj ̸≡ 1 (mod n) for all j ∈ {1, . . . , ℓ}.

216

Algorithm for finding a primitive root modulo n

1. Find the prime number factorization φ(n) = pa11 · · · paℓℓ .

Iterate through all numbers g = 1, 2, . . . , n − 1 and, for each number,
check whether it is a primitive root by doing the following:

2. Calculate mod(g
φ(n)
pj , n) for all j ∈ {1, . . . , ℓ}.

3. If all the calculated values are different from 1, then g is a primitive
root.

Remark: In Python, the quantities in step 2 can be computed, e.g., via
pow(g,sympy.totient(n)/pj,n)

217

Discrete and fast Fourier transform

The discrete Fourier transform of (complex) vector x := (xj)
n
j=1 is defined

as the vector y := (yj)
n
j=1 with

yj =
n∑

k=1

xke
−2πi(j−1)(k−1)/n, j ∈ {1, . . . , n},

and the inverse discrete Fourier transform is given by

xj =
1

n

n∑
k=1

yke
2πi(j−1)(k−1)/n, j ∈ {1, . . . , n}.

The fast Fourier transform (FFT) can be used to carry out these
operations in O(n log n) time. In Python, one has y = numpy.fft.fft(x)
and x = numpy.fft.ifft(y).

218

Circular convolution

Let x := (xi)
n
i=1 and y := (yi)

n
i=1 be (complex) vectors. Then the

sequence z := (zi)
n
i=1 defined by

zi =
n∑

k=1

xkymod(i−k,n)+1, i ∈ {1, . . . , n},

is called the circular convolution of x and y and we denote it by z := x ⋆ y .

Similarly to the continuous convolution, we have the following identity
using discrete/fast Fourier transform:

fft(x ⋆ y) = fft(x).∗fft(y),

where x .∗y := (xiyi)
n
i=1 is the pointwise product of two vectors.

219

Circular convolution and circulant matrices

A matrix A ∈ Rn×n is called circulant if it has the form

A =

a0 an−1 · · · a2 a1
a1 a0 an−1 a2
... a1 a0

. . .
...

an−2
. . .

. . . an−1

an−1 an−2 · · · a1 a0

 .

Each row is equal to the row above shifted to the right by one
(wrapping around the edge in a periodic way).

The first column/row contains all information about the matrix.

A circulant matrix implements a circular convolution:

Ax = a ⋆ x , (2)

where a := [a0, a1, . . . , an−1]
T is the first column of matrix A.

The identity (2) implies that a circulant matrix-vector product can be
implemented in O(n log n) time as Ax = ifft(fft(a).∗fft(x)).

220

Putting it all together

The matrix-vector product Ωnx in the CBC loop costs O(n2) operations.
However, it was shown by Kuo, Nuyens, and Cools (2006) that the blocks
of Ωn can be permuted into circulant form → the matrix-vector product
can be implemented in O(n log n) operations using FFT.

Figure: Example with Ω17. Note that the first column is a constant and can be
left out (the components of Ωnx are shifted by a constant → the smallest
component stays invariant). Noting the obvious symmetries in the remaining four
blocks, we can focus on the top left block.

221

When n is prime, it is possible to use the so-called Rader transformation to
permute the block matrices into circulant form. The permutation matrices
can be easily obtained by computing the generator, i.e., primitive root
modulo n.

Figure: The original block matrix is multiplied from both sides by Rader
permutation matrices (the black elements indicate the value 1 and white elements
indicate the value 0) to obtain a circulant matrix.

222

Example with n = 1009

Figure: LHS: Original Ω1009. RHS: top left block of Ω1009 (sans first column).

Figure: Rader transformation turns the top left block matrix circulant.
223

Python implementation given in the file fastcbc.py available on the
course webpage!

224

The overall cost of the CBC algorithm with POD weights is
O(s n log n + s2n).

For simplicity, we considered only the case where n is prime. An
extension for composite n was discussed by Nuyens and Cools
(J. Complexity 2006). The idea for composite n is that the complete
matrix Ωn can be partitioned in blocks which have a circulant or
block-circulant structure. The special case of n being a power of 2
has been discussed by Cools, Kuo, and Nuyens (SIAM
J. Sci. Comput. 2006).

There also exist freely available software implementing the fast CBC
construction, cf., e.g.,
https://people.cs.kuleuven.be/~dirk.nuyens/qmc4pde/,
https://people.cs.kuleuven.be/~dirk.nuyens/fast-cbc/,
https://qmcpy.org/, . . .

225

https://people.cs.kuleuven.be/~dirk.nuyens/qmc4pde/
https://people.cs.kuleuven.be/~dirk.nuyens/fast-cbc/
https://qmcpy.org/

