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Let (Ω,F , µ) be a probability space. We consider the problem{
−∇ · (a(x , ω)∇u(x , ω)) = f (x) for x ∈ D, (a.e.) ω ∈ Ω,

u(x , ω) = 0 for x ∈ ∂D, (a.e.) ω ∈ Ω,

where the diffusion coefficient a(·, ω) is random. In consequence, the
solution u(·, ω) is a random function/field.

In order to analyze u(·, ω), some approaches might be:

Monte Carlo methods → slow convergence rate.

Sparse grid methods → good convergence, poor parallelization.

In certain problems (such as the PDE above) the dependence of u on a
tends to be quite smooth (under moderate modeling assumptions).
Quasi-Monte Carlo methods take advantage of this fact and can be used
to obtain faster-than-Monte Carlo convergence rates.
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Probability measures

Let Ω be a set and let P(Ω) := {B | B ⊆ Ω} denote its power set. A
subset F of P(Ω) is called σ-algebra (or σ-field) if

1 ∅ ∈ F ,

2 Ω \ A ∈ F for every A ∈ F , and

3
⋃

n∈N An ∈ F for every countable subset {An}n∈N of F .

A pair (Ω,F) is called a measurable space.

An intuitive way of thinking about σ-algebras is that they contain
information. The subsets contained in a σ-algebra represent events for
which we can decide, after the observation, whether they happened or not.
Hence, F represents all the information we can get from an experiment.
For a topological space Ω (e.g., Rs), the smallest σ-algebra containing all
open sets in Ω is called Borel σ-algebra on Ω and it is denoted by Bor(Ω).
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A function µ: F → [0,∞) ∪ {∞} is called probability measure if

(i) µ(∅) = 0,
(ii) for every countable subset {An}n∈N ⊂ F of pairwise disjoint sets (i.e.,

Ai ∩ Aj = ∅ if i ̸= j),

µ

( ∞⋃
k=1

Ak

)
=
∞∑
k=1

µ(An),

(iii) and µ(Ω) = 1.

We call µ(A) the probability of an event A ∈ F . If µ(A) = 1, we say that
the event A occurs almost surely. A triple (Ω,F , µ) is called probability
space. If only properties (i) and (ii) are satisfied, µ is called a measure. A
measure is called σ-finite if Ω is the countable union of measurable sets
with finite measure.

Example

The Dirac measure δm at a point m ∈ Rs is a probability measure on
(Rs ,Bor(Rs)) defined by

δm(A) =

{
1 if m ∈ A,

0 if m /∈ A
for all A ∈ Bor(Rs).
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Example

The Lebesgue measure λ on (Rs ,Bor(Rs)) is σ-finite, but not a probability
measure, since λ(Rs) = ∞.

Let µ and ν be two measures on the same measure space. Then µ is said
to be absolutely continuous with respect to ν (or dominated by ν) if
ν(A) = 0 implies µ(A) = 0 for each A ∈ F . We denote this by µ≪ ν.
Measures µ and ν are called equivalent if µ≪ ν and ν ≪ µ. If µ and ν
are supported on disjoint sets, they are called mutually singular.

Theorem (Radon–Nikodym)

Let µ and ν be two measures on a measure space (Ω,F). If µ≪ ν and ν
is σ-finite, then there exists a unique ν-integrable function f such that

µ(A) =

∫
A
f (ω) ν(dω) for all A ∈ F .

The function f is called Radon–Nikodym derivative (or density) of µ with
respect to ν and it is denoted by dµ

dν .
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Example

If µ is a measure which is absolutely continuous with respect to the
Lebesgue measure λ on (Rs ,Bor(Rs)), then it has a unique density
p ∈ L1(Rs) by the Radon–Nikodym theorem.

Example

Let µ1 = U([0, 1]) and µ2 = U([0, 2]) be uniform probability measures on
R. Then µ1 ≪ µ2 with

dµ1
dµ2

(t) =

{
2 for t ∈ [0, 1],

0 otherwise,

but µ2 is not absolutely continuous with respect to µ1 because
µ1([1, 2]) = 0, whereas µ2([1, 2]) =

1
2 > 0.
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Random variables

A function x : Ω → X between a probability space (Ω,F , µ) and a
measurable space (X ,X ) is called a random variable (with values in X ) if
it is measurable, that is, if

x−1(A) ∈ F for every A ∈ X .

Here, x−1(A) = {ω ∈ Ω : x(ω) ∈ A}.
A random variable x induces a probability measure ν on X , defined by

ν(A) := µ(x−1(A)) for all A ∈ X ,

which is called probability distribution (or law) of x . We write x ∼ ν if x is
distributed according to ν.

A random variable x connects an event A ∈ X with a corresponding event
x−1(A) ∈ F and assigns the probability of x−1(A) to A. This probability is
denoted by

P(x ∈ A) := ν(A) = µ(x−1(A)) = µ({ω ∈ Ω : x(ω) ∈ A}).
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Now, let x be a random variable with values in (Rs ,Bor(Rs)) and ν its
distribution.

If ν is absolutely continuous with respect to the Lebesgue measure λ on
Rs , then by the Radon–Nikodym theorem there exists a unique p ∈ L1(Rs)
such that

ν(A) =

∫
A
p(x)dx for all A ∈ Bor(Rs).

The function p is called probability density of x .
In what follows, we will assume that Rs -valued random variables have a
probability density.
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Let x , x1, and x2 be Rs -valued random variables.

The mean or expected value of x with distribution ν and probability
density function p is given by

E[x ] :=
∫
Rs

x ν(dx) =
∫
Rs

xp(x) dx .

A mode x̄ of a random variable x is defined as a maximizer of its
density p, i.e.,

x̄ ∈ argmax
x∈Rs

p(x).

The covariance (or covariance matrix) of two random variables x1 and
x2 is defined by

Cov(x1, x2) = E
[
(x1 − E[x1])(x2 − E[x2])

T
]
.

The variance of random variable x is its covariance with itself:

Var(x) = Cov(x , x).

The characteristic function φx of x is defined by

φx(h) =
∫
Rs

exp(ihTx) ν(dx) =
∫
Rs

exp(ihTx)p(x)dx for all h ∈ Rs .

A random variable is uniquely determined by its characteristic function. 106



Gaussian random variables

Let m ∈ Rs and C ∈ Rs×s be a symmetric positive semidefinite matrix.†

An Rs -valued random variable x is said to be Gaussian (or normal) with
mean m and covariance C , denoted by x ∼ N (m,C ), if its characteristic
function φx is given by

φx(h) = exp

(
ihTm − 1

2
hTCh

)
for all h ∈ Rs .

A Gaussian random variable is completely determined by its mean and its
covariance.

Remark: Multivariate Gaussian random variables also have the following
characterization. A random vector x = (x1, . . . , xs)

T has a multivariate
normal distribution iff y = a1x1 + · · ·+ asxs is (univariate) normally
distributed for all constants a1, . . . , as ∈ R.

†Recall that this means ξTCξ ≥ 0 for all ξ ∈ Rs .
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If, in addition, C is positive definite†, x ∼ N (m,C) has the probability density

p(x) =
1

(2π)s/2
√
detC

exp

(
−1

2
(x − m)TC−1(x − m)

)
=

1

(2π)s/2
√
detC

exp

(
−1

2
∥C− 1

2 (x − m)∥2
)
.

Note that C is invertible and C−1/2 exists due to our assumptions on C .

The Dirac measure δm at a point m ∈ Rs can be understood as a Gaussian
distribution with covariance C = 0, i.e., δm = N (m, 0).

If z1 ∼ N (m1,C1) and z2 ∼ N (m2,C2) are independent and a1, a2 ∈ R, then

z = a1z1 + a2z2 ∼ N (a1m1 + a2m2, a
2
1C1 + a22C2).

If z ∼ N (m,C), L ∈ Rs×k , and a ∈ Rs , then

w = Lz + a ∼ N (Lm + a, LCLT).

†Recall that this means ξTCξ > 0 for all ξ ∈ Rs \ {0}.
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Conditional and marginal probability densities

Let x and y be random variables with values in Rs and Rk , respectively. If
the random variable (x , y) has a probability density px ,y , i.e., if

P(x ∈ A, y ∈ B) = P((x , y) ∈ A× B) =

∫
A×B

px ,y (u, v)d(u, v),

for all A ∈ Bor(Rs) and B ∈ Bor(Rk), then px ,y is called joint probability
density of x and y . Here P(x ∈ A, y ∈ B) := P(x ∈ A and y ∈ B).

Now, the marginal probability density px of x is defined by

px(u) =
∫
Rk

px ,y (u, v)dv for all u ∈ Rs .

Analogously, the marginal density of y is

py (v) =
∫
Rs

px ,y (u, v)du for all v ∈ Rk .
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The marginal density of x is indeed the probability density for x in the
situation that we have no information about the random variable y ,
because

P(x ∈ A) = P(x ∈ A, y ∈ Rk) =

∫
A×Rk

px ,y (u, v)d(u, v)

=

∫
A

(∫
Rk

px ,y (u, v)dv
)
du =

∫
A
px(u)du

for every A ∈ Bor(Rs).

The random variables x and y are called independent if

P(x ∈ A, y ∈ B) = P(x ∈ A)P(y ∈ B)

for all A ∈ Bor(Rs), B ∈ Bor(Rk) or, equivalently, if

px ,y (u, v) = px(u)py (v) almost surely.
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Next, we consider the random variable x in the opposite situation that we
know everything about the random variable y : we have observed it and
know what value it has taken.

We say we consider the random variable x , given that we know the value
y0 taken by y , and denote this by x |y = y0. For y0 ∈ Rk with
py (y0) > 0, the conditional probability density of x |y = y0, px |y=y0

, is
then defined by

px |y=y0
(u) =

px ,y (u, y0)

py (y0)
.

If x and y are independent and py (y0) > 0, then

px |y=y0
(u) = px(u).
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Representation of random fields
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Random field

Definition

Let D ⊂ Rd and let (Ω,F , µ) be a probability space. A function
A : D × Ω → X is called a random field if A(x , ·) is an X -valued random
variable for all x ∈ D.

Definition

We call a random field A : D × Ω → X square-integrable if∫
Ω

∫
D
|A(x , ω)|2 dx µ(dω) <∞.

Our goal will be to model (infinite-dimensional) input random fields using
finite-dimensional expansions with s variables.

Comment on notation: In what follows, s will always refer to the
“stochastic dimension” (dimension of the stochastic/parametric space)
while d will refer to the “spatial dimension” (dimension of the spatial
Lipschitz domain D ⊂ Rd , d ∈ {2, 3}).
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Remark: separable Hilbert space

A Hilbert space is said to be separable if (and only if) there exists a
countable orthonormal basis {ψj}∞j=1 of H with respect to the inner
product ⟨·, ·⟩H , that is,

⟨ψj , ψk⟩H = δj ,k and

∥∥∥∥f − ℓ∑
j=1

⟨f , ψj⟩Hψj

∥∥∥∥
H

ℓ→∞−−−→ 0 for all f ∈ H.

This last condition is often written as

f =
∞∑
j=1

⟨f , ψj⟩Hψj .

Note that
∑ℓ

j=1⟨f , ψj⟩Hψj is precisely the orthogonal projection onto the
subspace spanned by ψ1, . . . , ψℓ.
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Mercer’s theorem

Let a(x , ω) be a square-integrable random field with mean

a(x) =
∫
Ω

a(x , ω)µ(dω), x ∈ D,

and a continuous, symmetric, positive definite† covariance

K(x , x ′) =

∫
Ω

(a(x , ω)− a(x))(a(x ′, ω)− a(x ′))µ(dω).

Mercer’s theorem: if D ⊂ Rd is a compact, measurable set with positive Lebesgue
measure, then the covariance operator C : L2(D) → L2(D),

(Cu)(x) =
∫
D

K(x , x ′)u(x ′) dx ′, x ∈ D,

has a countable sequence of eigenvalues {λk}k≥1 and corresponding eigenfunctions
{ψk}k≥1 satisfying Cψk = λkψk such that λ1 ≥ λ2 ≥ · · · ≥ 0 and λk → 0 and the
eigenfunctions form an orthonormal basis for L2(D).
Note that this means:∫

D

K(x , x ′)ψk(x ′) dx ′ = λkψk(x),
∫
D

ψk(x)ψℓ(x) dx = δk,ℓ.

†In this context, positive definite means: for all choices of finitely many points
x1, . . . , xk ∈ D, k ∈ N, the Gram matrix G := [K(x i , x j)]

k
i,j=1 is positive semidefinite.
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The Karhunen–Loève (KL) expansion of a random field

Theorem

Let (Ω,F , µ) be a probability space, let D ⊂ Rd be a compact,
measurable set with positive Lebesgue measure, and let a : D × Ω → R be
a square-integrable random field with continuous, symmetric, positive
definite covariance K (x , x ′) = E[(a(x , ·)− a(x))(a(x ′, ·)− a(x ′))]. Then
the eigensystem (λk , ψk) ∈ R+ × L2(D) of the covariance operator
C : L2(D) → L2(D), as described on the previous slide, can be used to write

a(x , ω) = a(x) +
∞∑
k=1

√
λkξk(ω)ψk(x),

where ξk(ω) =
1√
λk

∫
D
(a(x , ω)− a(x))ψk(x) dx ,

where the convergence is in L2 w.r.t. the stochastic parameter and uniform
in x . Furthermore, the random variables ξk are zero-mean uncorrelated
random variables with unit variance, i.e.,

E[ξk ] = 0 and E[ξkξℓ] = δk,ℓ.
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Proof. WLOG, we can assume that a(x) = 0.† By Mercer’s theorem, {ψk}∞k=1 forms an
orthonormal basis on L2(D) and we can write

K(x , x ′) =
∞∑
k=1

(∫
D

K(x , t)ψk(t)dt
)

︸ ︷︷ ︸
=λkψk (x)

ψk(x ′) =
∞∑
k=1

λkψk(x)ψk(x ′).

Moreover, the random field a can be expressed using the same eigenbasis:

a(x , ω) =
∞∑
k=1

√
λkξk(ω)ψk(x), ξk(ω) =

1√
λk

∫
D

a(x , ω)ψk(x) dx .

One easily computes that

E[ξk ] = E
[

1√
λk

∫
D

a(x , ·)ψk(x)dx
]
=

1√
λk

∫
D

E[a(x , ·)]ψk(x) dx = 0

and

E[ξkξℓ] = E
[
1

λk

∫
D

∫
D

a(x , ·)a(x ′, ·)ψk(x)ψℓ(x ′)dx dx ′
]

=
1

λk

∫
D

∫
D

E[a(x , ·)a(x ′, ·)]ψk(x)ψℓ(x ′) dx dx ′

=
1

λk

∫
D

∫
D

K(x , x ′)ψk(x)ψℓ(x ′)dxdx ′ =
1

λk

∫
D

ψk(x)
(∫

D

K(x , x ′)ψℓ(x ′)dx ′
)

︸ ︷︷ ︸
=λℓψℓ(x)

dx = δk,ℓ,

since
∫
D
ψk(x)ψℓ(x)dx = δk,ℓ.

†Once the claim has been proved for a zero-mean random field a(x , ω), the general case
follows simply by applying the theorem to a(x , ω)← a(x , ω)− a(x).
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Recall from the previous slide that

a(x , ω) =
∑∞

k=1

√
λkξk(ω)ψk(x), ξk(ω) = 1√

λk

∫
D
a(x , ω)ψk(x) dx ,

where E[ξk ] = 0, and E[ξkξℓ] = δk,ℓ. Let

as(x , ω) =
∑s

k=1

√
λkξk(ω)ψk(x).

E[|a(x , ·)− as(x , ·)|2] = E[a(x , ·)2] + E[as(x , ·)2]− 2E[a(x , ·)as(x , ·)]

= K(x , x) + E
[ s∑

k=1

s∑
ℓ=1

√
λkλℓξk(·)ξℓ(·)ψk(x)ψℓ(x)

]

− 2E
[( ∞∑

ℓ=1

√
λℓξℓ(·)ψℓ(x)

)( s∑
k=1

√
λkξk(·)ψk(x)

)]

= K(x , x) +
s∑

k=1

s∑
ℓ=1

√
λkλℓE[ξkξℓ]ψk(x)ψℓ(x)− 2E

[ ∞∑
ℓ=1

s∑
k=1

√
λkλℓξℓ(·)ξk(·)ψℓ(x)ψk(x)

]

= K(x , x) +
s∑

k=1

s∑
ℓ=1

√
λkλℓδk,ℓψk(x)ψℓ(x)− 2

∞∑
ℓ=1

s∑
k=1

√
λkλℓE[ξℓξk ]ψℓ(x)ψk(x)

= K(x , x) +
s∑
ℓ=1

λℓψℓ(x)2 − 2
∞∑
ℓ=1

s∑
k=1

√
λkλℓE[ξℓξk ]ψℓ(x)ψk(x) (E[ξℓξk ] = δℓ,k)

= K(x , x)−
s∑
ℓ=1

λℓψℓ(x)2 → 0 in the L2 sense by Mercer’s theorem.
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The Karhunen–Loève (KL) expansion of random field a(x , ω) can be
written as

a(x , ω) = a(x) +
∞∑
k=1

√
λkξk(ω)ψk(x).

Remarks:

The KL expansion minimizes the mean-square truncation error:∥∥∥∥a(x , ω)−a(x)−
s∑

k=1

√
λkξk(ω)ψk(x)

∥∥∥∥
L2(Ω,µ;L2(D))

=

( ∞∑
k=s+1

λk

)1/2

.

The random variables ξk are centered and uncorrelated, but not
necessarily independent.

If the random field a(x , ω) is Gaussian – by definition, this means that
(a(x1, ω), . . . , a(xk , ω)) is a multivariate Gaussian random variable for
all x1, . . . , xk ∈ D, k ∈ N – then the random variables ξk are
independent.
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The utility of the KL expansion comes from the fact that it is an effective
method of representing input random fields when their covariance
structure is known.

Essentially, if the (infinite-dimensional) input random field has a known
covariance (which satisfies the conditions of Mercer’s theorem), then we
can use the KL expansion to find a finite-dimensional approximation,
which is optimal in the mean-square error sense.
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Example

Let us consider the Wiener process over D = [0, 1], which we regard as a centered
standard Gaussian random field W (x , ω) with covariance function K(x , y) = min{x , y},
x , y ∈ [0, 1]. It can be shown that∫ 1

0

K(x , y)ψk(y) dy = λkψk(x),

where ψk(x) =
√
2 sin((k − 1

2
)πx), λk = 1

(k− 1
2
)2π2

. Then it has the KL expansion

W (x , ω) =
∞∑
k=1

√
λkyk(ω)ψk(x), yk ∼ N (0, 1).

Let us plot some realizations with the series truncated to s ∈ {10, 50, 100} terms.
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Modeling assumptions

In engineering and practical applications, the idea is that we have some a priori
knowledge/belief that the unknown input random field is distributed according to some
known probability distribution with a known covariance.

If the input random field is Gaussian with a known, nice covariance function†, then
we use the KL expansion to find a reasonable finite-dimensional approximation of
true input. Since the KL expansion decorrelates the stochastic variables, and
uncorrelated jointly Gaussian random variables are independent, we can exploit the
independence of the stochastic variables to parameterize the model problem.

If the input random field is not Gaussian, then the stochastic variables in the KL
expansion are uncorrelated but not necessarily independent. For the purposes of
mathematical analysis, we typically assume that the random variables in the input
random field are independent so that we can parameterize the model problem.
(Transforming dependent random variables into independent random variables can
be done using, e.g., the Rosenblatt transformation, but this is computationally
expensive.)

Note especially that in the Gaussian setting we do not need to make any “extra” effort
to ensure the independence of the stochastic variables in the KL expansion.

†Matérn covariance is an especially popular choice.
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Example (Lognormal input random field)

Let D ⊂ Rd , d ∈ {2, 3}, be a Lipschitz domain and consider the PDE
problem {

−∇ · (a(x , ω)∇u(x , ω)) = f (x) for x ∈ D,

u(·, ω)|∂D = 0,

where f : D → R is a fixed (deterministic) source term. We can model a
lognormally distributed random diffusion coefficient a : D × Ω → R using
the KL expansion, e.g., as

a(x , ω) = a0(x) exp
( ∞∑

k=1

yk(ω)ψk(x)
)
, yk ∼ N (0, 1),

where a0 ∈ L∞(D) is such that a0(x) > 0 and the random variables yk are
uncorrelated (and thus independent in the Gaussian case).

Due to the independence, we can consider the above as a parametric PDE
with a(x , y) ≡ a(x , y(ω)) and u(x , y) ≡ u(x , y(ω)), where (formally)
y ∈ RN is a parametric vector endowed with a product Gaussian measure.
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Example (Uniform and affine input random field)

Let D ⊂ Rd , d ∈ {2, 3}, be a Lipschitz domain, f : D → R is a fixed
(deterministic) source term, and consider the PDE problem{

−∇ · (a(x , ω)∇u(x , ω)) = f (x) for x ∈ D,

u(·, ω)|∂D = 0.

We can model a uniformly distributed random diffusion coefficient
a : D × Ω → R using the KL expansion, e.g., as

a(x , ω) = a0(x) +
∞∑
k=1

yk(ω)ψk(x), yk ∼ U(−1
2 ,

1
2),

where the random variables yk are uncorrelated. Unlike the Gaussian
setting, the random variables yk are generally not independent!

In numerical analysis, the random variables yk are often assumed to be
independent – this alllows us to consider the above as a parametric PDE
with a(x , y) ≡ a(x , y(ω)) and u(x , y) ≡ u(x , y(ω)), where y ∈ [−1

2 ,
1
2 ]

N

is a parametric vector endowed with a uniform probability measure.
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The Monte Carlo method

A simple technique to approximate the integral

I (f ) :=

∫
supp(p)

f (x)p(x) dx

is to use a sample average. If we are able to draw an i.i.d. sample
x1, . . . , xn from the probability distribution corresponding to the PDF p
then one can consider the Monte Carlo estimate

IMC
n (f ) :=

1

n

n∑
i=1

f (x i ).

Generally speaking, the Law of Large Numbers and the Central Limit
Theorem imply that

lim
n→∞

IMC
n (f ) = I (f ) and Var(IMC

n (f )− I (f )) ≈ Var(f (X ))

n

provided that f (X ) has finite mean and variance with X distributed
according to the probability distribution corresponding to p.
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Model problem 1: uniform and affine model

For the purposes of numerical analysis, it is often desirable to start by analyzing a
simpler model. Fix f ∈ L2(D), let U = [−1/2, 1/2]N, and consider the problem of
finding, for all y ∈ U, u(·, y) ∈ H1

0 (D) such that∫
D

a(x , y)∇u(x , y) · ∇v(x)dx =

∫
D

f (x)v(x)dx for all v ∈ H1
0 (D),

where the diffusion coefficient has the parametrization

a(x , y) := a0(x) +
∞∑
j=1

yjψj(x), x ∈ D, y ∈ U,

where a0 ∈ L∞(D), there exist amin, amax > 0 s.t. 0 < amin ≤ a(x , y) ≤ amax <∞ for all
x ∈ D and y ∈ U, and the stochastic fluctuations ψj : D → R are functions of the
spatial variable such that

ψj ∈ L∞(D) for all j ∈ N,∑∞
j=1 ∥ψj∥L∞(D) <∞.

Goals: compute E[G(u)] and Var[G(u)] for some bounded, linear functional
G : H1

0 (D) → R (quantity of interest); alternatively, one might be interested in E[u(x , ·)]
and Var[u(x , ·)] (full PDE solution).
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Model problem 2: lognormal model

In many practical applications, it is desirable to model the diffusion coefficient as a
lognormal random field. Fix f ∈ L2(D), let U = RN

∗ , and consider the problem of
finding, for all y ∈ U, u(·, y) ∈ H1

0 (D) such that∫
D

a(x , y)∇u(x , y) · ∇v(x)dx =

∫
D

f (x)v(x)dx for all v ∈ H1
0 (D),

where the diffusion coefficient has the parametrization

a(x , y) := a0(x) exp
( ∞∑

j=1

yjψj(x)
)
, x ∈ D, y ∈ U,

where a0 ∈ L∞(D) is such that a0(x) > 0 and the stochastic fluctuations ψj : D → R are
functions of the spatial variable such that

ψj ∈ L∞(D) for all j ∈ N,∑∞
j=1 ∥ψj∥L∞(D) <∞.

Goals: compute E[G(u)] and Var[G(u)] for some bounded, linear functional
G : H1

0 (D) → R; alternatively, one might be interested in E[u(x , ·)] and Var[u(x , ·)].

Here, RN
∗ := {y ∈ RN |

∑∞
j=1 |yj |∥ψj∥L∞(D) <∞}. More on this condition later...
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Numerical experiment

Let us consider the problem of calculating the (dimensionally-truncated) E[us(x , ·)] using
the Monte Carlo method. Fix the spatial domain D = (0, 1)2 and source term
f (x) = x1. The PDE problem in this case is to find, for all y ∈ Rs , us(·, y) ∈ H1

0 (D) s.t.∫
D

as(x , y)∇us(x , y) · ∇v(x) dx =

∫
D

f (x)v(x)dx for all v ∈ H1
0 (D)

endowed with the (dimensionally-truncated) lognormally parameterized diffusion
coefficient

as(x , y) = exp

( s∑
k=1

ykψk(x)
)
, yk ∈ R,

with stochastic fluctuations ψk(x) := k−ϑ sin(πkx1) sin(πkx2) and a fixed decay
parameter ϑ > 1. We solve the PDE using a first-order finite element method with mesh
size h = 2−5 and stochastic dimension s = 100. We draw a random sample
y 1, . . . , y n ∼ N (0, Is) and compute the Monte Carlo approximation

E[us,h(x , y)] ≈
1

n

n∑
k=1

us,h(x , y k) = IMC
n (us,h(x , ·)).

We plot the estimated L2 error by using IMC
n′ (us,h(x , ·)) for n′ ≫ n as the reference

solution and compute ∥E[us,h]− IMC
n (us,h)∥L2(D) ≈ ∥IMC

n′ (us,h)− IMC
n (us,h)∥L2(D). (To

compute the L2(D)-norm of a function vh =
∑

j cjϕj ∈ Vh belonging to a FE space, we

use the mass matrix Mi,j =
∫
D
ϕi (x)ϕj(x) dx as ∥vh∥L2 =

√
cTMc .) 128



Appendix
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Rosenblatt transformation

In the non-Gaussian setting, the uncorrelated random variables can be
made independent using, e.g., the Rosenblatt transformation.

The following is an excerpt from “Structural Reliability Analysis and
Prediction”, 3rd edition, by R. E. Melchers and A. T. Beck (2018).

A dependent random vector X = (X1, . . . ,Xs) may be transformed to
the independent uniformly distributed random vector U = (U1, . . . ,Us)
through the Rosenblatt (1952) transformation U = TX given by

u1 = P(X1 ≤ x1) = F1(x1),

u2 = P(X2 ≤ x2|X1 = x1) = F2(x2|x1),
...

us = P(Xs ≤ xs |X1 = x1, . . . ,Xs−1 = xs−1) = Fs(xs |x1, . . . , xs−1).
If the joint PDF pX is known, then the conditional CDF Fs can be
determined by

Fs(xs |x1, . . . , xs−1) =
∫ xs
−∞ pX1,...,Xs (x1, . . . , xs−1, t)dt

pX1,...,Xs−1(x1, . . . , xs−1)
.
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