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Elliptic PDE

Many physical phenomena can be modeled using elliptic partial differential
equations of the form{

−∇ · (a(x)∇u(x)) = f (x), x ∈ D,

+boundary conditions

Uncertainties can appear in the material parameter a, source term f ,
boundary conditions, or the domain D.

For the purposes of analysis, we consider the weak formulation of the
PDE. Under certain conditions, the solution to the weak formulation
can be shown to exist and be uniquely defined.

When we solve the PDE numerically using the finite element method,
we are actually approximating the solution to the the weak
formulation of the PDE problem.

Under suitably strong regularity assumptions (D convex Lipschitz
domain, f ∈ L2(D), and a Lipschitz), the weak solution satisfies
−∇ · (a(x)∇u(x)) = f (x) for a.e. x ∈ D with u|∂D = 0.
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Let D ⊂ Rd be a nonempty open set.

L2(D) := {v : D → R | v is measurable, ∥v∥L2(D) :=

(∫
D

|v(x)|2 dx
)1/2

<∞},

H1(D) := {v ∈ L2(D) | ∂jv ∈ L2(D) for all j ∈ {1, . . . , d}},

with ∥v∥H1(D) := (∥v∥2L2(D) + ∥∇v∥2L2(D))
1/2,

C∞
0 (D) := {v ∈ C∞(D) | supp(v) ⊂ D is a compact set},

where supp(v) := {x ∈ D | v(x) ̸= 0},

H1
0 (D) := clH1(D)(C

∞
0 (D)).

The spaces L2(D), H1(D), and H1
0 (D) are Hilbert spaces.

Poincaré’s inequality: if D ⊂ Rd is a bounded domain, then there exists a constant
CP > 0 (depending on the domain D) such that

∥v∥L2(D) ≤ CP∥∇v∥L2(D) for all v ∈ H1
0 (D).

Therefore, we can define an equivalent norm in H1
0 (D) by setting

∥v∥H1
0 (D) := ∥∇v∥L2(D).

This induces exactly the same topology in H1
0 (D) as the usual Sobolev norm ∥ · ∥H1(D).
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Trace theorem and boundary values

Trace theorem: Let D be a bounded Lipschitz domain. Then the trace
operator

γ : C∞(D) → C∞(∂D), γu = u|∂D ,

has a unique extension to a bounded linear operator γ : H1(D) → L2(∂D).

This means that even though u ∈ H1(D) is not well-defined over a set of
measure zero, we can interpret its restriction to the boundary of the
domain D as the trace γu ∈ L2(∂D).

Especially, Sobolev functions u ∈ H1(D) with zero trace are precisely the
elements of H1

0 (D):

u ∈ H1
0 (D) ⇔ γu = 0: ∂D → R.
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Q: How to solve such PDE problems in practice?
A: We consider the weak formulation of the PDE problem: given
f ∈ L2(D), find u ∈ H1

0 (D) such that∫
D
a(x)∇u(x) · ∇v(x)dx︸ ︷︷ ︸

=:B(u,v)

=

∫
D
f (x)v(x) dx︸ ︷︷ ︸
=:F (v)

for all v ∈ H1
0 (D), (1)

where F : H1
0 (D) → R is a bounded linear functional. If there exist

amin, amax > 0 s.t. 0 < amin ≤ a(x) ≤ amax <∞ for all x ∈ D, then the
bilinear form B : H1

0 (D)× H1
0 (D) → R is bounded, i.e.,

|B(u, v)| =
∣∣∣∣ ∫

D
a(x)∇u(x) · ∇v(x)dx

∣∣∣∣ ≤ amax∥u∥H1
0 (D)∥v∥H1

0 (D)

for all u, v ∈ H1
0 (D), and coercive, i.e.,

B(u, u) =

∣∣∣∣ ∫
D
a(x)∇u(x) ·∇u(x) dx

∣∣∣∣ ≥ amin∥u∥H1
0 (D) for all u ∈ H1

0 (D),

the Lax–Milgram lemma ensures that there exists a unique solution
u ∈ H1

0 (D) to (??).
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Galerkin method

To solve the system approximately, let Vm ⊂ H1
0 (D) be a

finite-dimensional subspace of the solution space H1
0 (D).

The Galerkin solution um ∈ Vm of the system (??) is the unique solution
such that∫

D
a(x)∇um(x) · ∇v(x) dx =

∫
D
f (x)v(x)dx for all v ∈ Vm.

Let Vm be spanned by ψ1, . . . , ψm. We can write the solution as
um =

∑m
i=1 ciψi . The above system reduces to the linear system of

equations


∫
D ∇ψ1(x) · ∇ψ1(x) dx · · ·

∫
D ∇ψ1(x) · ∇ψm(x) dx

...
. . .

...∫
D ∇ψm(x) · ∇ψ1(x)dx · · ·

∫
D ∇ψm(x) · ∇ψm(x)dx


c1

...
cm

 =


∫
D f (x)ψ1(x) dx

...∫
D f (x)ψm(x) dx

 .
Solving this system and plugging the expansion coefficients back into the
expression for um yields the Galerkin solution.
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Céa’s lemma

The solution to the Galerkin system is quasi-optimal in the following sense:

∥u − um∥H1
0 (D) ≤

amax

amin
inf

vm∈Vm

∥u − vm∥H1
0 (D).

That is, the H1
0 (D) error between the true PDE solution u and the

Galerkin approximation um differs from the optimal approximation in Vm

up to a constant factor.
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Finite element method

The finite element method is a particular method of constructing the
finite-dimensional subspaces Vm of the solution space H1

0 (D).

Construct a triangulation for the computational domain D.

The space Vm is spanned by piecewise linear functions ψ1, . . . , ψm

which are constructed to satisfy

ψi (nj) =

{
1 if i = j ,

0 otherwise,

where n1, . . . ,nm are the interior nodes of the triangulation.

The finite element solution can be written as
uh(x) =

∑m
i=1 ciψi (x) ∈ Vh, where the expansion coefficients are

solved from the Galerkin system. Note that uh(nj) = cj .

If vh(x) =
∑m

i=1 ciψi (x) ∈ Vh, then, e.g., ∥vh∥L2(D) =
√

cTMc ,
where c := [c1, . . . , cm]

T and M = [Mi ,j ]
m
i ,j=1 is the mass matrix

defined elementwise by Mi ,j :=
∫
D ψi (x)ψj(x) dx , i , j ∈ {1, . . . ,m}.
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Figure: Left: An illustration of global, piecewise linear FE basis functions
spanning Vh over a regular, uniform triangulation of (0, 1)2. Right: Bird’s-eye
view of the same global FE basis functions.
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Random field

Definition

Let D ⊂ Rd and let (Ω,F , µ) be a probability space. A function
A : D × Ω → X is called a random field if A(x , ·) is an X -valued random
variable for all x ∈ D.

Definition

We call a random field A : D × Ω → X square-integrable if∫
Ω
|A(x , ω)|2 µ(dω) <∞ for all x ∈ D.

Our goal will be to model (infinite-dimensional) input random fields using
finite-dimensional expansions with s variables.

Comment on notation: In what follows, s will always refer to the
“stochastic dimension” (dimension of the stochastic/parametric space)
while d will refer to the “spatial dimension” (dimension of the spatial
Lipschitz domain D ⊂ Rd , d ∈ {2, 3}).
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Mercer’s theorem

Let a(x , ω) be a square-integrable random field with mean

a(x) =
∫
Ω

a(x , ω)µ(dω), x ∈ D,

and a continuous, symmetric, positive definite† covariance

K(x , x ′) =

∫
Ω

(a(x , ω)− a(x))(a(x ′, ω)− a(x ′))µ(dω).

Mercer’s theorem: the covariance operator C : L2(D) → L2(D),

(Cu)(x) =
∫
D

K(x , x ′)u(x ′) dx ′, x ∈ D,

has a countable sequence of eigenvalues {λk}k≥1 and corresponding eigenfunctions
{ψk}k≥1 satisfying Cψk = λkψk such that λ1 ≥ λ2 ≥ · · · ≥ 0 and λk → 0 and the
eigenfunctions form an orthonormal basis for L2(D).
Note that this means:∫

D

K(x , x ′)ψk(x ′) dx ′ = λkψk(x),
∫
D

ψk(x)ψℓ(x) dx = δk,ℓ.

†In this context, positive definite means: for all choices of finitely many points
x1, . . . , xk ∈ D, k ∈ N, the Gram matrix G := [K(xi , xj)]

k
i,j=1 is positive semidefinite.

326



The Karhunen–Loève (KL) expansion of a random field

Theorem

Let (Ω,F , µ) be a probability space, let D ⊂ Rd be closed and bounded,
and let a : D × Ω → R be a square-integrable random field with
continuous, symmetric, positive definite covariance
K (x , x ′) = E[(a(x , ·)− a(x))(a(x ′, ·)− a(x ′))]. Then the eigensystem
(λk , ψk) ∈ R+ × L2(D) of the covariance operator C : L2(D) → L2(D), as
described on the previous slide, can be used to write

a(x , ω) = a(x) +
∞∑
k=1

√
λkξk(ω)ψk(x),

where ξk(ω) =
1√
λk

∫
D
(a(x , ω)− a(x))ψk(x) dx ,

where the convergence is in L2 w.r.t. the stochastic parameter and uniform
in x . Furthermore, the random variables ξk are zero-mean uncorrelated
random variables with unit variance, i.e.,

E[ξk ] = 0 and E[ξkξℓ] = δk,ℓ.
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The Karhunen–Loève (KL) expansion of random field a(x , ω) can be
written as

a(x , ω) = a(x) +
∞∑
k=1

√
λkξk(ω)ψk(x).

The KL expansion minimizes the mean-square truncation error:∥∥a(x , ω)−a(x)−
∑s

k=1

√
λkξk(ω)ψk(x)

∥∥
L2(Ω,µ;L2(D))

=
(∑∞

k=s+1 λk
)1/2

.

The random variables ξk are centered and uncorrelated, but not
necessarily independent.
If the random field a(x , ω) is Gaussian – by definition, this means that
(a(x1, ω), . . . , a(xk , ω)) is a multivariate Gaussian random variable for
all x1, . . . , xk ∈ D, k ∈ N – then the random variables ξk are
independent.
The KL expansion is an effective method of representing input
random fields when their covariance structure is known. If the
(infinite-dimensional) input random field has a known covariance
(which satisfies the conditions of Mercer’s theorem), then we can use
the KL expansion to find a finite-dimensional approximation, optimal
in the mean-square error sense. 328



Modeling assumptions

In engineering and practical applications, the idea is that we have some a priori
knowledge/belief that the unknown input random field is distributed according to some
known probability distribution with a known covariance.

If the input random field is Gaussian with a known, nice covariance function†, then
we use the KL expansion to find a reasonable finite-dimensional approximation of
true input. Since the KL expansion decorrelates the stochastic variables, and
uncorrelated jointly Gaussian random variables are independent, we can exploit the
independence of the stochastic variables to parameterize the model problem.

If the input random field is not Gaussian, then the stochastic variables in the KL
expansion are uncorrelated but not necessarily independent. For the purposes of
mathematical analysis, we typically assume that the random variables in the input
random field are independent so that we can parameterize the model problem.
(Transforming dependent random variables into independent random variables can
be done using, e.g., the Rosenblatt transformation, but this is computationally
expensive.)

Note especially that in the Gaussian setting we do not need to make any “extra” effort
to ensure the independence of the stochastic variables in the KL expansion.

†Matérn covariance is an especially popular choice.
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Example (Lognormal input random field)

Let D ⊂ Rd , d ∈ {2, 3}, be a Lipschitz domain and consider the PDE
problem {

−∇ · (a(x , ω)∇u(x , ω)) = f (x) for x ∈ D,

u(·, ω)|∂D = 0,

where f : D → R is a fixed (deterministic) source term. We can model a
lognormally distributed random diffusion coefficient a : D × Ω → R using
the KL expansion, e.g., as

a(x , ω) = a0(x) exp
( ∞∑

k=1

yk(ω)ψk(x)
)
, yk ∼ N (0, 1),

where a0 ∈ L∞(D) is such that a0(x) > 0 and the random variables yk are
uncorrelated (and thus independent in the Gaussian case).

Due to the independence, we can consider the above as a parametric PDE
with a(x , y) ≡ a(x , y(ω)) and u(x , y) ≡ u(x , y(ω)), where (formally)
y ∈ RN is a parametric vector endowed with a product Gaussian measure.
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Example (Uniform and affine input random field)

Let D ⊂ Rd , d ∈ {2, 3}, be a Lipschitz domain, f : D → R is a fixed
(deterministic) source term, and consider the PDE problem{

−∇ · (a(x , ω)∇u(x , ω)) = f (x) for x ∈ D,

u(·, ω)|∂D = 0.

We can model a uniformly distributed random diffusion coefficient
a : D × Ω → R using the KL expansion, e.g., as

a(x , ω) = a0(x) +
∞∑
k=1

yk(ω)ψk(x), yk ∼ U(−1
2 ,

1
2),

where the random variables yk are uncorrelated. Unlike the Gaussian
setting, the random variables yk are generally not independent!

In numerical analysis, the random variables yk are often assumed to be
independent – this allows us to consider the above as a parametric PDE
with a(x , y) ≡ a(x , y(ω)) and u(x , y) ≡ u(x , y(ω)), where y ∈ [−1

2 ,
1
2 ]

N

is a parametric vector endowed with a uniform probability measure.
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To estimate the statistical response, note that in the lognormal model the
expected value of the PDE solution is given by

E[u(x , ·)] = lim
s→∞

∫
Rs

u(x , y)
s∏

j=1

e−
1
2
y2
j

√
2π

dy

while in the affine and uniform model the expected value of the PDE
solution is given by

E[u(x , ·)] = lim
s→∞

∫
[−1/2,1/2]s

u(x , y) dy .

In practice, we need to truncate these infinite-dimensional integrals
into finite-dimensional ones, incurring the so-called dimension
truncation error. Since the PDE is solved numerically using the finite
element method, this also incurs a finite element discretization error.

To compute the resulting high-dimensional integrals for the
dimensionally-truncated, finite element discretized PDE solution we
use a quasi-Monte Carlo (QMC) method.
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Quasi-Monte Carlo (QMC) methods are a class of equal weight cubature
rules ∫

[0,1]s
f (y) dy ≈ 1

n

n∑
i=1

f (t i ),

where (t i )ni=1 is an ensemble of deterministic nodes in [0, 1]s .

The nodes (t i )ni=1 are chosen deterministically.

QMC methods exploit the smoothness and anisotropy of an integrand in
order to achieve better-than-Monte Carlo rates.
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Lattice rules

Rank-1 lattice rules

Qn,s(f ) =
1

n

n∑
i=1

f (t i )

have the points

t i = mod

(
iz
n
, 1

)
, i ∈ {1, . . . , n},

where the entire point set is determined by
the generating vector z ∈ Ns , with all
components coprime to n.
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Lattice rule with z = (1, 55) and n = 89
nodes in [0, 1]2

The quality of the lattice rule is determined by the choice of z .
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Randomly shifted lattice rules

Shifted rank-1 lattice rules have points

t i = mod

(
iz
n

+∆, 1

)
, i ∈ {1, . . . , n}.

∆ ∈ [0, 1)s is the shift

Use a number of random shifts for error estimation.
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Lattice rule shifted by ∆ = (0.1, 0.3).
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Let ∆r , r = 1, . . . ,R, be independent random shifts drawn from U([0, 1]s)
and define

Q∆r
n,s (f ) :=

1

n

n∑
i=1

f (mod(t i +∆r , 1)). (QMC rule with 1 random shift)

Then

Qn,s(f ) =
1

R

R∑
r=1

Q∆r
n,s f (QMC rule with R random shifts)

is an unbiased estimator of Is(f ).
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Let f : [0, 1]s → R be sufficiently smooth.

Error bound (one random shift):

|Is(f )− Q∆
n,s(f )| ≤ e∆n,s,γ(z)∥f ∥γ .

R.M.S. error bound (shift-averaged):√
E∆[|Is(f )− Qn,s(f )|2] ≤ eshn,s,γ(z)∥f ∥γ .

We consider weighted Sobolev spaces with dominating mixed smoothness,
equipped with norm

∥f ∥2γ =
∑

u⊆{1:s}

1

γu

∫
[0,1]|u|

(∫
[0,1]s−|u|

∂|u|f

∂yu

(y)dy−u

)2

dyu

and (squared) worst case error

P(z) := eshn,s,γ(z)
2 =

1

n

n−1∑
k=0

∑
∅̸=u⊆{1:s}

γu
∏
j∈u

ω

({
kzj
n

})
where ω(x) = x2 − x + 1

6 .
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CBC algorithm (Sloan, Kuo, Joe 2002)

The idea of the component-by-component (CBC) algorithm is to find a
good generating vector z = (z1, . . . , zs) by proceeding as follows:

1. Set z1 = 1 (this is a freebie since P(1) = P(z) for all z ∈ N);
2. With z1 fixed, choose z2 to minimize error criterion P(z1, z2);

3. With z1 and z2 fixed, choose z3 to minimize error criterion
P(z1, z2, z3)
...
The CBC algorithm is a greedy algorithm: in general, it will not find
the generating vector z that minimizes P(z). However, it can be
shown that the generating vector obtained by the CBC algorithm
satisfies an error bound (see next slide).

For generic γ = (γu)u⊆{1:s}, evaluating P(z) = P(γ, z) takes
O(2s) operations. For an efficient implementation, it is desirable that
the weights γ can be characterized by an expression that does not
contain too many degrees of freedom.

Efficient implementation using FFT! (QMC4PDE, QMCPy, etc.)
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Theorem (CBC error bound)

The generating vector z ∈ Us
n constructed by the CBC algorithm,

minimizing the squared shift-averaged worst-case error [eshn,s,γ(z)]2 for the
weighted unanchored Sobolev space in each step, satisfies

[eshn,s,γ(z)]
2 ≤

(
1

φ(n)

∑
∅̸=u⊆{1:s}

γλu

(
2ζ(2λ)

(2π2)λ

)|u|)1/λ

for all λ ∈ (1/2, 1],

where ζ(x) :=
∑∞

k=1 k
−x denotes the Riemann zeta function for x > 1.

Remarks:

Optimal rate of convergence O(n−1+δ) in weighted Sobolev spaces,
independently of s under an appropriate condition on the weights.

Cost of algorithm for POD weights is O(s n log n + s2 n) using FFT.

Fast CBC works for any (composite) number n ≥ 2, but the
implementation is more involved when n is not prime.
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Significance: Suppose that f ∈ Hs,γ for all γ = (γu)u⊆{1:s}. Then for any
given sequence of weights γ, we can use the CBC algorithm to obtain a
generating vector satisfying the error bound√

E∆|Is f − Q∆
n,s f |2 ≤

(
1

φ(n)

∑
∅̸=u⊆{1:s}

γλu

(
2ζ(2λ)

(2π2)λ

)|u|)1/(2λ)

∥f ∥s,γ (2)

for all λ ∈ (1/2, 1]. We can use the following strategy:

For a given integrand f , estimate the norm ∥f ∥s,γ .
Find weights γ which minimize the error bound (??).

Using the optimized weights γ as input, use the CBC algorithm to
find a generating vector which satisfies the error bound (??).

Remarks:

If n is prime, then 1
φ(n) =

1
n−1 . If n = 2k , then 1

φ(n) =
2
n . For general

(composite) n ≥ 3, 1
φ(n) ≤

eγ log log n+ 3
log log n

n , where

γ = 0.57721566 . . . (Euler–Mascheroni constant).

The optimal convergence rate close to O(n−1) is obtained with

λ→ 1/2, but λ = 1/2 is not permitted since ζ(2λ)
λ→1/2+→ ∞.
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Example: applying QMC theory for a simplified parametric PDE
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Let D ⊂ Rd , d ∈ {2, 3}, be a convex, bounded Lipschitz domain and
consider the following (simplified!) elliptic PDE{

−∇ · (a(y)∇u(x , y)) = f (x), x ∈ D, y ∈ [−1/2, 1/2]s ,

u(x , y) = 0, x ∈ ∂D, y ∈ [−1/2, 1/2]s ,

where the source term f ∈ L2(D) is fixed and

a(y) := 1 +
s∑

j=1

βjyj , yj ∈ [−1/2, 1/2],

where βj ≥ 0 are assumed to be constants for all j ≥ 1 (i.e., independent
of x) s.t. a(y) ≥ amin > 0 for all y ∈ [−1/2, 1/2]s and

∑∞
j=1 β

p
j <∞ for

some p ∈ (0, 1). Due to the linearity of the PDE problem, we can write

u(x , y) =
g(x)

1 +
∑s

j=1 βjyj
, where

{
−∆g(x) = f (x), x ∈ D,

g |∂D = 0.

Note that the Poisson problem has a continuous solution g ∈ C (D).
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Clearly,

E[u(x , ·)] = g(x)
∫
[−1/2,1/2]s

1

1 +
∑s

j=1 βjyj︸ ︷︷ ︸
=:F (y)

dy .

(Note the similarity to exercise 2 of week 8!)

Steps of QMC analysis:

Estimate the (parametric) derivatives ∂νF (y).
Using the above, estimate ∥F (· − 1

2)∥s,γ .
Plug the weighted Sobolev norm into QMC error bound and choose
the weights γ = (γu)u⊆{1:s} to minimize the resulting error bound.

The resulting weights are used as inputs to the CBC algorithm. The
generating vector (and the resulting randomly shifted QMC point set)
are guaranteed to satisfy the rigorous CBC error bound.

Analysis: is the coefficient of the CBC error bound independent of the
dimension s with the chosen weights?
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Step 1: Parametric regularity. It is not difficult to see that

∂|u|

∂yu

F (y) = |u|!F (y)|u|+1
∏
j∈u

(−βj) for all u ⊆ {1 : s}.

Exploiting the fact that we assumed before that 1 +
∑s

j=1 βjyj ≥ amin > 0
for all y ∈ [−1/2, 1/2]s , we can define

bj :=
βj
amin

for all j ≥ 1,

and estimate the parametric regularity of the first order mixed partial
derivatives as∣∣∣∣ ∂|u|∂yu

F (y)
∣∣∣∣ ≤ 1

amin
|u|!

∏
j∈u

bj for all u ⊆ {1 : s}.
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Step 2: Estimate the weighted Sobolev norm. It is easy to see that

∥F (· − 1
2)∥

2
s,γ ≲

∑
u⊆{1:s}

(|u|!)2

γu

∏
j∈u

b2j .

Step 3: Plugging this into the CBC error bound√
E∆|IsF − Q∆

n,sF |2 ≤
(

1

φ(n)

∑
∅̸=u⊆{1:s}

γλu

(
2ζ(2λ)

(2π2)λ

)|u|)1/(2λ)

∥F (·−1
2)∥s,γ

yields√
E∆|IsF − Q∆

n,sF |2 ≲
(

1

φ(n)

)1/(2λ)( ∑
∅̸=u⊆{1:s}

γλu

(
2ζ(2λ)

(2π2)λ

)|u|)1/(2λ)

×
( ∑

u⊆{1:s}

(|u|!)2

γu

∏
j∈u

b2j

)1/2

.

(We have separated the dependence on the number of QMC nodes n since
this is unaffected by the choice of weights. The weights only affect the
constant in the error bound, which we try to minimize next.)
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Step 4: Choosing the weights. Note that the square of the objective
functional has the form

g(γ) :=

(∑
u

αuγ
λ
u

)1/λ(∑
u

βuγ
−1
u

)
,

which is minimized by

γu := c

(
βu
αu

)1/(1+λ)

for arbitrary c > 0.

(In fact, with c = 1, the minimizer is equivalent to setting the summands
equal: αuγ

λ
u = βuγ

−1
u .)

Thus the minimizing weights for our problem are the product-and-order
(POD) dependent weights:

γu :=

(
|u|!

∏
j∈u

bj√
2ζ(2λ)
(2π2)λ

)2/(1+λ)

, u ⊆ {1 : s}.

(The POD form is important since it doesn’t contain “too many degrees
of freedom”: the cost of fast CBC used to find the generating vector
satisfying the CBC error bound is O(s n log n + s2n) with these weights.)
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Step 5: Plugging the optimized POD weights into the QMC error bound
results in√

E∆|IsF − Q∆
n,sF |2 ≲

(
1

φ(n)

)1/(2λ)

C (s,γ, λ)(1+λ)/(2λ),

where

C (s,γ, λ) :=
∑

u⊆{1:s}

(
2ζ(2λ)

(2π2)λ

)|u|/(1+λ)
(|u|!)2λ/(1+λ)

∏
j∈u

b
2λ/(1+λ)
j .

In complete analogy to the 11th lecture, we have the following:

Lemma

By choosing

λ =

{
p

2−p when p ∈ (2/3, 1)
1

2−2δ for arbitrary δ ∈ (0, 1/2) when p ∈ (0, 2/3],

there exists a constant C (γ, λ) <∞ independently of s
s.t. C (s,γ, λ) ≤ C (γ, λ) <∞.
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Using randomly shifted rank-1 lattice rules to estimate the integral∫
[−1/2,1/2]

F (y) dy , F (y) :=
1

1 +
∑s

j=1 βjyj
,

we can conclude the following:

For arbitrary δ ∈ (0, 1/2), we can choose the POD weights

γu :=

(
|u|!

∏
j∈u

bj√
2ζ(2λ)
(2π2)λ

)2/(1+λ)

, λ :=

{
p

2−p if p ∈ (2/3, 1),
1

2−2δ if p ∈ (0, 2/3],

as inputs to the CBC algorithm to obtain a generating vector. If the
number of QMC nodes n is prime or a prime power, then the resulting
randomly shifted rank-1 lattice rule satisfies the root-mean-square error
bound √

E∆|IsF − Q∆
n,sF |2 ≲ nmax{−1/p+1/2,−1+δ}, (3)

where the implied coefficient is independent of the dimension s.
Note that this rate is always better than Monte Carlo, but cannot exceed
linear convergence O(n−1) (i.e., double the Monte Carlo rate).
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Uniform and affine model
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Uniform and affine model: let D ⊂ Rd , d ∈ {2, 3}, be a bounded Lipschitz
domain, let f ∈ L2(D), and let
U := [−1/2, 1/2]N := {(aj)j≥1 : −1/2 ≤ aj ≤ 1/2} be a set of parameters.
Consider the problem of finding, for all y ∈ U, u(·, y) ∈ H1

0 (D) such that∫
D
a(x , y)∇u(x , y) · ∇v(x) dx =

∫
D
f (x)v(x)dx for all v ∈ H1

0 (D),

where the diffusion coefficient has the parameterization

a(x , y) := a0(x) +
∞∑
j=1

yjψj(x), x ∈ D, y ∈ U,

where a0 ∈ L∞(D), there exist amin, amax > 0
s.t. 0 < amin ≤ a(x , y) ≤ amax <∞ for all x ∈ D and y ∈ U, and the
stochastic fluctuations ψj : D → R are functions of the spatial variable
such that

ψj ∈ L∞(D) for all j ∈ N,∑∞
j=1 ∥ψj∥L∞(D) <∞,∑∞
j=1 ∥ψj∥pL∞(D) <∞ for some p ∈ (0, 1).
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Proposition (Parametric regularity for the uniform and affine model)

For all y ∈ [−1/2, 1/2]N and ν ∈ F , there holds

∥∂νu(·, y)∥H1
0 (D) ≤

CP∥f ∥L2(D)

amin
bν |ν|!,

where CP is the Poincaré constant satisfying ∥v∥L2(D) ≤ CP∥v∥H1
0 (D) for all v ∈ H1

0 (D).

This parametric regularity bound is valid also for the dimensionally-truncated finite
element solution us,h. If G : H1

0 (D) → R is a bounded linear functional and we define
F (y) := G(us,h(·, y − 1

2 )) for y ∈ [0, 1]s , then

∥F∥2s,γ ≲
∑

u⊆{1:s}

1

γu
(|u|!)2

∏
j∈u

b2
j ,

and using the POD weights (??) as inputs to the CBC algorithm yields a randomly
shifted rank-1 lattice rule satisfying the R.M.S. error√

E∆|IsF − Q∆
n,sF |2 ≲ nmax{−1/p+1/2,−1+δ},

where the constant is independent of the dimension.
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Of course, the truncation of the input random series and the finite element
discretization incur additional errors.

If ∥ψ1∥L∞(D) ≥ ∥ψ2∥L∞(D) · · · , then the error resulting from the

dimension truncation has order O(s−2/p+1), where the constant is
independent of s.

If D ⊂ Rd is a bounded, convex polyhedron, a0 and ψj are Lipschitz
for all j ≥ 1 with

∑∞
j=1 ∥ψj∥W 1,∞(D) <∞, and G : L2(D) → R is a

bounded linear functional, then—if the FE mesh has been obtained
from an initial, regular triangulation of D by recursive, uniform
bisection of simplices—the L2 finite element error has order O(h2),
where h > 0 is the mesh size and the implied constant is independent
of y , s, and h.
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Lognormal model
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Lognormal model: let D ⊂ Rd , d ∈ {2, 3}, be a bounded Lipschitz
domain, and let f ∈ H−1(D). Let ψj ∈ L∞(D) and bj := ∥ψj∥L∞ for
j ∈ N such that

∑∞
j=1 bj <∞, and set

Ub :=

{
y ∈ RN :

∞∑
j=1

bj |yj | <∞
}
.

Consider the problem of finding, for all y ∈ U, u(·, y) ∈ H1
0 (D) such that∫

D
a(x , y)∇u(x , y) · ∇v(x) dx = ⟨f , v⟩H−1(D),H1

0 (D) for all v ∈ H1
0 (D),

where the diffusion coefficient is assumed to have the parameterization

a(x , y) := a0(x) exp
( ∞∑

j=1

yjψj(x)
)
, x ∈ D, y ∈ Ub,

where a0 ∈ L∞(D) is such that a0(x) > 0, x ∈ D.
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Standing assumptions for the lognormal model

(B1) We have a0 ∈ L∞(D) and
∑∞

j=1 bj <∞.

(B2) For every y ∈ Ub, the expressions amax(y) := maxx∈D a(x , y) and
amin(y) := minx∈D a(x , y) are well-defined and satisfy
0 < amin(y) ≤ a(x , y) ≤ amax(y) <∞.

(B3)
∑∞

j=1 b
p
j <∞ for some p ∈ (0, 1).

Remark: Note that in the lognormal case, a(x , y) can take values which
are arbitrarily close to 0 or arbitrarily large. Thus, the best we can do is to
find y -dependent lower and upper bounds amin(y) and amax(y). This will
lead to a y -dependent a priori bound and, consequently, y -dependent
parametric regularity bounds. This will make the QMC analysis more
involved, leading one to consider “special” weighted, unanchored Sobolev
spaces.
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In this setting, we have

Is(F ) :=

∫
Rs

F (y)
s∏

j=1

ϕ(yj)dy =

∫
(0,1)s

F (Φ−1(w))dw .

where ϕ(y) := 1√
2π
e−

1
2
y2

is the probability density function of N (0, 1) and

Φ−1(w) = [Φ−1(w1), . . . ,Φ
−1(ws)]

T denotes the corresponding
(componentwise) inverse cumulative distribution function. We use the
randomly shifted QMC rules

Q∆r
n,s (F ) =

1

n

n∑
k=1

F (Φ−1({tk +∆r})),

Qn,R(F ) :=
1

R

R∑
r=1

Q∆r
n,s (F ),

where we have R independent random shifts ∆1, . . . ,∆R drawn from
U([0, 1]s), tk := {kz

n }, with generating vector z ∈ Ns .
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The appropriate function space for unbounded integrands is a “special”
weighted, unanchored Sobolev space equipped with the norm

∥F∥s,γ =

[ ∑
u⊆{1:s}

1

γu

∫
R|u|

(∫
Rs−|u|

∂|u|

∂yu

F (y)
( ∏

j∈{1:s}\u

ϕ(yj)

)
dy−u

)2

×
(∏

j∈u
ϖ2

j (yj)

)
dyu

]1/2
where we have the weights

ϖ2
j (y) := exp(−2αj |yj |), αj > 0.
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Theorem (Graham, Kuo, Nichols, Scheichl, Schwab, Sloan (2015))

Let F belong to the special weighted space over Rs with weights γ, with ϕ
being the standard normal density, and the weight functions ϖj defined as
above. A randomly shifted lattice rule in s dimensions with n being a
prime power can be constructed by a CBC algorithm such that√

E∆|IsF − Q∆
n,sF |2 ≤

(
2

n

∑
∅̸=u⊆{1:s}

γλu
∏
j∈u

ϱj(λ)

)1/(2λ)

∥F∥s,γ ,

where λ ∈ (1/2, 1] and

ϱj(λ) = 2

( √
2π exp(α2

j /η∗)

π2−2η∗(1− η∗)η∗

)λ
ζ(λ+ 1

2) and η∗ =
2λ− 1

4λ
,

with ζ(x) :=
∑∞

k=1 k
−x denoting the Riemann zeta function for x > 1.

The steps for QMC analysis are the same as in the uniform case: (1)
estimate ∥ · ∥s,γ for a given integrand (2) find weights γ which minimize
the upper bound (3) plug the weights into the new error bound and
estimate the constant (which ideally can be bounded independently of s). 370



Proposition (Parametric regularity bound for the lognormal model)

For all y ∈ Ub and ν ∈ F , there holds

∥∂νu(·, y)∥H1
0 (D) ≤

CP∥f ∥L2(D)

minx∈D a0(x)
|ν|!

(log 2)|ν| b
ν
∏
j≥1

exp(bj |yj |).

This parametric regularity bound is valid also for the dimensionally-truncated finite
element solution us,h. If G : H1

0 (D) → R is a bounded linear functional and
F (y) := G(us,h(·, y)) for y ∈ Rs , then

∥F∥2s,γ ≤
∑

u⊆{1:s}

(|u|!)2

γu

( s∏
j=1

2 exp(2b2
j )Φ(2bj)

)(∏
j∈u

b2
j

2(log 2)2 exp(2b2
j )Φ(2bj)(αj − bj)

)
.

By choosing αj =
1
2
(bj +

√
b2 + 1− 1

2λ
) and using the POD weights

γu :=

(
|u|!

∏
j∈u

bj

2(log 2) exp(b2
j /2)Φ(bj)

√
(αj − βj)ρj(λ)

) 2
1+λ

, λ :=

{
p

2−p
if p ∈ (2/3, 1),

1
2−2δ

if p ∈ (0, 2/3],

as inputs to the CBC algorithm yields a randomly shifted rank-1 lattice rule satisfying
the R.M.S. error √

E∆|IsF − Q∆
n,sF |2 ≲ nmax{−1/p+1/2,−1+δ},

where the constant is independent of the dimension.
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Similarly to the uniform and affine setting, the truncation of the input
random series and the finite element discretization incur a dimension
truncation error and a finite element discretization error, respectively.
However, the analysis is more complicated in the lognormal case and has
been omitted.
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Computational implementation

Consider the task of approximating
∫
[0,1]s f (y)dy using a randomly shifted

rank-1 lattice rule with R random shifts.

Once a generating vector z ∈ Ns has been obtained for a given number n
of QMC nodes and dimension s (using, e.g., the CBC algorithm), then:

for r = 1, . . . ,R, do
draw ∆(r) ∼ U([0, 1]s);
initialize Qr = 0;

for i = 1, . . . , n, do

set t i = mod
(
iz
n
+∆(r), 1

)
;

set Qr = Qr + f (t i );
end for

set Qr = Qr/n;

end for

return Q = Q1+···+QR
R ;

(This is the QMC estimator
with R random shifts.)

Remarks:

If integrating∫
Rs f (y)

∏s
j=1

e
− 1

2 y
2
j√

2π
dy

then use t i = Φ−1(mod( izn +∆(r), 1)),
where Φ−1 is the (componentwise)
inverse cumulative distribution function
of N (0, 1).

The R.M.S. error can be estimated by

R.M.S. error

≈
√

1
R(R−1)

∑R
r=1(Q − Qr )

2.
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The end!
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