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Preliminaries



Practical matters

Lectures on Mondays at 10:15-11:45 in A6/032 by Vesa Kaarnioja.

Exercises on Tuesdays at 10:15-11:45 in A6/032 by Vesa Kaarnioja.

There will be no lectures on April 14, April 21, and June 9.

The first and second lecture will be held April 15 and April 22 in
room A3/120 in place of the exercise session.

Exercise sheets will be published regularly on the course Whiteboard
page. Please submit your solutions to the exercises before the
deadlines specified on each exercise sheet.

The conditions for completing this course are
(1) successfully earning a cumulative 60% of points from the exercises
(active participation + regular attendance), and
(2) successfully passing the course exam.

The course evaluation is based on the oral exam at the end of the
course.

2



Exercise guidelines

Solutions to exercises can be submitted either via email or by handing in your
solutions at the exercise session by the specified deadline. Late submissions will
not be considered.

Please present your calculations clearly and neatly, providing explanation for all
steps.

Ensure that your arguments are coherent and presented in an orderly fashion.
Organize your solutions logically, starting from the problem statement and
proceeding step-by-step to the solution.

Typeset or write your solutions in clear handwriting for easy readability.

Avoid ambiguity in your solutions: consider the perspective or the reader and
ensure that your solutions are understandable from their point of view (i.e., the
reader should not have to guess what you have written).

Use appropriate mathematical notation and terminology.

Double-check your solutions for errors and correctness before submission. Aim for
precision and accuracy in your mathematical expressions and calculations.

In programming tasks, ensure that your program executes successfully. Include the
source code as well as the output of the program as part of your submission.
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Uncertainty in groundwater flow

Risk analysis of radwaste disposal or CO2 sequestration.

Darcy’s law q(x) + a(x)∇p(x) = f (x)
mass conservation law ∇ · q(x) = 0

in D ⊂ Rd , d ∈ {1, 2, 3}
together with boundary conditions

Uncertainty in a(x ,ω) leads to uncertainty in q(x ,ω) and p(x ,ω)
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Criticality problem for nuclear reactors

−∇ · ( a(x)︸︷︷︸
diffusion

∇u(x)) + b(x)︸︷︷︸
absorption

u(x) = λc(x)︸︷︷︸
fission

u(x)

The smallest eigenvalue λ1 ∈ R measures criticality of a reactor.
Eigenfunction u1(x) is the neutron flux at the point x .

Source: Argonne National
Laboratory on Flickr

λ1 ≈ 1 ⇒ operating efficiently

λ1 > 1 ⇒ not self-sustaining

λ1 < 1 ⇒ supercritical
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Optimization under uncertainty

Find minz∈L2(D) J(u, z),

J(u, z) :=
1

2

∫
Ω

∫
D
(u(x , ω)− g(x))2 dx dP(ω) +

α

2

∫
D
z(x)2 dx ,

subject to
−∇ · (a(x , ω)∇u(x , ω)) = z(x), x ∈ D, a.e. ω ∈ Ω

u(x , ω) = 0, x ∈ ∂D, a.e. ω ∈ Ω,

zmin(x) ≤ z(x) ≤ zmax(x), a.e. x ∈ D.
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Domain uncertainty quantification

Three realizations of a random spatial domain
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Electrical impedance tomography

Use measurements of current and voltage collected at electrodes covering
part of the boundary to infer the interior conductivity of an object/body.


∇ · (σ∇u) = 0 in D,

σ ∂u
∂n = 0 on ∂D \

⋃L
k=1 Ek ,

u + zkσ
∂u
∂n = Uk on Ek , k ∈ {1, . . . , L},∫

Ek
σ ∂u
∂n dS = Ik , k ∈ {1, . . . , L},
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Consider the elliptic PDE problem:{
−∇ ·

(
a(x)∇u(x)

)
= f (x) for x ∈ D,

+boundary conditions.

In practice, one or several of the material/system parameters may be
uncertain or incompletely known and modeled as random fields:

PDE coefficient a may be uncertain;

Source term f may be uncertain;

Boundary conditions may be uncertain;

The domain D itself may be uncertain.

In forward uncertainty quantification, one is interested in assessing how
uncertainties in the inputs of a mathematical model affect the output.
⇒ If the uncertain inputs are modeled as random fields, then the output
of the PDE is also a random field. One may be interested in assessing the
statistical response of the system, for example, the expectation or variance
of the PDE solution (or some other quantity of interest thereof).
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High-dimensional numerical integration∫
[0,1]s

f (y) dy ≈
n∑

i=1

wi f (t i )
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Figure: Tensor product grid, sparse grid, Monte Carlo nodes (not QMC rules)
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Figure: Sobol′ points, lattice rule (examples of QMC rules) 10



Quasi-Monte Carlo (QMC) methods are a class of equal weight cubature
rules ∫

[0,1]s
f (y) dy ≈ 1

n

n∑
i=1

f (t i ),

where (t i )ni=1 is an ensemble of deterministic nodes in [0, 1]s .

The nodes (t i )ni=1 are NOT random! Instead, they are deterministically
chosen.

QMC methods exploit the smoothness and anisotropy of an integrand in
order to achieve better-than-Monte Carlo rates.
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Course contents

Preliminaries: Hilbert spaces, Sobolev spaces, elliptic partial
differential equations (PDEs)

Finite element (FE) method

Modeling random field inputs

Elliptic PDEs with random coefficients

Quasi-Monte Carlo (QMC) methods

QMC-FE methods for uncertainty quantification of elliptic PDEs with
random coefficients

12



Preliminary functional analysis
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Inner product space

A real vector space X is an inner product space if there exists a mapping
⟨·, ·⟩ : X × X → R satisfying

⟨ax1 + bx2, y⟩ = a⟨x1, y⟩+ b⟨x2, y⟩ for all x1, x2, y ∈ X and a, b ∈ R;
⟨x , y⟩ = ⟨y , x⟩ for all x , y ∈ X ;

⟨x , x⟩ ≥ 0 for all x ∈ X , where equality holds iff x = 0.
A mapping ⟨·, ·⟩ satisfying these conditions is called an inner product.

Example

i) Rn = {(x1, . . . , xn) | xk ∈ R}. Then the inner product is the Euclidean dot product

⟨x , y⟩ =
n∑

k=1

xkyk , x = (x1, . . . , xn), y = (y1, . . . , yn).

ii) Let X = C([a, b]) = {f | f : [a, b] → R is continuous} and define

⟨f , g⟩ =
∫ b

a
f (x)g(x)dx .

Then this is an inner product on C([a, b]).
iii) Let X = ℓ2(R) =

{
(zk )

∞
k=1 |

∑∞
k=1 |zk |2 < ∞

}
. Then ℓ2(R) is an inner product space when

⟨x , y⟩ =
∞∑
k=1

xkyk , x = (x1, x2, . . .), y = (y1, y2, . . .).
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Definition

A real vector space X is a normed space if there exists a mapping
∥ · ∥ : X → R satisfying

∥ax∥ = |a|∥x∥ for all a ∈ R and x ∈ X ;

∥x∥ ≥ 0 for all x ∈ X , where equality holds iff x = 0.

∥x + y∥ ≤ ∥x∥+ ∥y∥ for all x , y ∈ X (triangle inequality).

If X is an inner product space, then it is a normed space in a canonical
way with the induced norm ∥ · ∥ : X → R defined by

∥x∥ =
√

⟨x , x⟩, x ∈ X .

The first two postulates follow immediately from the properties of inner
product spaces, the triangle inequality follows from the Cauchy–Schwarz
inequality.

Proposition (Cauchy–Schwarz inequality)

If (X , ⟨·, ·⟩) is an inner product space, then

|⟨x , y⟩| ≤ ∥x∥∥y∥ for all x , y ∈ X .
15



Proof. Let x , y ∈ X and t ∈ R. If x = 0 or y = 0, then the claim is trivial.
Suppose that x ̸= 0 ̸= y . Then

0 ≤ ⟨x + ty , x + ty⟩ = ∥x∥2 + 2t⟨x , y⟩+ t2∥y∥2.

This is a second degree polynomial w.r.t. t with at most 1 real root.
Hence,

discriminant ≤ 0 ⇔ 4|⟨x , y⟩|2 − 4∥x∥2∥y∥2 ≤ 0

⇔ |⟨x , y⟩|2 ≤ ∥x∥2∥y∥2.

Note that if y = ax , a ∈ R, then discriminant= 0 and Cauchy–Schwarz
holds with equality.

The triangle inequality is an immediate consequence of Cauchy–Schwarz:

∥x + y∥2 = ⟨x + y , x + y⟩ = ∥x∥2 + ∥y∥2 + 2⟨x , y⟩
≤ ∥x∥2 + ∥y∥2 + 2|⟨x , y⟩| ≤ ∥x∥2 + ∥y∥2 + 2∥x∥∥y∥
= (∥x∥+ ∥y∥)2 for all x , y ∈ X .
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For our purposes, having an inner product is not enough. We need to
know that these spaces are also complete normed spaces.

Definition (Cauchy sequence)

A sequence (xk)
∞
k=1 of elements of (X , ∥ · ∥) is called a Cauchy sequence if

for all ε > 0, there exists N ∈ N such that

m, n > N ⇒ ∥xm − xn∥ < ε.

Definition (Complete space)

A normed space (X , ∥ · ∥) is complete if all Cauchy sequences in X
converge to an element of X .

Definition (Banach space)

A normed space (X , ∥ · ∥) which is complete with respect to ∥ · ∥ is a
Banach space.

Definition (Hilbert space)

An inner product space (H, ⟨·, ·⟩) which is complete with respect to
∥ · ∥ =

√
⟨·, ·⟩ defined by the inner product is a Hilbert space.

17



Example
i) Rn and ℓ2(R) are complete.
ii) C([a, b]) is not complete w.r.t. the norm

∥f ∥2 =
∫ b

a

|f (x)|2 dx .

Let a = −1, b = 1, and define

fn(x) :=


0, −1 ≤ x < 0,

nx , 0 ≤ x ≤ 1
n
,

1, 1
n
< x ≤ 1.

Then fn is continuous, and if H(x) = χ[0,1](x) =

{
0, −1 ≤ x ≤ 0,

1, 0 < x ≤ 1,
we have

∫ 1

−1

|fn(x)− H(x)|2 dx =

∫ 1/n

0

|nx − 1|2 dx =

∫ 1/n

0

(n2x2 − 2nx + 1) dx

=

[
n2x3

3
− nx2 + x

]x=1/n

x=0

=
1

3n
− 1

n
+

1

n
=

1

3n
n→∞−−−→ 0.

We have ∥fn − H∥ → 0, but H ̸∈ C([−1, 1]).

However, note that C([a, b]) is complete w.r.t. the sup-norm ∥f ∥∞ = supa≤x≤b |f (x)|,
but ∥ · ∥∞ ̸= ∥ · ∥ and there is no inner product inducing ∥ · ∥∞-norm (exercise). 18



If one wishes to consider function spaces equipped with inner product norms, one is led
to L2 spaces.

Definition

Let D ⊂ Rn be a Lebesgue measurable set. Then

L2(D) := {f | f : D → R measurable,

∫
D

|f (x)|2 dx <∞}.

We define the inner product

⟨f , g⟩L2(D) =

∫
D

f (x)g(x)dx , (1)

which induces the norm

∥f ∥L2(D) =

(∫
D

|f (x)|2 dx
)1/2

.

Theorem

L2(D) is a Hilbert space with the inner product (1).

Remark. In practice, we treat the elements of L2(D) (resp. Lp(D)) as functions. Strictly
speaking, elements of L2(D) (resp. Lp(D)) are equivalence classes of measurable
functions that are equal almost everywhere on D. That is, if f , g ∈ L2(D) and
f (x) = g(x) for almost every x ∈ D

’
then f and g represent the same element in L2(D).

This identification ensures that L2(D) is a true normed space (and in fact a Hilbert
space), since the norm is zero if and only if the function is zero almost everywhere. 19



Bounded linear operators in Hilbert spaces

Definition

Let X and Y be normed spaces with norms ∥ · ∥X and ∥ · ∥Y . A linear operator
A : X → Y is said to be bounded if there exists C > 0 such that

∥Ax∥Y ≤ C∥x∥X for all x ∈ X .

Lemma

Let (X , ∥ · ∥X ) and (Y , ∥ · ∥Y ) be normed spaces. Then a linear operator A : X → Y is
bounded iff

∥A∥ := ∥A∥X→Y := sup
∥x∥X≤1

∥Ax∥Y <∞. (operator norm)

Proof. “⇒” If there is C > 0 s.t. ∥Ax∥Y ≤ C∥x∥X for all x ∈ X , then clearly
∥A∥ = sup∥x∥X≤1 ∥Ax∥Y ≤ C .
“⇐” Let ∥A∥ <∞. Since ∥ x

∥x∥X
∥X = 1 for all x ̸= 0, from the linearity of A we infer

∥Ax∥Y
∥x∥X

= ∥A( x
∥x∥X

)∥Y ≤ ∥A∥ for all x ∈ X .

This implies the important estimate

∥Ax∥Y ≤ ∥A∥∥x∥X for all x ∈ X .

20



A linear operator is continuous precisely when it is bounded.

Proposition

Let (X , ∥ · ∥X ) and (Y , ∥ · ∥Y ) be normed spaces and A : X → Y a linear operator. Then
the following are equivalent:

(i) A is a bounded operator;

(ii) A is continuous (in X );

(iii) A is continuous at one point x0 ∈ X .

Proof. (i) ⇒ (ii): if x , y ∈ X and ε > 0, then

∥x − y∥X ≤
ε

∥A∥ =: δ ⇒ ∥Ax − Ay∥Y
A linear
= ∥A(x − y)∥Y ≤ ∥A∥∥x − y∥X ≤ ε.

(ii) ⇒ (iii): trivial.
(iii) ⇒ (i): let A be continuous at x0 ∈ X . By definition, there exists δ > 0 such that

∥y − x0∥X ≤ δ ⇒ ∥Ay − Ax0∥Y ≤ 1.

If x ∈ X is such that ∥x∥X ≤ δ, then by taking y = x + x0:

∥Ax∥Y = ∥A(x + x0)− Ax0∥Y ≤ 1.

On the other hand, for any ∥x∥X ≤ 1, there holds ∥δx∥X = δ∥x∥X ≤ δ and thus

δ∥Ax∥Y = ∥A(δx)∥Y ≤ 1, i.e., ∥Ax∥Y ≤
1

δ
for all ∥x∥X ≤ 1.

Therefore ∥A∥ ≤ 1
δ
, meaning that A is bounded.
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Let H be a real Hilbert space.

Definition

Two elements x , y ∈ H are said to be orthogonal if ⟨x , y⟩ = 0.

Let M ⊂ H be a subset. The orthogonal complement of M in H is defined
as

M⊥ := {y ∈ H | ⟨x , y⟩ = 0 for all x ∈ M}.

We state the following easy consequences.

Lemma

For any subset M ⊂ H, M⊥ is a closed subspace of H and M ⊂ (M⊥)⊥.

Lemma

If M is a subspace of H, then (M⊥)⊥ = M.

Proof. Exercise.
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Proposition (Hilbert projection theorem)

Let M be a nonempty, closed, and convex† subset of a real Hilbert space H. Then there
exists a unique element x0 ∈ M satisfying

∥x0∥ ≤ ∥x∥ for all x ∈ M.

Proof. Let δ = inf{∥x∥ | x ∈ M}. We use the parallelogram identity
∥u + v∥2 + ∥u − v∥2 = 2∥u∥2 + 2∥v∥2 (exercise) applied to vectors u = 1

2
x and v = 1

2
y ,

x , y ∈ M, to obtain

1

4
∥x − y∥2 = 1

2
∥x∥2 + 1

2
∥y∥2 −

∥∥∥∥x + y

2

∥∥∥∥2

.

Due to convexity 1
2
(x + y) ∈ M, so

∥x − y∥2 ≤ 2∥x∥2 + 2∥y∥2 − 4δ2 for all x , y ∈ M. (2)

Existence: let (xk)
∞
k=1 ⊂ M s.t. ∥xk∥

k→∞−−−→ δ. Substituting x ← xn and y ← xm in (2)
yields ∥xn − xm∥2 ≤ 2∥xn∥2 + 2∥xm∥2 − 4δ2, since 1

2
(xn + xm) ∈ M for all n,m. Thus

∥xn − xm∥ → 0 as n,m→∞. (xk)
∞
k=1 is Cauchy in the Hilbert space H, so there exists

x0 := limk→∞ xk ∈ H. Since ∥ · ∥ is continuous, ∥x0∥ = limk→∞ ∥xk∥ = δ. Since M is
closed and (xk)

∞
k=1 ⊂ M, the limit x0 ∈ M.

Uniqueness: If ∥x∥ = ∥y∥ = δ ⇒ ∥x − y∥2 ≤ 0 by (2) and so x = y .

†tx + (1− t)y ∈ M for all x , y ∈ M, t ∈ (0, 1).
23



Corollary

Let H be a real Hilbert space, M a nonempty, closed, and convex subset of
H, and x ∈ H. Then there exists a unique element y0 ∈ M such that

∥x − y0∥ = inf{∥x − y∥ | y ∈ M}.

Proof. The set x −M := {x − y | y ∈ M} is closed and convex, and
min{∥x − y∥ | x − y ∈ x −M} = min{∥x − y∥ | y ∈ M}. The claim
follows from the previous result.

Proposition (Orthogonal decomposition)

If M is a closed subspace of a real Hilbert space H, then

H = M ⊕M⊥,

which means that every element y ∈ H can be uniquely represented as

y = x + x⊥, x ∈ M, x⊥ ∈ M⊥.

24



Proof. It suffices to prove that M ∩M⊥ = {0} and M +M⊥ = H.
• If x ∈ M ∩M⊥, then 0 = ⟨x , x⟩ = ∥x∥2 (i.e., x ⊥ x) so x = 0.
∴ M ∩M⊥ = {0}.
• Let x ∈ H. The Hilbert projection theorem guarantees that there exists
a unique y0 ∈ M such that

∥x − y0∥ ≤ ∥x − y∥ for all y ∈ M. (3)

Let x0 = x − y0 so that x = y0 + x0 ∈ M + x0. It remains to show that
x0 ∈ M⊥.
The inequality (3) can be written as

∥x0∥ ≤ ∥z∥ for all z ∈ x −M.

Since y0 ∈ M and M is a vector space, y0 +M = M and M = −M which
implies x −M = x +M = y0 + x0 +M = x0 +M. The previous inequality
can be recast as

∥x0∥ ≤ ∥z∥ for all z ∈ x0 +M ⇔ ∥x0∥ ≤ ∥x0 + z∥ for all z ∈ M.

This statement is true if and only if ⟨x0, z⟩ = 0 for all z ∈ M. Therefore
x0 ∈ M⊥.
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Let M be a closed subspace. The orthogonal decomposition implies that
every element y ∈ H can be uniquely represented as

y = x + x⊥, x ∈ M, x⊥ ∈ M⊥.

Lemma

Let M ⊂ H be a closed subspace. The mapping PM : H → M, y 7→ x , is
an orthogonal projection, i.e., P2

M = PM and Ran(PM) ⊥ Ran(I − PM). It
satisfies the following properties:

PM is linear;

∥PM∥ = 1 if M ̸= {0};
I − PM = PM⊥ ;

∥y − PMy∥ ≤ ∥y − z∥ for all z ∈ M;

y ∈ M ⇒ PMy = y , (I − PM)y = 0;
y ∈ M⊥ ⇒ PMy = 0, (I − PM)y = y .

∥y∥2 = ∥PMy∥2 + ∥(I − PM)y∥2 (Pythagoras)

Proof. See for example [Rudin, Real and Complex Analysis, pp. 34–35].
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Example

Let H1 and H2 be real Hilbert spaces and let A : H1 → H2 be a continuous
linear operator.

The kernel (or null space) of operator A is defined as

Ker(A) := {x ∈ H1 | Ax = 0}.

The range (or image) of operator A is defined as

Ran(A) := {y ∈ H2 | y = Ax , x ∈ H1}.

Then we have the following:

Ker(A) is a closed subspace of H1, and Ran(A) is a subspace of H2.

H1 = Ker(A)⊕ (Ker(A))⊥.

H2 = Ran(A)⊕ (Ran(A))⊥.
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We denote

L(X ,Y ) := {A | A : X → Y is bounded and linear}.

Proposition

Let X and Y be normed spaces. If Y is complete, then L(X ,Y ) is
complete w.r.t. the operator norm (i.e., it is a Banach space).

Proof. Let x ∈ X and assume that Ak ∈ L(X ,Y ), k ∈ N, is a Cauchy
sequence. If x = 0, then Ak0 = 0 and the limit A(0) := limk→∞ Ak0 = 0
trivially exists. On the other hand, if x ̸= 0, then for all ε > 0, there exists
N ∈ N such that

m, n > N ⇒ ∥Am − An∥ <
ε

∥x∥X
.

Especially,

∥Amx − Anx∥Y ≤ ∥Am − An∥∥x∥X < ε when m, n > N,

so (Akx) is a Cauchy sequence in Y and therefore the limit

A(x) := lim
k→∞

Akx

exists. 28



It is easy to see that A(x) := limk→∞ Akx is linear. It is also bounded:
there exists N ∈ N such that

m, n > N ⇒ ∥Am − An∥ < 1.

Fix m > N. Then for all n > m,

∥An∥ < 1 + ∥Am∥

and thus
∥Anx∥Y ≤ (1 + ∥Am∥)∥x∥X .

But ∥Ax∥Y = limn→∞ ∥Anx∥Y ≤ (1 + ∥Am∥)∥x∥X . Therefore A is
bounded.
Finally, we need to show that ∥An −A∥ → 0 as n → ∞. Since we assumed
(Ak)

∞
k=1 to be Cauchy, let ε > 0 be s.t. for m, n > N, there holds

∥Am − An∥ < ε. Then

∥(A− An)x∥Y = lim
m→∞

∥Amx − Anx∥Y ≤ ε∥x∥X for all x ∈ X

⇒ ∥A− An∥ < ε.

Hence ∥A− An∥ → 0 as n → ∞.
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If X = H1 and Y = H2 are Hilbert spaces, then L(H1,H2) is a complete
normed space.

Definition

Let H be a Hilbert space. The space H ′ := L(H,R) is called the
topological dual space of H.

Corollary

If H is a Hilbert space, then H ′ is complete w.r.t. the operator norm.

Proof. This is an immediate consequence of the previous proposition since
R is a complete Hilbert space.

Remark. In general, L(H1,H2) is not a Hilbert space even when both H1

and H2 are. However, in the special case H ′ = L(H,R) it turns out that
indeed one can associate an inner product that induces the operator norm
∥ · ∥ – meaning that H ′ is a Hilbert space! This is made possible by the
Riesz representation theorem.
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Existence results
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Proposition (Riesz representation theorem)

Let H be a real Hilbert space. If A : H → R is a bounded linear functional,
i.e., A is linear and there exists C > 0 such that

|A(x)| ≤ C∥x∥ for all x ∈ H,

then there exists a unique y ∈ H such that

A(x) = ⟨x , y⟩ for all x ∈ H.

Proof. If A ≡ 0, then y = 0 and this is unique. Suppose A ̸= 0 and let

M := Ker(A) = {x ∈ H | A(x) = 0}.

Since A is continuous, M is a closed subspace of H. Furthermore, by the
orthogonal decomposition H = M ⊕M⊥, our assumption A ̸= 0 implies
that M ̸= H ⇒ M⊥ ̸= {0}.
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Let x ∈ H and z ∈ M⊥ with ∥z∥ = 1. Define

u := A(x)z − A(z)x .

Then
A(u) = A(x)A(z)− A(z)A(x) = 0

meaning that u ∈ M. In particular ⟨u, z⟩ = ⟨A(x)z − A(z)x , z⟩ = 0 and

A(x) = A(x) ⟨z , z⟩︸ ︷︷ ︸
=∥z∥2=1

= ⟨A(x)z , z⟩

= ⟨A(z)x , z⟩ = A(z)⟨x , z⟩ = ⟨x , zA(z)⟩.

∴ The element y = zA(z) satisfies A(x) = ⟨x , y⟩.
To prove uniqueness, suppose that there exist y1, y2 ∈ H such that

A(x) = ⟨x , y1⟩ = ⟨x , y2⟩.

Then ⟨x , y1 − y2⟩ = 0 for all x ∈ H. Choose x = y1 − y2. Then

0 = ⟨y1 − y2, y1 − y2⟩ = ∥y1 − y2∥2 ⇔ y1 = y2.
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The Riesz operator

Let x ∈ H and consider the linear mapping fx : H → R, z 7→ ⟨z , x⟩H . Note that fx ∈ H ′

since it follows from the Cauchy–Schwarz inequality that

|fx(z)| = |⟨z , x⟩H | ≤ ∥z∥H∥x∥H for all z ∈ H. (4)

Now define the Riesz operator RH : H → H ′ as x 7→ fx .

RH is linear: RH(ax1 + bx2) = fax1+bx2 = ⟨·, ax1 + bx2⟩H = a⟨·, x1⟩H + b⟨·, x2⟩H =
afx1 + bfx2 = aRHx1 + bRHx2 for x1, x2 ∈ H, a, b ∈ R.
RH is an isometry (∥RHx∥H′ = ∥x∥H): it follows from (4) that
∥RHx∥H′ = ∥fx∥H′ = sup∥z∥H≤1 |⟨z , x⟩H | ≤ ∥x∥H . The other direction follows from

∥x∥2H = ⟨x , x⟩H = fx(x) = |fx(x)| ≤ ∥fx∥H′∥x∥H = ∥RHx∥H′∥x∥H .
RH is injective (one-to-one): let RHx = RHy for some x , y ∈ H. From linearity,
RH(x − y) = 0 ⇒ fx−y = 0 ⇒ ⟨x − y , z⟩H = 0 for all z ∈ H ⇒ x = y .

RH is surjective (onto): by Riesz representation theorem, given A ∈ H ′, there
exists a unique x ∈ H satisfying A(z) = ⟨z , x⟩H = fx(z) for all z ∈ H. In other
words, A = ⟨·, x⟩H = fx = RHx .

∴ The Riesz operator RH : H → H ′ is a bijective linear operator isometry.

Lemma

Let H be a Hilbert space. The dual space H ′ := L(H,R) is a Hilbert space induced by

∥A∥H′ := sup
∥x∥H≤1

|Ax | =
√
⟨A,A⟩H′ , ⟨A,B⟩H′ := ⟨R−1

H A,R−1
H B⟩H .
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Adjoint operator

Proposition

Let H1 and H2 be real Hilbert spaces and suppose that A ∈ L(H1,H2). Then there exists
a unique bounded linear operator A∗ : H2 → H1, called the adjoint of A, satisfying
⟨Ax , y⟩H2 = ⟨x ,A∗y⟩H1 . Moreover, ∥A∥H1→H2 = ∥A∗∥H2→H1 .

Proof. Let y ∈ H2 and consider Ty : H1 → R, x 7→ ⟨Ax , y⟩H2 . Clearly, Ty is linear and
bounded so by the Riesz representation theorem there exists a unique z ∈ H1 s.t.

⟨Ax , y⟩H2 = Ty (x) = ⟨x , z⟩H1 for all x ∈ H1.

Define A∗y := z .

Let a, b ∈ R and y1, y2 ∈ H2. Linearity follows from
⟨x ,A∗(ay1 + by2)⟩ = ⟨Ax , ay1 + by2⟩ = a⟨Ax , y1⟩+ b⟨Ax , y2⟩ =
a⟨x ,A∗y1⟩+ b⟨x ,A∗y2⟩ = ⟨x , aA∗y1 + bA∗y2⟩. Since x ∈ H1 was arbitrary,
A∗(ay1 + by2) = aA∗y1 + bA∗y2.

∥A∗∥H2→H1 = sup∥y∥H2
≤1 ∥A∗y∥H1

(∗)
= sup∥y∥H2

≤1 sup∥x∥H1
≤1 |⟨A∗y , x⟩|

= sup∥y∥H2
≤1 sup∥x∥H1

≤1 |⟨y ,Ax⟩|
(∗)
= sup∥x∥H1

≤1 ∥Ax∥H2 = ∥A∥H1→H2 <∞.

.(∗)Let Λ ∈ L(H,K),H,K Hilbert spaces. Cauchy–Schwarz: sup∥y∥K≤1 |⟨Λx , y⟩K | ≤ ∥Λx∥K .
Other direction: sup∥y∥K≤1 |⟨Λx , y⟩K | ≥ |⟨Λx , 1

∥Λx∥K
Λx⟩|K = ∥Λx∥K .

∴ ∥Λx∥K = sup∥y∥K≤1 |⟨Λx , y⟩K |. 35



Some properties of the adjoint operator

Proposition

Let H1 and H2 be real Hilbert spaces and suppose that A,B ∈ L(H1,H2). Then

(i) ∥A∗A∥H1→H1 = ∥A∥2H1→H2
;

(ii) A∗∗ = A, where A∗∗ = (A∗)∗;

(iii) (c1A+ c2B)∗ = c1A
∗ + c2B

∗, c1, c2 ∈ R.

Proof. (i) Let x ∈ H1, ∥x∥H1 = 1. By the Cauchy–Schwarz inequality,

∥Ax∥2H2
= ⟨Ax ,Ax⟩H2 = ⟨x ,A

∗Ax⟩H1 ≤ ∥A
∗Ax∥H1 ⇒ ∥A∥2H1→H2

≤ ∥A∗A∥H1→H1 .

Other direction: ∥A∗A∥ ≤ ∥A∗∥ · ∥A∥ = ∥A∥2.
(ii) If x ∈ H1 and y ∈ H2, then

⟨A∗∗x , y⟩H2 = ⟨x ,A
∗y⟩H1 = ⟨A

∗y , x⟩H1 = ⟨y ,Ax⟩H2 = ⟨Ax , y⟩H2 .

Hence ⟨A∗∗x − Ax , y⟩H2 = 0 for all y ∈ H2 ⇒ A∗∗x = Ax for all x ∈ H1 ⇒ A∗∗ = A.
(iii) Let x ∈ H1 and y ∈ H2. Then

⟨(c1A+ c2B)∗y , x⟩H1 = ⟨y , (c1A+ c2B)x⟩H2 = c1⟨y ,Ax⟩H2 + c2⟨y ,Bx⟩H2

= c1⟨A∗y , x⟩H1 + c2⟨B∗y , x⟩H1 = ⟨(c1A
∗ + c2B

∗)y , x⟩H1 .

Similarly to the previous part, we conclude that (c1A+ c2B)∗ = c1A
∗ + c2B

∗.
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Self-adjoint operators

Definition

Let H be a Hilbert space. The operator A ∈ L(H) := L(H,H) is called self-adjoint if
A∗ = A, i.e.,

⟨Ax , y⟩ = ⟨x ,Ay⟩ for all x , y ∈ H.

Example

Let H be a Hilbert space and let A,B ∈ L(H) be self-adjoint operators. Then

(i) A+ B is self-adjoint.

(ii) if c ∈ R, then cA is self-adjoint.

(iii) if AB = BA, then AB is self-adjoint.

Parts (i) and (ii) follow immediately from part (iii) on the previous slide. If x , y ∈ H,
then

⟨ABx , y⟩ = ⟨BAx , y⟩ = ⟨Ax ,By⟩ = ⟨x ,ABy⟩ ⇒ (AB)∗ = AB.

Example

Let H be a Hilbert space and M ⊂ H a closed subspace. Then the orthogonal
projections PM : H → M and I − PM =: PM⊥ : H → M⊥ are self-adjoint.
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Lax–Milgram lemma

Proposition (Lax–Milgram lemma)

Let H be a real Hilbert space and let B : H × H → R be a bilinear
mapping† with C , c > 0 such that

|B(u, v)| ≤ C∥u∥ · ∥v∥ for all u, v ∈ H, (boundedness)

B(u, u) ≥ c∥u∥2 for all u ∈ H. (coercivity)

Let F : H → R be a bounded linear mapping. Then there exists a unique
element u ∈ H satisfying

B(u, v) = F (v) for all v ∈ H

and

∥u∥ ≤ 1

c
∥F∥.

†B(u + v ,w) = B(u,w) + B(v ,w), B(au, v) = aB(u, v),
B(u, v + w) = B(u, v) + B(u,w), B(u, av) = aB(u, v)
for all u, v ,w ∈ H and a ∈ R.
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Proof. We split the proof into several steps.
Step 1. Let v ∈ H be fixed. Then the mapping

T : w 7→ B(v ,w), H → R,

is bounded and linear. It follows from the Riesz representation theorem
that there exists a unique element a ∈ H with

Tw = ⟨a,w⟩ for all w ∈ H.

Let us define the mapping A : H → H by setting

Av = a.

Then
B(v ,w) = ⟨Av ,w⟩ for all v ,w ∈ H.
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Step 2. We show that the mapping A : H → H is linear and bounded.
Clearly,

⟨A(c1v1 + c2v2),w⟩ = B(c1v1 + c2v2,w)

= c1B(v1,w) + c2B(v2,w)

= ⟨c1Av1 + c2Av2,w⟩

for all w ∈ H, so A(c1v1 + c2v2) = c1Av1 + c2Av2. Moreover,

∥Av∥2 = ⟨Av ,Av⟩
= B(v ,Av)

≤ C∥v∥∥Av∥

which implies that
∥Av∥ ≤ C∥v∥.
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Step 3. We show that {
A is one-to-one,

Ran(A) = AH is closed in H.

We begin by noting that

c∥v∥2 ≤ B(v , v) = ⟨Av , v⟩ ≤ ∥Av∥∥v∥

and thus

∥Av∥ ≥ c∥v∥ for all v ∈ H. (5)

Especially
Av = Aw ⇒ A(v − w) = 0 ⇒ 0 = ∥A(v − w)∥ ≥ c∥v − w∥ ≥ 0 ⇒ v = w

so A is one-to-one.
To see that Ran(A) is closed, let yj = Axj ∈ Ran(A). The goal is to show that
y := limj→∞ yj ∈ Ran(A). We observe that

lim
j,k→∞

∥xj − xk∥
(5)

≤ lim
j,k→∞

1

c
∥yj − yk∥ = 0,

i.e., (xj)
∞
j=1 is Cauchy and x := limj→∞ xj ∈ H exists by completeness. Moreover,

lim
j→∞
∥Axj − Ax∥ ≤ lim

j→∞
∥A∥∥xj − x∥ ≤ C lim

j→∞
∥xj − x∥ = 0

and therefore
y = lim

j→∞
Axj = Ax ∈ Ran(A).
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Step 4. We show that Ran(A) = H. We prove this by contradiction:
suppose that Ran(A) = Ran(A) ̸= H. Then there exists w ∈ Ran(A)⊥,
w ̸= 0.† This implies that

∥w∥2 ≤ 1

c
B(w ,w) =

1

c
⟨Aw ,w⟩ = 0,

i.e., w = 0. This contradiction shows that Ran(A) = H. Therefore
A : H → H is a continuous bijection.
Step 5. Existence of a solution. We use the Riesz representation theorem:
since F : H → R is linear and continuous, there exists b ∈ H such that

F (v) = ⟨b, v⟩ for all v ∈ H.

Define u := A−1b. Hence

Au = b ⇔ ⟨Au, v⟩ = ⟨b, v⟩ for all v ∈ H

⇔ B(u, v) = F (v) for all v ∈ H.

†Since (Ran(A)⊥)⊥ = Ran(A) ̸= H ⇒ (Ran(A))⊥ ̸= {0}.
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Step 6. Uniqueness. Suppose that

B(u1,w) = F (w) for all w ∈ H,

B(u2,w) = F (w) for all w ∈ H.

Let u := u1 − u2. By linearity,

B(u,w) = 0 for all w ∈ H.

The coercivity of B implies that

∥u∥2 ≤ 1

c
B(u, u) = 0

so that u = 0, i.e., u1 = u2.
Step 7. A priori bound. If B(u,w) = F (w) for all w ∈ H, then by setting
w = u we obtain

∥u∥2 ≤ 1

c
B(u, u) =

1

c
F (u) ≤ 1

c
∥F∥∥u∥

which immediately yields

∥u∥ ≤ 1

c
∥F∥.
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Density argument

Lemma
Let X ,Y be Banach spaces and let Z ⊂ X be a dense subspace. If
T : Z → Y is a linear mapping such that

∥Tx∥Y ≤ C∥x∥X , x ∈ Z , (6)

then there exists a unique extension T̃ : X → Y with T̃ |Z = T and

∥T̃ x∥Y ≤ C∥x∥X , x ∈ X . (7)

Moreover, if (6) holds with equality, then so does (7).

Proof. Let x ∈ X . Because Z ⊂ X is dense, there exists a sequence (zk)
∞
k=1 ⊂ Z

s.t. ∥zk − x∥X
k→∞−−−→ 0. Let ε > 0. Since (zk)

∞
k=1 is a Cauchy sequence, there exists

N ∈ N s.t.
m, n ≥ N ⇒ ∥zm − zn∥X <

ε

C
.

Then there holds

∥Tzm − Tzn∥Y = ∥T (zm − zn)∥Y ≤ C∥zm − zn∥X < ε,

which means that (Tzk)
∞
k=1 is a Cauchy sequence in Y . Since Y is complete, there

exists y := limk→∞ Tzk . Hence we may define T̃ : X → Y by setting T̃ (x) = y . 44



We begin by showing that T̃ is well-defined. Let (zk)
∞
k=1, (z̃k)

∞
k=1 be two sequences in Z

s.t. zk , z̃k
k→∞−−−→ x in X . Then

∥Tzk − Tz̃k∥Y = ∥T (zk − z̃k)∥Y ≤ C∥zk − z̃k∥ ≤ C∥zk − x∥+ C∥z̃k − x∥ k→∞→ 0.

Recalling that T̃ (x) := limk→∞ Tzk , we obtain

∥Tz̃k − T̃ (x)∥ ≤ ∥Tz̃k − Tzk∥+ ∥Tzk − T̃ (x)∥ k→∞→ 0,

showing that T̃ is well-defined.

Next we show that T̃ is linear. Let x , x̃ ∈ X and a, b ∈ R. Let Z ∋ zk
k→∞−−−→ x and

Z ∋ z̃k
k→∞−−−→ x̃ . Now ax + bx̃ ∈ X and Z ∋ azk + bz̃k → ax + bx̃ . Thus

T̃ (ax + bx̃) = lim
k→∞

T (azk + bz̃k) = a lim
k→∞

Tzk + b lim
k→∞

Tz̃k = aT̃x + bT̃x ,

since the limit is linear.†

Since the norm is continuous,

∥T̃ x∥ = ∥ lim
k→∞

Txk∥ = lim
k→∞

∥Txk∥ ≤ C lim
k→∞

∥xk∥ = C∥x∥.
Finally, T̃ |Z = T holds by construction and the uniqueness of the limit Tzk → y ensures
that there cannot exist another mapping L : X → Y s.t. L|Z = T and ∥Lx∥ ≤ C∥x∥.

†Let y := limk→∞ Tzk and ỹ := limk→∞ Tz̃k .
Then ∥T (azk + bz̃k)− ay − bỹ∥ ≤ a∥Tzk − y∥+ b∥Tz̃k − ỹ∥ → 0.
Hence limk→∞ T (azk + bz̃k) = a limk→∞ Tzk + b limk→∞ Tz̃k .
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Multi-index notation
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A vector of the form α := (α1, . . . , αd) ∈ Nd
0 is called a multi-index. We

denote the j th component of multi-index α by αj .

The order (or modulus) of a multi-index is defined as

|α| := α1 + · · ·+ αd .

Let x := (xj)
d
j=1 ∈ Rd . We define the monomial notation

xα :=
d∏

j=1

x
αj

j ,

where 00 := 1, and the corresponding formula for partial derivatives

∂α := ∂α
x :=

d∏
j=1

∂αj

∂x
αj

j

.

Other often used multi-index notations include
(
α
β

)
:=

∏d
j=1

(αj

βj

)
,

α! := α1! · · ·αd ! (but |α|! := (α1 + · · ·+ αd)!), etc.
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Some function spaces

Let D ⊂ Rd be a nonempty open set. Let us recall the following function
spaces.

Definition
C (D) := {u : D → R | u is continuous},
C k(D) := {u : D → R | ∃∂αu is continuous for all |α| ≤ k , α ∈ Nd

0},

C∞(D) := {u : D → R | ∃∂αu is continuous for all α ∈ Nd
0} =

∞⋂
k=0

C k(D),

C k
0 (D) := {u ∈ C k(D) | supp(u) ⊂ D is a compact set},

C∞
0 (D) := {u ∈ C∞(D) | supp(u) ⊂ D is a compact set},

where supp(u) := {x ∈ D | u(x) ̸= 0},

L1(D) := {u : D → R | u is measurable, ∥u∥L1(D) :=

∫
D
|u(x)|dx < ∞}.

Remark. Recall that in the Euclidean space Rd , a set is compact iff it is
closed and bounded. This is the Heine–Borel theorem.
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Let D ⊂ Rd be open.

Definition

L1loc(D) := {u : D → R | u ∈ L1(K ) for all compact K ⊂ D}

Example

Let u ∈ C 1(D). Then integration by parts yields∫
D
u(x)∂xiφ(x) dx = −

∫
D
∂xiu(x)φ(x)dx for all φ ∈ C∞

0 (D). (8)

If u ∈ C k(D) and α ∈ Nd
0 is a multi-index with order

|α| := ν1 + · · ·+ νd = k, then we obtain from repeated application of (8)
that∫

D
u(x)∂αφ(x)dx = (−1)|α|

∫
D
∂αu(x)φ(x)dx for all φ ∈ C∞

0 (D).
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The so-called weak derivative is a generalization of the classical derivative.

Definition (Weak derivative)

Let u,w ∈ L1loc(D). We call w the weak ∂xi derivative of u and denote
w = ∂xiu if∫

D
w(x)φ(x) dx = −

∫
D
u(x)∂xiφ(x) dx for all φ ∈ C∞

0 (D).

Moreover, we call w the weak ∂α derivative of u and denote w = ∂αu if∫
D
w(x)φ(x) dx = (−1)|α|

∫
D
u(x)∂αφ(x) dx for all φ ∈ C∞

0 (D).

This definition ensures that the integration by parts formula is valid if the
weak derivative exists.

Remark. This definition generalizes the classical derivative: if u ∈ C 1(D),
then the weak derivative coincides with the classical one.
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Weak derivative

Example

Let d = 1, D = (0, 2), and

u(x) =

{
x if 0 < x ≤ 1,

1 if 1 ≤ x < 2.

Define

v(x) =

{
1 if 0 < x ≤ 1,

0 if 1 ≤ x < 2.

We claim u′ = v in the weak sense, i.e.,
∫ 2

0
u(x)φ′(x) dx = −

∫ 2

0
v(x)φ(x)dx for all

φ ∈ C∞
0 (D). Let φ ∈ C∞

0 (D) be arbitrary. Then∫ 2

0

u(x)φ′(x) dx =

∫ 1

0

xφ′(x) dx +

∫ 2

1

φ′(x) dx

=
[
xφ(x)

]∣∣∣∣x=1

x=0︸ ︷︷ ︸
=��φ(1)−0

−
∫ 1

0

φ(x) dx + φ(2)︸︷︷︸
=0

−��φ(1) = −
∫ 1

0

φ(x)dx = −
∫ 2

0

v(x)φ(x)dx

as desired.
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Sobolev spaces
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Sobolev spaces

Definition

The Sobolev space of order k based on L2(D) is defined by

Hk(D) := {u ∈ L2(D) | ∂αu ∈ L2(D) for all |α| ≤ k},

and we equip this space with the norm

∥u∥Hk (D) =

( ∑
|α|≤k

∫
D

|∂αu(x)|2 dx
)1/2

,

induced by the inner product

⟨u, v⟩Hk (D) =
∑

|α|≤k

∫
D

∂αu(x)∂αv(x)dx .

Moreover, we define
Hk

0 (D) := clHk (D)(C
∞
0 (D)),

i.e., Hk
0 (D) is the closure of C∞

0 (D) in the topology of Hk(D).
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Proposition

∂α : Hk(D) → Hk−|α|, k ≥ |α|, is bounded.
∂α(∂βu) = ∂β(∂αu) = ∂α+βu, u ∈ H |α|+|β|(D), where
α+ β := (α1 + β1, . . . , αd + βd).
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Proposition

Hk(D) is a Hilbert space for all k ∈ N.

Proof. Let (uj)
∞
j=1 be a Cauchy sequence in Hk(D). Then for all |α| ≤ k

∥Dαum − Dαun∥L2(D) ≤ ∥um − un∥Hk
m,n→∞−−−−−→ 0,

so (Dαuj)
∞
j=1 is a Cauchy sequence in L2(D). Since L2(D) is complete,

there exists f α ∈ L2(D) such that ∥fα − Dαuj∥L2(D)
j→∞−−−→ 0.

Esp. uj
j→∞−−−→ f 0 := u in L2(D).

We show that Dαu ∈ L2(D) for all |α| ≤ k, i.e., u ∈ Hk(D). For
φ ∈ C∞

0 (D),∫
D
u(x)∂αφ(x)dx = lim

j→∞

∫
D
uj(x)∂αφ(x)dx

= lim
j→∞

∫
D
(−1)|α|∂αuj(x) · φ(x) dx

=

∫
D
(−1)|α|f α(x) · φ(x)dx

so ∂αu = f α ∈ L2(D), |α| ≤ k . Thus u ∈ Hk(D). 55



Finally,

∥uj − u∥2Hk (D) =
∑
|α|≤k

∥∂αuj − f α∥2L2(D)

j→∞−−−→ 0

which means that
lim
j→∞

uj = u in Hk(D).
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The case when D is a polygon (2D) or a polyhedron (3D) will be of
special interest to us. In these cases, the boundary ∂D is not smooth,
which needs to be accounted for by our theory. However, it turns out that
working with Lipschitz domains is sufficient for our purposes. To this end,
we recall the following.

Definition

Let D ⊂ Rd be a bounded, open set. A function u : D → R is Lipschitz
continuous if there exists L > 0 such that

|u(x)− u(y)| ≤ L|x − y |, x , y ∈ D.

Theorem (Rademacher’s theorem)

If D ⊂ Rd is an open subset and f : D → R is Lipschitz continuous, then f
is differentiable almost everywhere in D.

A Lipschitz hypograph D ⊂ Rd is a domain of the form

D = {x ∈ Rd | xd > ζ(x ′), x ′ := (x1, . . . , xd−1) ∈ Rd}
where ζ : Rd−1 → R is a Lipschitz function.
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Definition (bounded Lipschitz domain)

An open, bounded set is a Lipschitz domain if its boundary ∂D is compact
and if there exist {Wj}Nj=1 and {Dj}Nj=1 with the following properties:

(i) {Wj}Nj=1 is a finite open cover of ∂D, i.e., each Wj ⊂ Rd is an open

set and ∂D ⊂
⋃N

j=1Wj .

(ii) Each Dj can be transformed into a Lipschitz hypograph by a rotation
plus a translation.

(iii) Wj ∩ D = Wj ∩ Dj for all j ∈ {1, . . . ,N}.

The class of Lipschitz domains is broad enough to cover most cases that
arise in applications of partial differential equations. For example, any
polygon in R2 or convex polyhedron in R3 is a Lipschitz domain. If
κ : Rd → Rd is a C 1 diffeomorphism and D is a Lipschitz domain, then
the set κ(D) is again a Lipschitz domain.

Note that the outer normal vector is defined a.e. at the boundary and it is
a.e. continuous.
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Trace theorem on Lipschitz domains

Theorem

Let D be a bounded Lipschitz domain and let γ : C∞(D) → C∞(∂D) be
the trace operator γu = u|∂D . Then the trace operator has a unique
extension to a bounded linear operator γ : H1(D) → L2(∂D).

The significance of the trace theorem is that the boundary values of
Sobolev functions belonging to H1(D) are well-defined in an unambiguous
way.
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Trace zero functions in H1
0 (D)

Theorem

Let D ⊂ Rd be a bounded Lipschitz domain, u ∈ H1(D), and
γ : H1(D) → L2(∂D) the trace operator. Then

u ∈ H1
0 (D) ⇔ γu = 0: ∂D → R.

Proof. “⇒” follows from previous discussion. “⇐” is more difficult (see,
e.g., L.C. Evans “Partial Differential Equations” Section 5.5 for
details).

This implies in particular the characterization H1
0 (D) = Ker(γ), meaning

that elements in H1
0 (D) are precisely those elements in H1(D) with zero

trace.
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Definition
Let ∥ · ∥ and ∥ · ∥∗ be two norms in a normed space X . The norms are
called equivalent if there exist constants c1, c2 > 0 such that

c1∥x∥∗ ≤ ∥x∥ ≤ c2∥x∥∗ for all x ∈ X .

The significance behind this notion lies in the fact that equivalent norms
induce the same topology on X . That is, ∥ · ∥ and ∥ · ∥∗ induce exactly the
same convergent sequences in X .

For our purposes, let A : X → Y be a mapping between two normed
spaces. Suppose that cX∥ · ∥X ,∗ ≤ ∥ · ∥X ≤ CX∥ · ∥X ,∗ and
cY ∥ · ∥Y ,∗ ≤ ∥ · ∥Y ≤ CY ∥ · ∥Y ,∗ for cX ,CX , cY ,CY > 0. If

∥A(x)∥Y ≤ K∥x∥X for some x ∈ X ,

then

∥A(x)∥Y ,∗ ≤
CXK

cY
∥x∥X ,∗ for some x ∈ X .

We can change between equivalent norms rather liberally since any results
about boundedness, stability, etc., proved using one norm remain true for
equivalent norms up to a trivial scaling of the (typically generic)
coefficient.
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Proposition (Poincaré inequality)

Let D ⊂ Rd be a bounded domain. Then there exists C > 0
(independently of u) such that

∥u∥L2(D) ≤ C∥∇u∥L2(D) for all u ∈ H1
0 (D).

Proof. Let φ ∈ C∞
0 (D). Since we assumed D is bounded, we may assume D ⊂ [−a, a]d

for suitably large a > 0. Extending φ by zero outside of D, we obtain

φ(x1, x2, . . . , xd) = φ(x1, x2, . . . , xd)− φ(−a, x2, . . . , xd)

=

∫ x1

−a

∂φ

∂x1
(t1, x2, . . . , xd) dt1.

By the Cauchy–Schwarz inequality,

|φ(x1, x2, . . . , xd)|2 ≤ 2a

∫ a

−a

∣∣∣∣ ∂φ∂x1 (t1, x2, . . . , xd)
∣∣∣∣2 dt1

⇒
∫ a

−a

|φ(x1, x2, . . . , xd)|2 dx1 ≤ 4a2
∫ a

−a

∣∣∣∣ ∂φ∂x1 (t1, x2, . . . , xd)
∣∣∣∣2 dt1.

Repeated integrations w.r.t. x2, x3, . . . , xd over [−a, a] together with the density of
C∞
0 (D) in H1

0 (D) prove the assertion.
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An equivalent norm in H1
0 (D)

For all u ∈ H1
0 (D), the norm

∥u∥H1
0 (D) := ∥∇u∥L2(D) :=

(∫
D
∥∇u(x)∥2 dx

)1/2

is equivalent to ∥u∥H1(D) := (∥u∥2L2(D) + ∥∇u∥2L2(D))
1/2.

This can be seen as an immediate consequence of the Poincaré inequality:

∥u∥2H1
0 (D) ≤ ∥u∥2L2(D) + ∥∇u∥2L2(D) ≤ (1 + C 2)∥u∥2H1

0 (D).
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Sobolev inequality

We mention the following result.

Theorem

Let D ⊂ Rd be a bounded Lipschitz domain and k > d/2. Then

Hk(D) ⊂ CB(D) := {v ∈ C (D) | v is bounded}

and there is a constant C > 0 s.t.

∥u∥CB(D) := sup
x∈D

|u(x)| ≤ C∥u∥H1(D) for all u ∈ H1(D).

Proof. Cf., e.g., Adams (1975) or Adams and Fournier (2003).

If d = 1, then u ∈ H1(D) has a continuous representative.

If d ∈ {2, 3}, then u ∈ H2(D) has a continuous representative.
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Elliptic PDEs
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Let D ⊂ Rd be an open and bounded Lipschitz domain. We consider the
problem {

−∇ · (a(x)∇u(x)) = f (x), x ∈ D,

u|∂D = 0,
(9)

where f : D → R is the source and a : D → R is the diffusion coefficient.

Uniform ellipticity assumption: There exist constants amax, amin > 0 such
that

0 < amin ≤ a(x) ≤ amax < ∞ for all x ∈ D.

Definition

Let a ∈ C 1(D) and f ∈ C (D). Then u ∈ C 2(D) is the classical solution
to (9) if (9) holds for all x ∈ D and u(y) = 0, y ∈ ∂D.

The requirement that f is continuous is usually much too restrictive for
practical applications.
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Definition (Strong solution)

Let a : D → R be Lipschitz and f ∈ L2(D). We call u ∈ H2(D) ∩ H1
0 (D) a

strong solution to (9) if

−∇ · (a(x)∇u(x)) = f (x) for a.e. x ∈ D,

where the derivatives are the weak derivatives.

Note that we also have the following.

Lemma

Let D ⊂ Rd be a bounded Lipschitz domain. Then for u, v ∈ H1(D),∫
D
∂xju(x)v(x)dx = −

∫
D
u(x)∂xjw(x) dx +

∫
∂D

nju|∂Dv |∂D dS ,

where ·|∂D : H1(D) → L2(∂D) is the trace operator.

Proof. The formula holds for u, v ∈ C∞(D). The assertion follows by
exploiting the density of C∞(D) in H1(D).
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If u is a strong solution to the PDE (9), then for all v ∈ C∞
0 (D)

⟨−∇ · (a∇u), v⟩L2(D) =

∫
D
−∇ · (a(x)∇u(x))v(x) dx

†
=

∫
D
a(x)∇u(x) · ∇v(x) dx +

∫
∂D

v(x)︸︷︷︸
=0

(a∇u(x) · n(x))dS

=

∫
D
a(x)∇u(x) · ∇v(x) dx =: B(u, v).

Define also

F (v) :=

∫
D
f (x)v(x)dx .

This leads us to consider the variational formulation

B(u, v) = F (v) for all v ∈ C∞
0 (D).

†∇ · (v(a∇u)) = a∇v · ∇u + v∇ · (a∇u) + divergence theorem
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The previous discussion motivates us to introduce the so-called weak
solution to (9).

Definition

Let a ∈ L∞(D) and f ∈ L2(D). Then u ∈ H1
0 (D) is called a weak solution

to (9) if

B(u, v) = F (v) for all v ∈ H1
0 (D), (10)

where

B(u, v) =

∫
D
a(x)∇u(x) · ∇v(x)dx

and

F (v) =

∫
D
f (x)v(x) dx .

Remark. It is sufficient to enforce (10) for all v ∈ C∞
0 (D). Moreover, the

definition can be extended for arbitrary F ∈ (H1
0 (D))′ =: H−1(D).
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Our variational problem is

B(u, v) = F (v) for all v ∈ H1
0 (D), (11)

where B(u, v) =
∫
D a(x)∇u(x) · ∇v(x) dx and F (v) =

∫
D f (x)v(x)dx .

Let us use the norm ∥v∥H1
0 (D) := ∥∇v∥L2(D), which is equivalent to the

usual Sobolev norm by Poincaré’s inequality.

Provided that we have uniform ellipticity, i.e.,
0 < amin ≤ a(x) ≤ amax < ∞ for all x ∈ D, then

B(u, v) =

∫
D
a(x)∇u(x) · ∇v(x)dx ≤ amax∥u∥H1

0 (D)∥v∥H1
0 (D)

for all u, v ∈ H1
0 (D) and

B(u, u) =

∫
D
a(x)∇u(x) · ∇u(x)dx ≥ amin∥u∥2H1

0 (D) for all u ∈ H1
0 (D).

∴ By the Lax–Milgram lemma, there exists a unique solution u ∈ H1
0 (D)

to (11) s.t. ∥u∥H1
0 (D) ≤

∥F∥H−1(D)

amin
.
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When does the weak solution coincide with the strong
solution?

If f ∈ L2(D), the diffusion coefficient a is smooth enough (e.g., Lipschitz),
and the boundary ∂D is “nice enough” (e.g., a convex polyhedron), then
u ∈ H2(D) ∩ H1

0 (D) and the weak solution coincides with the strong
solution. These considerations belong to the purview of elliptic regularity
theory.
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Recap: Weak formulation

Let D ⊂ Rd be an open and bounded Lipschitz domain. We consider the problem{
−∇ · (a(x)∇u(x)) = f (x), x ∈ D,

u|∂D = 0,
(1)

where f : D → R is the source and a : D → R is the diffusion coefficient.

Uniform ellipticity assumption: There exist constants amax, amin > 0 such that

0 < amin ≤ a(x) ≤ amax < ∞ for all x ∈ D.

Definition

Let a ∈ L∞(D) and f ∈ L2(D). Then u ∈ H1
0 (D) is called a weak solution to (1) if

B(u, v) = F (v) for all v ∈ H1
0 (D), (2)

where

B(u, v) =

∫
D

a(x)∇u(x) · ∇v(x) dx

and

F (v) =

∫
D

f (x)v(x) dx .
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Galerkin method

1. Let Vm = span{ϕi}mi=1 ⊂ H1
0 (D) be a finite-dimensional subspace.

2. Find um ∈ Vm s.t.

B(um, ϕ) = F (ϕ) for all ϕ ∈ Vm. (3)

Lemma

The problem (3) has a unique solution which also satisfies the so-called
Galerkin orthogonality

B(u − um, ϕ) = 0 for all ϕ ∈ Vm,

where u is the solution to (2).

Proof. The existence of a unique solution is an immediate consequence of
the Lax–Milgram lemma applied to (3) in a subspace Vm ⊂ H1

0 (D). The
orthogonality follows from

B(u−um, ϕ) = B(u, ϕ)−B(um, ϕ) = F (ϕ)−F (ϕ) = 0 for all ϕ ∈ Vm.
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Let Vm := span{ϕi}mi=1 ⊂ H1
0 (D). Note that the problem of finding

um ∈ Vm such that

B(um, ϕ) = F (ϕ) for all ϕ ∈ Vm

is equivalent to

B(um, ϕj) = F (ϕj) for all j ∈ {1, . . . ,m}.

Since um ∈ Vm, we can write it as um(x) =
∑m

i=1 ciϕi (x) using
undetermined coefficients c = (ci )

m
i=1 ⊂ R. Thus the problem of finding

um ∈ Vm is equivalent to solving the coefficients c satisfying
m∑
i=1

ciB(ϕi , ϕj) = F (ϕj) for all j ∈ {1, . . . ,m},

which can be expressed as a linear system

Ac = F ,

where A = (Ai ,j)
m
i ,j=1 and F = (Fi )

m
i=1 are such that

Ai ,j = B(ϕi , ϕj) =

∫
D
a(x)∇ϕi (x) · ∇ϕj(x)dx , Fi =

∫
D
f (x)ϕi (x) dx .
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The Galerkin solution is a “quasi-optimal” approximation of the weak
solution of the PDE in Vm.

Lemma (Céa’s lemma)

Let u ∈ H1
0 (D) be the solution to B(u, ϕ) = F (ϕ) for all ϕ ∈ H1

0 (D) and
let um ∈ Vm be the solution to B(um, ϕ) = F (ϕ) for all ϕ ∈ Vm. Then

∥u − um∥H1
0 (D) ≤

amax

amin
inf

v∈Vm

∥u − v∥H1
0 (D).

Proof. Let v ∈ Vm. Then by the coercivity and continuity of B, there
holds

amin∥u − um∥2H1
0 (D) ≤ B(u − um, u − um)

= B(u − um, u − v) + B(u − um, v − um︸ ︷︷ ︸
∈Vm

)

︸ ︷︷ ︸
=0

≤ amax∥u − um∥H1
0 (D)∥u − v∥H1

0 (D).

Hence amin∥u − um∥H1
0 (D) ≤ amax∥u − v∥H1

0 (D).
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Finite element method

One could choose the space Vm ⊂ H1
0 (D) to be virtually anything. The

finite element method is a particular way of constructing this finite
dimensional space.

In 2D, we approximate the geometry D by constructing a triangulation.

That is, the computational domain D is represented as the union of
non-overlapping triangles called elements. The elements are assumed to
cover the whole D (and only D). In 2D the elements are typically triangles
or quadrilaterals, but they could be practically of any shape. In 3D the
elements are typically tetrahedra or hexahedra. Prisms and pyramids are
also widely used.

If the domain D is a polyhedron, then the division to elements is accurate.
If the domain has, e.g., curved edges, then it cannot be approximated
accurately with linear elements. This introduces additional error to the
numerical approximation.

77



A single element is denoted by K . The collection of elements is called a
mesh and denoted with Th, indexed by the diameter of the maximum
element in the mesh. The size of the elements plays a key role in the
convergence analysis of the method. For a well-defined method, reducing
the size of the elements, i.e., refining the mesh, improves the solution (or
at least does not make it worse).

The mesh is a discretization of the domain. It does not define a function
space. To define the global space, we define the local space in each of the
elements. The global space is a piecewise combination of the local,
elementwise spaces.

Assume that the domain D is a 2D polyhedral domain, e.g., unit square,
and that it has been divided into triangles. The simplest possible subspace
to H1

0 (D) is a piecewise linear, continuous space

Vh := {v ∈ H1
0 (D) | v ∈ P1(K ) ∀K ∈ Th}.

The continuity is enforced by our requirement that the functions belong to
H1(D).
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Let Th be a triangulation of the domain D with FE nodes (ni )
N
i=1, where

m < N nodes are in the interior of the domain and N −m nodes are on
the boundary ∂D. For later convenience, let us denote
interior := {i ∈ {1, . . . ,N} | ni ̸∈ ∂D}.

We can choose piecewise linear basis functions ϕi = ϕni such that

ϕni (nj) = δi ,j ,

that is, ϕni (ni ) = 1 and ϕni (nj) = 0 whenever i ̸= j over the FE nodes
(ni )

N
i=1.

Since Vh is finite-dimensional, it is spanned by a set of global basis
functions

Vh = span{ϕni}i∈interior.
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Figure: Left: An illustration of global, piecewise linear FE basis functions
spanning Vh over a regular, uniform triangulation of (0, 1)2. Right: Bird’s-eye
view of the same global FE basis functions.
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The goal is to find the FE solution uh ∈ Vh such that∫
D
a(x)∇uh(x) · ∇ϕ(x) dx =

∫
D
f (x)ϕ(x) dx for all ϕ ∈ Vh.

For simplicity, suppose that f (x) :=
∑N

i=1 fiϕni (x) for some known

coefficients f := (fi )
N
i=1 ⊂ R.† We can write uh =

∑N
i=1 ciϕni ∈ Vh and

enforce the zero Dirichlet boundary condition by setting ci = 0 for any
ni ∈ ∂D. Testing the variational formulation against the FE basis
functions ϕ = ϕj for all j ∈ interior:∑

i∈interior
ci

∫
D
a(x)∇ϕni (x) · ∇ϕnj (x)dx︸ ︷︷ ︸

=:Ai,j

=
N∑
i=1

fi

∫
D
ϕni (x)ϕnj (x) dx︸ ︷︷ ︸

=:Mi,j

.

Thus the problem is to solve the FE expansion coefficients
c = (ci )i∈interior from the equation

Ainterior,interiorc = Minterior,:f ,
where the matrix A = (Ai ,j)

N
i ,j=1 is called the stiffness matrix and

M = (Mi ,j)
N
i ,j=1 is called the mass matrix.

†Note that here we do not require f = 0 on ∂D! For general f ∈ L2(D), instead of
the mass matrix, one would use (Gaussian) quadratures to form the right-hand side.
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Our goals in finite element programming:

Construct a data structure to represent the topology of the finite
element mesh.

If the FE nodes are given as rows of an array “nodes”, then the
elements are triangles with vertices nodes[i, :], nodes[j, :], nodes[k, :]
for certain indices i,j,k.
We can represent the elements as an array “element”, where each row
contains the indices corresponding to the nodes which form a triangle
in our mesh.
Since we focus on homogeneous zero Dirichlet boundary conditions, we
can enforce the boundary condition by setting the FE expansion
coefficients of the FE solution to be zero at the boundary nodes. This
is equivalent to choosing a subspace Vh consisting only of those FE
basis functions ϕni corresponding to FE nodes in the interior of the
mesh, i.e., ni ̸∈ ∂D. Thus it is helpful to store the indices of the nodes
lying in the interior of the domain into a vector called “interior”.

Assembly of finite element matrices (stiffness and mass matrix).
All triangles in our FE mesh can be mapped affinely onto a reference
triangle of our choosing (say,
{(x , y) ∈ Rd | 0 ≤ x ≤ 1, 0 ≤ y ≤ 1− x}) which we can exploit in the
construction of the FE matrices.
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Finite element programming (in Python)
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Triangulation of D = (0, 1)2

import numpy as np

def generateFEmesh(level):

# Create a regular uniform triangulation

# of the unit square (0,1)**2

n1 = 2**level+1 # number of nodes in 1D

# Topology: FE nodes, mesh elements, interior, centers

X,Y = np.meshgrid(np.arange(0,n1)/(n1-1),

np.arange(0,n1)/(n1-1))

nodes = np.array([X.flatten(),Y.flatten()]).T

element = []; interior = []

for i in range(0,n1-1):

for j in range(0,n1-1):

element.append([j*n1+i,(j+1)*n1+i,j*n1+i+1])

element.append([(j+1)*n1+i,(j+1)*n1+i+1,j*n1+i+1])

if i < n1-2 and j < n1-2:

interior.append((j+1)*n1+i+1)

centers = np.mean(nodes[element[:]],axis=1)

return nodes,element,interior,centers
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Mass matrix

Let (Kℓ)
nelem
ℓ=1 be non-overlapping mesh elements s.t. D =

⋃nelem
ℓ=1 Kℓ. Let

us first consider constructing the global mass matrix:

Mi ,j =

∫
D
ϕni (x)ϕnj (x)dx =

nelem∑
ℓ=1

∫
Kℓ

ϕni (x)ϕnj (x) dx .

We can think of the elements of the global mass matrix as a sum of locally
defined mass matrices in each “active” element. Recall that we already
gave a labeling to the FE nodes earlier, and each row of matrix element

contains the indices of FE nodes which form an element in our FE mesh.

initialize Mi,j = 0, i, j ∈ {0, . . . , ncoord− 1}
for k ∈ {0, . . . , nelem− 1}, do
1. set ind = element[k]
2. let K be the element with vertices nodes[ind]
3. compute local mass matrix L ∈ R3×3, where

Li,j =
∫
K
ϕni (x)ϕnj (x)dx , i , j ∈ {0, 1, 2}

4. set Mind,ind = Mind,ind + L

end for

Let us concentrate on step 3. 85



Local mass matrix

Let K ⊂ R2 be an arbitrary triangle with vertices n1, n2, n3, and
K̂ = {(x1, x2) | 0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 1− x1} the reference triangle.

Let ϕ̂1(x) = 1− x1 − x2, ϕ̂2(x) = x1, ϕ̂3(x) = x2 be the local basis.

The affine mapping FK : K̂ → K , FK (x) := Bx + n1,
B = [n2 − n1,n3 − n1], can be used to write the global basis
functions as ϕni (x) = ϕ̂i (F

−1
K (x)). Change of variables:∫

K
ϕni (x)ϕnj (x)dx = | detB|

∫
K̂
ϕ̂i (x)ϕ̂j(x) dx =

{
| detB|

12 if i = j ,
| detB|

24 if i ̸= j

that is (∫
K
ϕni (x)ϕnj (x) dx

)3

i ,j=1

= | detB|

 1
12

1
24

1
24

1
24

1
12

1
24

1
24

1
24

1
12

 .

86



Stiffness matrix

We also need to construct the global stiffness matrix

Ai ,j =

∫
D
a(x)∇ϕni (x) · ∇ϕnj (x)dx .

To simplify the analysis, let us suppose that the diffusion coefficient a(x)
has been discretized as a piecewise constant function over the mesh
elements, i.e.,

a(x) =
nelem∑
ℓ=1

aℓχKℓ
(x), χKℓ

(x) :=

{
1 if x ∈ Kℓ,

0 otherwise.

Here, we can take aℓ to be the value of a evaluated at the center point of
element Kℓ. Then

Ai ,j =
nelem∑
ℓ=1

aℓ

∫
Kℓ

∇ϕni (x) · ∇ϕnj (x) dx .

Idea: Precompute the stiffness tensor Si ,j ,ℓ :=
∫
Kℓ

∇ϕni (x) · ∇ϕnj (x) dx .
Given a, the stiffness matrix is a tensor-vector contraction A = S ×3 a,
where a is a vector containing values of a at element center points. 87



The idealized construction of the stiffness tensor is as follows:

initialize Si,j,k = 0, i, j ∈ {0, . . . , ncoord− 1}, k ∈ {0, . . . , nelem− 1}
for k ∈ {0, . . . , nelem− 1}, do
1. set ind = element[k]
2. let K be the element with vertices nodes[ind]
3. compute local stiffness matrix L ∈ R3×3, where

Li,j =
∫
K
∇ϕni (x) · ∇ϕnj (x)dx , i, j ∈ {0, 1, 2}

4. set Sind,ind,k = L

end for

Problem: Scipy does not support sparse tensors! :(
Workaround: reshape the n × n ×m tensor into an n2 ×m matrix!

initialize gradi,j,k = 0 for i, j ∈ {0, . . . , ncoord ∗ ncoord− 1},
k ∈ {0, . . . , nelem− 1}
for k ∈ {0, . . . , nelem− 1}, do
1. set ind = element[k]

2. let K be the element with the vertices nodes[ind]
3. compute local stiffness matrix L ∈ R3×3, where

Li,j =
∫
K
∇ϕni (x) · ∇ϕnj (x)dx , i , j ∈ {0, 1, 2}

4. initialize dummy = Oncoord,ncoord; set dummyind,ind = L

5. set grad[:, k] = dummy.flatten()
end for
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Local stiffness matrix

Let K ⊂ R2 be an arbitrary triangle with vertices n1, n2, n3, and
K̂ = {(x1, x2) | 0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 1− x1} the reference triangle.
Let ϕ̂1(x) = 1− x1 − x2, ϕ̂2(x) = x1, ϕ̂3(x) = x2 be the local basis.
The affine mapping FK : K̂ → K , FK (x) := Bx + n1,
B = [n2 − n1,n3 − n1], can be used to write the global basis
functions as ϕni (x) = ϕ̂i (F

−1
K (x)). Note that there holds

∇ϕni (x) = B−T(∇ϕ̂i )(F
−1
K (x)). Change of variables:∫

K
∇ϕni (x) · ∇ϕnj (x) dx = | detB|

∫
K̂
B−T∇ϕ̂i (x) · B−T∇ϕ̂j(x)dx .

Define GT := (∇ϕ̂1,∇ϕ̂2,∇ϕ̂3) =

(
−1 1 0
−1 0 1

)
. Then(∫

K
∇ϕni (x) · ∇ϕnj (x) dx

)3

i ,j=1

=
| detB|

2
GB−1B−TGT. (4)

Remark. With a bit of linear algebra, one can check that (4) is equal to
DTD

4area(K) , D := [n3 − n2,n1 − n3,n2 − n1].
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The shoelace formula

def shoelace(g):

# Compute the area of a triangle with

# vertices g[0], g[1], and g[2]

return abs(np.linalg.det([g[0],g[1]])

+ np.linalg.det([g[1],g[2]])

+ np.linalg.det([g[2],g[0]]))/2
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Assembly of the finite element matrices

from scipy import sparse

def generateFEmatrices(nodes,element):

ncoord = len(nodes); nelem = len(element)

mass_data = []; mass_rows = []; mass_cols = []

grad_data = []; grad_rows = []; grad_cols = []

localmass = np.array([[1/12,1/24,1/24],[1/24,1/12,1/24],[1/24,1/24,1/12]])

for k in range(nelem):

ind = element[k]; g = nodes[ind]

detB = abs(np.linalg.det([g[1]-g[0],g[2]-g[0]]))

Dt = np.array([g[2]-g[1],g[0]-g[2],g[1]-g[0]])

triarea = shoelace(g)

localgrad = Dt@Dt.T/4/triarea

for i in range(3):

for j in range(3):

mass_rows.append(ind[i]); mass_cols.append(ind[j]);

mass_data.append(detB*localmass[i,j])

grad_rows.append(ind[i]*ncoord+ind[j]); grad_cols.append(k)

grad_data.append(localgrad[i,j])

mass = sparse.csr_matrix((mass_data,(mass_rows,mass_cols)),

shape=(ncoord,ncoord))

grad = sparse.csr_matrix((grad_data,(grad_rows,grad_cols)),

shape=(ncoord*ncoord,nelem))

return grad,mass
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FEM programs in Python

level = 5 # discretization level

# Generate FE mesh

nodes,element,interior,centers = generateFEmesh(level)

ncoord = len(nodes) # number of coordinates

# Generate FE matrices

grad,mass = generateFEmatrices(nodes,element)

To obtain the stiffness matrix for a piecewise constant diffusion coefficient,
we can use the following simple routine.

def UpdateStiffness(grad,a):

# Given vector a containing the values of the diffusion

# coefficient at the element center points, return the

# corresponding stiffness matrix

n = np.sqrt(grad.shape[0]).astype(int)

vec = grad @ sparse.csr_matrix(a.reshape((a.size,1)))

return sparse.csr_matrix.reshape(vec,(n,n)).tocsr()
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Finite element method in 2D – summary

1 Form a triangulation Th of the domain D. Let (nj)
N
j=1 be the finite

element nodes. Form the list interior containing the indices of
interior nodes and the element connectivity matrix element. Denote
by m = |interior| the number of degrees of freedom.

2 Form the stiffness matrix A ∈ Rm×m and mass matrix M ∈ RN×N .
3 Form the loading vector b ≈ Minterior,:f , where

f = [f (n1), . . . , f (nN)]
T.

4 Solve c = (cj)
m
j=1 ∈ Rm from Ac = b.

5 The finite element solution is given by

uh(x) =
m∑
j=1

cjϕj(x), where ϕj = ϕnj .

Remark: The global basis functions ϕj are typically never constructed in
practice! Instead, note that uh(nj) = cj . Therefore, the nodal values of
the FE solution are precisely the FE expansion coefficients – if one needs
to evaluate the FE solution for x ∈ K , one can use linear interpolation
between the vertices of the triangle element K .
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Computing norms of finite element solutions

Let Vh ⊂ H1
0 (D) be a finite element space spanned by piecewise linear,

continuous FE basis functions {ϕi}mi=1 in the interior of the domain. Let

uh(x) =
m∑
i=1

ciϕi (x) ∈ Vh.

If Mi ,j =
∫
D ϕi (x)ϕj(x) dx is the mass matrix and

Si ,j =
∫
D ∇ϕi (x) · ∇ϕj(x)dx is the stiffness matrix of the Dirichlet

Laplacian −∆ with homogeneous zero Dirichlet boundary conditions, then

∥uh∥L2(D) =
√

cTMc and ∥uh∥H1
0 (D) =

√
cTSc ,

where c = (ci )
m
i=1. These identities imply that M and S are positive

definite.
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Numerical example

Consider the elliptic PDE problem{
−∇ · ((1 + x2 + y 2)∇u(x , y)) = x + y , (x , y) ∈ (0, 1)2,

u|∂D = 0.

We can solve this problem using the code developed above as follows.

level = 5 # discretization level

nodes,element,interior,centers = generateFEmesh(level) # generate FE mesh

ncoord = len(nodes) # number of coordinates

grad,mass = generateFEmatrices(nodes,element) # generate FE matrices

a = lambda x: 1+np.sum(x**2,axis=1) # diffusion coefficient

f = lambda x: np.sum(x,axis=1) # source term

rhs = mass[interior,:]@f(nodes) # precompute the loading vector

aval = a(centers) # evaluate diffusion coefficient at element centers

stiffness = UpdateStiffness(grad,aval) # assemble stiffness matrix

sol = np.zeros(ncoord) # initialize solution vector

# Solve the PDE

sol[interior] = sparse.linalg.spsolve(stiffness[np.ix_(interior,interior)],rhs)

# Visualize the solution

import matplotlib.pyplot as plt

fig = plt.figure(figsize=plt.figaspect(1.0))

ax = fig.add_subplot(1,1,1,projection=’3d’)

ax.plot_trisurf(nodes[:,0],nodes[:,1],sol,triangles=element,cmap=plt.cm.rainbow)

plt.show() 95



FE solution
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This note illustrates possibly the simplest (nontrivial) implementation of conforming h-FEM.
“Conforming” means that the FE space Vh is a proper subspace of the solution space H1

0 (D).
With this method, the only way to increase the approximation accuracy is by mesh refinement.
One could generalize the method in a various number of ways:

Using higher-order piecewise polynomial basis functions leads to p- and hp-FEM. The idea
is to use higher-order polynomials and larger elements in regions of the computational
domain where the PDE solution is smooth; conversely, one would use lower order
polynomial basis functions and smaller elements near singularities (caused by obtuse
angles in the geometry, etc.). A proper refinement strategy with hp-FEM can lead to
exponentially convergent implementations.
One can even use discontinuous basis functions, but the method becomes
non-conforming. This has the benefit of improved parallelization and easy adaptation, but
the implementation details are significantly more involved.
Instead of discretizing the diffusion coefficient as a piecewise constant function over the
elements, a better approach would be to compute the local stiffness matrices∫
K a(x)∇ϕni (x) · ∇ϕnj (x) dx using Gaussian quadratures for triangles. Similarly, the

loading term
∫
K f (x)ϕni (x) dx could also be computed using a Gaussian quadrature. For

simplicity of presentation, the details are omitted.
One could easily extend the method for more nontrivial boundary conditions:
non-homogeneous Dirichlet, Neumann, Robin, mixed boundary conditions, etc. This
results in additional “book-keeping” and the details are omitted.
Many practitioners rely on automated mesh generation using software such as Netgen, etc.
When the domain has curved boundaries, one usually either ignores the geometry modeling
error (if there is reason to believe it is negligible) or uses, e.g., curved finite elements.
Instead of using a direct solver like scipy.sparse.linalg.spsolve to solve the FE
system, algebraic multigrid methods (and/or iterative solvers) can be used to improve the
computational complexity. Nonlinear PDEs lead to nonlinear discretized FE systems.
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Let (Ω,F , µ) be a probability space. We consider the problem{
−∇ · (a(x , ω)∇u(x , ω)) = f (x) for x ∈ D, (a.e.) ω ∈ Ω,

u(x , ω) = 0 for x ∈ ∂D, (a.e.) ω ∈ Ω,

where the diffusion coefficient a(·, ω) is random. In consequence, the
solution u(·, ω) is a random function/field.

In order to analyze u(·, ω), some approaches might be:

Monte Carlo methods → slow convergence rate.

Sparse grid methods → good convergence, poor parallelization.

In certain problems (such as the PDE above) the dependence of u on a
tends to be quite smooth (under moderate modeling assumptions).
Quasi-Monte Carlo methods take advantage of this fact and can be used
to obtain faster-than-Monte Carlo convergence rates.
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Probability measures

Let Ω be a set and let P(Ω) := {B | B ⊆ Ω} denote its power set. A
subset F of P(Ω) is called σ-algebra (or σ-field) if

1 ∅ ∈ F ,

2 Ω \ A ∈ F for every A ∈ F , and

3
⋃

n∈N An ∈ F for every countable subset {An}n∈N of F .

A pair (Ω,F) is called a measurable space.

An intuitive way of thinking about σ-algebras is that they contain
information. The subsets contained in a σ-algebra represent events for
which we can decide, after the observation, whether they happened or not.
Hence, F represents all the information we can get from an experiment.
For a topological space Ω (e.g., Rs), the smallest σ-algebra containing all
open sets in Ω is called Borel σ-algebra on Ω and it is denoted by Bor(Ω).
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A function µ: F → [0,∞) ∪ {∞} is called probability measure if

(i) µ(∅) = 0,
(ii) for every countable subset {An}n∈N ⊂ F of pairwise disjoint sets (i.e.,

Ai ∩ Aj = ∅ if i ̸= j),

µ

( ∞⋃
k=1

Ak

)
=
∞∑
k=1

µ(An),

(iii) and µ(Ω) = 1.

We call µ(A) the probability of an event A ∈ F . If µ(A) = 1, we say that
the event A occurs almost surely. A triple (Ω,F , µ) is called probability
space. If only properties (i) and (ii) are satisfied, µ is called a measure. A
measure is called σ-finite if Ω is the countable union of measurable sets
with finite measure.

Example

The Dirac measure δm at a point m ∈ Rs is a probability measure on
(Rs ,Bor(Rs)) defined by

δm(A) =

{
1 if m ∈ A,

0 if m /∈ A
for all A ∈ Bor(Rs).
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Example

The Lebesgue measure λ on (Rs ,Bor(Rs)) is σ-finite, but not a probability
measure, since λ(Rs) = ∞.

Let µ and ν be two measures on the same measure space. Then µ is said
to be absolutely continuous with respect to ν (or dominated by ν) if
ν(A) = 0 implies µ(A) = 0 for each A ∈ F . We denote this by µ≪ ν.
Measures µ and ν are called equivalent if µ≪ ν and ν ≪ µ. If µ and ν
are supported on disjoint sets, they are called mutually singular.

Theorem (Radon–Nikodym)

Let µ and ν be two measures on a measure space (Ω,F). If µ≪ ν and ν
is σ-finite, then there exists a unique ν-integrable function f such that

µ(A) =

∫
A
f (ω) ν(dω) for all A ∈ F .

The function f is called Radon–Nikodym derivative (or density) of µ with
respect to ν and it is denoted by dµ

dν .
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Example

If µ is a measure which is absolutely continuous with respect to the
Lebesgue measure λ on (Rs ,Bor(Rs)), then it has a unique density
p ∈ L1(Rs) by the Radon–Nikodym theorem.

Example

Let µ1 = U([0, 1]) and µ2 = U([0, 2]) be uniform probability measures on
R. Then µ1 ≪ µ2 with

dµ1
dµ2

(t) =

{
2 for t ∈ [0, 1],

0 otherwise,

but µ2 is not absolutely continuous with respect to µ1 because
µ1([1, 2]) = 0, whereas µ2([1, 2]) =

1
2 > 0.
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Random variables

A function x : Ω → X between a probability space (Ω,F , µ) and a
measurable space (X ,X ) is called a random variable (with values in X ) if
it is measurable, that is, if

x−1(A) ∈ F for every A ∈ X .

Here, x−1(A) = {ω ∈ Ω : x(ω) ∈ A}.
A random variable x induces a probability measure ν on X , defined by

ν(A) := µ(x−1(A)) for all A ∈ X ,

which is called probability distribution (or law) of x . We write x ∼ ν if x is
distributed according to ν.

A random variable x connects an event A ∈ X with a corresponding event
x−1(A) ∈ F and assigns the probability of x−1(A) to A. This probability is
denoted by

P(x ∈ A) := ν(A) = µ(x−1(A)) = µ({ω ∈ Ω : x(ω) ∈ A}).
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Now, let x be a random variable with values in (Rs ,Bor(Rs)) and ν its
distribution.

If ν is absolutely continuous with respect to the Lebesgue measure λ on
Rs , then by the Radon–Nikodym theorem there exists a unique p ∈ L1(Rs)
such that

ν(A) =

∫
A
p(x)dx for all A ∈ Bor(Rs).

The function p is called probability density of x .
In what follows, we will assume that Rs -valued random variables have a
probability density.
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Let x , x1, and x2 be Rs -valued random variables.

The mean or expected value of x with distribution ν and probability
density function p is given by

E[x ] :=
∫
Rs

x ν(dx) =
∫
Rs

xp(x) dx .

A mode x̄ of a random variable x is defined as a maximizer of its
density p, i.e.,

x̄ ∈ argmax
x∈Rs

p(x).

The covariance (or covariance matrix) of two random variables x1 and
x2 is defined by

Cov(x1, x2) = E
[
(x1 − E[x1])(x2 − E[x2])

T
]
.

The variance of random variable x is its covariance with itself:

Var(x) = Cov(x , x).

The characteristic function φx of x is defined by

φx(h) =
∫
Rs

exp(ihTx) ν(dx) =
∫
Rs

exp(ihTx)p(x)dx for all h ∈ Rs .

A random variable is uniquely determined by its characteristic function. 106



Gaussian random variables

Let m ∈ Rs and C ∈ Rs×s be a symmetric positive semidefinite matrix.†

An Rs -valued random variable x is said to be Gaussian (or normal) with
mean m and covariance C , denoted by x ∼ N (m,C ), if its characteristic
function φx is given by

φx(h) = exp

(
ihTm − 1

2
hTCh

)
for all h ∈ Rs .

A Gaussian random variable is completely determined by its mean and its
covariance.

Remark: Multivariate Gaussian random variables also have the following
characterization. A random vector x = (x1, . . . , xs)

T has a multivariate
normal distribution iff y = a1x1 + · · ·+ asxs is (univariate) normally
distributed for all constants a1, . . . , as ∈ R.

†Recall that this means ξTCξ ≥ 0 for all ξ ∈ Rs .
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If, in addition, C is positive definite†, x ∼ N (m,C) has the probability density

p(x) =
1

(2π)s/2
√
detC

exp

(
−1

2
(x − m)TC−1(x − m)

)
=

1

(2π)s/2
√
detC

exp

(
−1

2
∥C− 1

2 (x − m)∥2
)
.

Note that C is invertible and C−1/2 exists due to our assumptions on C .

The Dirac measure δm at a point m ∈ Rs can be understood as a Gaussian
distribution with covariance C = 0, i.e., δm = N (m, 0).

If z1 ∼ N (m1,C1) and z2 ∼ N (m2,C2) are independent and a1, a2 ∈ R, then

z = a1z1 + a2z2 ∼ N (a1m1 + a2m2, a
2
1C1 + a22C2).

If z ∼ N (m,C), L ∈ Rs×k , and a ∈ Rs , then

w = Lz + a ∼ N (Lm + a, LCLT).

†Recall that this means ξTCξ > 0 for all ξ ∈ Rs \ {0}.
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Conditional and marginal probability densities

Let x and y be random variables with values in Rs and Rk , respectively. If
the random variable (x , y) has a probability density px ,y , i.e., if

P(x ∈ A, y ∈ B) = P((x , y) ∈ A× B) =

∫
A×B

px ,y (u, v)d(u, v),

for all A ∈ Bor(Rs) and B ∈ Bor(Rk), then px ,y is called joint probability
density of x and y . Here P(x ∈ A, y ∈ B) := P(x ∈ A and y ∈ B).

Now, the marginal probability density px of x is defined by

px(u) =
∫
Rk

px ,y (u, v)dv for all u ∈ Rs .

Analogously, the marginal density of y is

py (v) =
∫
Rs

px ,y (u, v)du for all v ∈ Rk .
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The marginal density of x is indeed the probability density for x in the
situation that we have no information about the random variable y ,
because

P(x ∈ A) = P(x ∈ A, y ∈ Rk) =

∫
A×Rk

px ,y (u, v)d(u, v)

=

∫
A

(∫
Rk

px ,y (u, v)dv
)
du =

∫
A
px(u)du

for every A ∈ Bor(Rs).

The random variables x and y are called independent if

P(x ∈ A, y ∈ B) = P(x ∈ A)P(y ∈ B)

for all A ∈ Bor(Rs), B ∈ Bor(Rk) or, equivalently, if

px ,y (u, v) = px(u)py (v) almost surely.
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Next, we consider the random variable x in the opposite situation that we
know everything about the random variable y : we have observed it and
know what value it has taken.

We say we consider the random variable x , given that we know the value
y0 taken by y , and denote this by x |y = y0. For y0 ∈ Rk with
py (y0) > 0, the conditional probability density of x |y = y0, px |y=y0

, is
then defined by

px |y=y0
(u) =

px ,y (u, y0)

py (y0)
.

If x and y are independent and py (y0) > 0, then

px |y=y0
(u) = px(u).
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Representation of random fields
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Random field

Definition

Let D ⊂ Rd and let (Ω,F , µ) be a probability space. A function
A : D × Ω → X is called a random field if A(x , ·) is an X -valued random
variable for all x ∈ D.

Definition

We call a random field A : D × Ω → X square-integrable if∫
Ω

∫
D
|A(x , ω)|2 dx µ(dω) <∞.

Our goal will be to model (infinite-dimensional) input random fields using
finite-dimensional expansions with s variables.

Comment on notation: In what follows, s will always refer to the
“stochastic dimension” (dimension of the stochastic/parametric space)
while d will refer to the “spatial dimension” (dimension of the spatial
Lipschitz domain D ⊂ Rd , d ∈ {2, 3}).
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Remark: separable Hilbert space

A Hilbert space is said to be separable if (and only if) there exists a
countable orthonormal basis {ψj}∞j=1 of H with respect to the inner
product ⟨·, ·⟩H , that is,

⟨ψj , ψk⟩H = δj ,k and

∥∥∥∥f − ℓ∑
j=1

⟨f , ψj⟩Hψj

∥∥∥∥
H

ℓ→∞−−−→ 0 for all f ∈ H.

This last condition is often written as

f =
∞∑
j=1

⟨f , ψj⟩Hψj .

Note that
∑ℓ

j=1⟨f , ψj⟩Hψj is precisely the orthogonal projection onto the
subspace spanned by ψ1, . . . , ψℓ.
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Mercer’s theorem

Let a(x , ω) be a square-integrable random field with mean

a(x) =
∫
Ω

a(x , ω)µ(dω), x ∈ D,

and a continuous, symmetric, positive definite† covariance

K(x , x ′) =

∫
Ω

(a(x , ω)− a(x))(a(x ′, ω)− a(x ′))µ(dω).

Mercer’s theorem: if D ⊂ Rd is a compact, measurable set with positive Lebesgue
measure, then the covariance operator C : L2(D) → L2(D),

(Cu)(x) =
∫
D

K(x , x ′)u(x ′) dx ′, x ∈ D,

has a countable sequence of eigenvalues {λk}k≥1 and corresponding eigenfunctions
{ψk}k≥1 satisfying Cψk = λkψk such that λ1 ≥ λ2 ≥ · · · ≥ 0 and λk → 0 and the
eigenfunctions form an orthonormal basis for L2(D).
Note that this means:∫

D

K(x , x ′)ψk(x ′) dx ′ = λkψk(x),
∫
D

ψk(x)ψℓ(x) dx = δk,ℓ.

†In this context, positive definite means: for all choices of finitely many points
x1, . . . , xk ∈ D, k ∈ N, the Gram matrix G := [K(x i , x j)]

k
i,j=1 is positive semidefinite.
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The Karhunen–Loève (KL) expansion of a random field

Theorem

Let (Ω,F , µ) be a probability space, let D ⊂ Rd be a compact,
measurable set with positive Lebesgue measure, and let a : D × Ω → R be
a square-integrable random field with continuous, symmetric, positive
definite covariance K (x , x ′) = E[(a(x , ·)− a(x))(a(x ′, ·)− a(x ′))]. Then
the eigensystem (λk , ψk) ∈ R+ × L2(D) of the covariance operator
C : L2(D) → L2(D), as described on the previous slide, can be used to write

a(x , ω) = a(x) +
∞∑
k=1

√
λkξk(ω)ψk(x),

where ξk(ω) =
1√
λk

∫
D
(a(x , ω)− a(x))ψk(x) dx ,

where the convergence is in L2 w.r.t. the stochastic parameter and uniform
in x . Furthermore, the random variables ξk are zero-mean uncorrelated
random variables with unit variance, i.e.,

E[ξk ] = 0 and E[ξkξℓ] = δk,ℓ.
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Proof. WLOG, we can assume that a(x) = 0.† By Mercer’s theorem, {ψk}∞k=1 forms an
orthonormal basis on L2(D) and we can write

K(x , x ′) =
∞∑
k=1

(∫
D

K(x , t)ψk(t)dt
)

︸ ︷︷ ︸
=λkψk (x)

ψk(x ′) =
∞∑
k=1

λkψk(x)ψk(x ′).

Moreover, the random field a can be expressed using the same eigenbasis:

a(x , ω) =
∞∑
k=1

√
λkξk(ω)ψk(x), ξk(ω) =

1√
λk

∫
D

a(x , ω)ψk(x) dx .

One easily computes that

E[ξk ] = E
[

1√
λk

∫
D

a(x , ·)ψk(x)dx
]
=

1√
λk

∫
D

E[a(x , ·)]ψk(x) dx = 0

and

E[ξkξℓ] = E
[
1

λk

∫
D

∫
D

a(x , ·)a(x ′, ·)ψk(x)ψℓ(x ′)dx dx ′
]

=
1

λk

∫
D

∫
D

E[a(x , ·)a(x ′, ·)]ψk(x)ψℓ(x ′) dx dx ′

=
1

λk

∫
D

∫
D

K(x , x ′)ψk(x)ψℓ(x ′)dxdx ′ =
1

λk

∫
D

ψk(x)
(∫

D

K(x , x ′)ψℓ(x ′)dx ′
)

︸ ︷︷ ︸
=λℓψℓ(x)

dx = δk,ℓ,

since
∫
D
ψk(x)ψℓ(x)dx = δk,ℓ.

†Once the claim has been proved for a zero-mean random field a(x , ω), the general case
follows simply by applying the theorem to a(x , ω)← a(x , ω)− a(x).

117



Recall from the previous slide that

a(x , ω) =
∑∞

k=1

√
λkξk(ω)ψk(x), ξk(ω) = 1√

λk

∫
D
a(x , ω)ψk(x) dx ,

where E[ξk ] = 0, and E[ξkξℓ] = δk,ℓ. Let

as(x , ω) =
∑s

k=1

√
λkξk(ω)ψk(x).

E[|a(x , ·)− as(x , ·)|2] = E[a(x , ·)2] + E[as(x , ·)2]− 2E[a(x , ·)as(x , ·)]

= K(x , x) + E
[ s∑

k=1

s∑
ℓ=1

√
λkλℓξk(·)ξℓ(·)ψk(x)ψℓ(x)

]

− 2E
[( ∞∑

ℓ=1

√
λℓξℓ(·)ψℓ(x)

)( s∑
k=1

√
λkξk(·)ψk(x)

)]

= K(x , x) +
s∑

k=1

s∑
ℓ=1

√
λkλℓE[ξkξℓ]ψk(x)ψℓ(x)− 2E

[ ∞∑
ℓ=1

s∑
k=1

√
λkλℓξℓ(·)ξk(·)ψℓ(x)ψk(x)

]

= K(x , x) +
s∑

k=1

s∑
ℓ=1

√
λkλℓδk,ℓψk(x)ψℓ(x)− 2

∞∑
ℓ=1

s∑
k=1

√
λkλℓE[ξℓξk ]ψℓ(x)ψk(x)

= K(x , x) +
s∑
ℓ=1

λℓψℓ(x)2 − 2
∞∑
ℓ=1

s∑
k=1

√
λkλℓE[ξℓξk ]ψℓ(x)ψk(x) (E[ξℓξk ] = δℓ,k)

= K(x , x)−
s∑
ℓ=1

λℓψℓ(x)2 → 0 in the L2 sense by Mercer’s theorem.
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The Karhunen–Loève (KL) expansion of random field a(x , ω) can be
written as

a(x , ω) = a(x) +
∞∑
k=1

√
λkξk(ω)ψk(x).

Remarks:

The KL expansion minimizes the mean-square truncation error:∥∥∥∥a(x , ω)−a(x)−
s∑

k=1

√
λkξk(ω)ψk(x)

∥∥∥∥
L2(Ω,µ;L2(D))

=

( ∞∑
k=s+1

λk

)1/2

.

The random variables ξk are centered and uncorrelated, but not
necessarily independent.

If the random field a(x , ω) is Gaussian – by definition, this means that
(a(x1, ω), . . . , a(xk , ω)) is a multivariate Gaussian random variable for
all x1, . . . , xk ∈ D, k ∈ N – then the random variables ξk are
independent.
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The utility of the KL expansion comes from the fact that it is an effective
method of representing input random fields when their covariance
structure is known.

Essentially, if the (infinite-dimensional) input random field has a known
covariance (which satisfies the conditions of Mercer’s theorem), then we
can use the KL expansion to find a finite-dimensional approximation,
which is optimal in the mean-square error sense.
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Example

Let us consider the Wiener process over D = [0, 1], which we regard as a centered
standard Gaussian random field W (x , ω) with covariance function K(x , y) = min{x , y},
x , y ∈ [0, 1]. It can be shown that∫ 1

0

K(x , y)ψk(y) dy = λkψk(x),

where ψk(x) =
√
2 sin((k − 1

2
)πx), λk = 1

(k− 1
2
)2π2

. Then it has the KL expansion

W (x , ω) =
∞∑
k=1

√
λkyk(ω)ψk(x), yk ∼ N (0, 1).

Let us plot some realizations with the series truncated to s ∈ {10, 50, 100} terms.
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Modeling assumptions

In engineering and practical applications, the idea is that we have some a priori
knowledge/belief that the unknown input random field is distributed according to some
known probability distribution with a known covariance.

If the input random field is Gaussian with a known, nice covariance function†, then
we use the KL expansion to find a reasonable finite-dimensional approximation of
true input. Since the KL expansion decorrelates the stochastic variables, and
uncorrelated jointly Gaussian random variables are independent, we can exploit the
independence of the stochastic variables to parameterize the model problem.

If the input random field is not Gaussian, then the stochastic variables in the KL
expansion are uncorrelated but not necessarily independent. For the purposes of
mathematical analysis, we typically assume that the random variables in the input
random field are independent so that we can parameterize the model problem.
(Transforming dependent random variables into independent random variables can
be done using, e.g., the Rosenblatt transformation, but this is computationally
expensive.)

Note especially that in the Gaussian setting we do not need to make any “extra” effort
to ensure the independence of the stochastic variables in the KL expansion.

†Matérn covariance is an especially popular choice.
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Example (Lognormal input random field)

Let D ⊂ Rd , d ∈ {2, 3}, be a Lipschitz domain and consider the PDE
problem {

−∇ · (a(x , ω)∇u(x , ω)) = f (x) for x ∈ D,

u(·, ω)|∂D = 0,

where f : D → R is a fixed (deterministic) source term. We can model a
lognormally distributed random diffusion coefficient a : D × Ω → R using
the KL expansion, e.g., as

a(x , ω) = a0(x) exp
( ∞∑

k=1

yk(ω)ψk(x)
)
, yk ∼ N (0, 1),

where a0 ∈ L∞(D) is such that a0(x) > 0 and the random variables yk are
uncorrelated (and thus independent in the Gaussian case).

Due to the independence, we can consider the above as a parametric PDE
with a(x , y) ≡ a(x , y(ω)) and u(x , y) ≡ u(x , y(ω)), where (formally)
y ∈ RN is a parametric vector endowed with a product Gaussian measure.
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Example (Uniform and affine input random field)

Let D ⊂ Rd , d ∈ {2, 3}, be a Lipschitz domain, f : D → R is a fixed
(deterministic) source term, and consider the PDE problem{

−∇ · (a(x , ω)∇u(x , ω)) = f (x) for x ∈ D,

u(·, ω)|∂D = 0.

We can model a uniformly distributed random diffusion coefficient
a : D × Ω → R using the KL expansion, e.g., as

a(x , ω) = a0(x) +
∞∑
k=1

yk(ω)ψk(x), yk ∼ U(−1
2 ,

1
2),

where the random variables yk are uncorrelated. Unlike the Gaussian
setting, the random variables yk are generally not independent!

In numerical analysis, the random variables yk are often assumed to be
independent – this alllows us to consider the above as a parametric PDE
with a(x , y) ≡ a(x , y(ω)) and u(x , y) ≡ u(x , y(ω)), where y ∈ [−1

2 ,
1
2 ]

N

is a parametric vector endowed with a uniform probability measure.
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The Monte Carlo method

A simple technique to approximate the integral

I (f ) :=

∫
supp(p)

f (x)p(x) dx

is to use a sample average. If we are able to draw an i.i.d. sample
x1, . . . , xn from the probability distribution corresponding to the PDF p
then one can consider the Monte Carlo estimate

IMC
n (f ) :=

1

n

n∑
i=1

f (x i ).

Generally speaking, the Law of Large Numbers and the Central Limit
Theorem imply that

lim
n→∞

IMC
n (f ) = I (f ) and Var(IMC

n (f )− I (f )) ≈ Var(f (X ))

n

provided that f (X ) has finite mean and variance with X distributed
according to the probability distribution corresponding to p.
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Model problem 1: uniform and affine model

For the purposes of numerical analysis, it is often desirable to start by analyzing a
simpler model. Fix f ∈ L2(D), let U = [−1/2, 1/2]N, and consider the problem of
finding, for all y ∈ U, u(·, y) ∈ H1

0 (D) such that∫
D

a(x , y)∇u(x , y) · ∇v(x)dx =

∫
D

f (x)v(x)dx for all v ∈ H1
0 (D),

where the diffusion coefficient has the parametrization

a(x , y) := a0(x) +
∞∑
j=1

yjψj(x), x ∈ D, y ∈ U,

where a0 ∈ L∞(D), there exist amin, amax > 0 s.t. 0 < amin ≤ a(x , y) ≤ amax <∞ for all
x ∈ D and y ∈ U, and the stochastic fluctuations ψj : D → R are functions of the
spatial variable such that

ψj ∈ L∞(D) for all j ∈ N,∑∞
j=1 ∥ψj∥L∞(D) <∞.

Goals: compute E[G(u)] and Var[G(u)] for some bounded, linear functional
G : H1

0 (D) → R (quantity of interest); alternatively, one might be interested in E[u(x , ·)]
and Var[u(x , ·)] (full PDE solution).
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Model problem 2: lognormal model

In many practical applications, it is desirable to model the diffusion coefficient as a
lognormal random field. Fix f ∈ L2(D), let U = RN

∗ , and consider the problem of
finding, for all y ∈ U, u(·, y) ∈ H1

0 (D) such that∫
D

a(x , y)∇u(x , y) · ∇v(x)dx =

∫
D

f (x)v(x)dx for all v ∈ H1
0 (D),

where the diffusion coefficient has the parametrization

a(x , y) := a0(x) exp
( ∞∑

j=1

yjψj(x)
)
, x ∈ D, y ∈ U,

where a0 ∈ L∞(D) is such that a0(x) > 0 and the stochastic fluctuations ψj : D → R are
functions of the spatial variable such that

ψj ∈ L∞(D) for all j ∈ N,∑∞
j=1 ∥ψj∥L∞(D) <∞.

Goals: compute E[G(u)] and Var[G(u)] for some bounded, linear functional
G : H1

0 (D) → R; alternatively, one might be interested in E[u(x , ·)] and Var[u(x , ·)].

Here, RN
∗ := {y ∈ RN |

∑∞
j=1 |yj |∥ψj∥L∞(D) <∞}. More on this condition later...
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Numerical experiment

Let us consider the problem of calculating the (dimensionally-truncated) E[us(x , ·)] using
the Monte Carlo method. Fix the spatial domain D = (0, 1)2 and source term
f (x) = x1. The PDE problem in this case is to find, for all y ∈ Rs , us(·, y) ∈ H1

0 (D) s.t.∫
D

as(x , y)∇us(x , y) · ∇v(x) dx =

∫
D

f (x)v(x)dx for all v ∈ H1
0 (D)

endowed with the (dimensionally-truncated) lognormally parameterized diffusion
coefficient

as(x , y) = exp

( s∑
k=1

ykψk(x)
)
, yk ∈ R,

with stochastic fluctuations ψk(x) := k−ϑ sin(πkx1) sin(πkx2) and a fixed decay
parameter ϑ > 1. We solve the PDE using a first-order finite element method with mesh
size h = 2−5 and stochastic dimension s = 100. We draw a random sample
y 1, . . . , y n ∼ N (0, Is) and compute the Monte Carlo approximation

E[us,h(x , y)] ≈
1

n

n∑
k=1

us,h(x , y k) = IMC
n (us,h(x , ·)).

We plot the estimated L2 error by using IMC
n′ (us,h(x , ·)) for n′ ≫ n as the reference

solution and compute ∥E[us,h]− IMC
n (us,h)∥L2(D) ≈ ∥IMC

n′ (us,h)− IMC
n (us,h)∥L2(D). (To

compute the L2(D)-norm of a function vh =
∑

j cjϕj ∈ Vh belonging to a FE space, we

use the mass matrix Mi,j =
∫
D
ϕi (x)ϕj(x) dx as ∥vh∥L2 =

√
cTMc .) 128
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Rosenblatt transformation

In the non-Gaussian setting, the uncorrelated random variables can be
made independent using, e.g., the Rosenblatt transformation.

The following is an excerpt from “Structural Reliability Analysis and
Prediction”, 3rd edition, by R. E. Melchers and A. T. Beck (2018).

A dependent random vector X = (X1, . . . ,Xs) may be transformed to
the independent uniformly distributed random vector U = (U1, . . . ,Us)
through the Rosenblatt (1952) transformation U = TX given by

u1 = P(X1 ≤ x1) = F1(x1),

u2 = P(X2 ≤ x2|X1 = x1) = F2(x2|x1),
...

us = P(Xs ≤ xs |X1 = x1, . . . ,Xs−1 = xs−1) = Fs(xs |x1, . . . , xs−1).
If the joint PDF pX is known, then the conditional CDF Fs can be
determined by

Fs(xs |x1, . . . , xs−1) =
∫ xs
−∞ pX1,...,Xs (x1, . . . , xs−1, t)dt

pX1,...,Xs−1(x1, . . . , xs−1)
.
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Notations

{1 : s} := {1, 2, . . . , s} for s ∈ N. We use fraktur letters to denote
subsets u ⊆ {1 : s}. We use |u| to denote the cardinality of set u.

For x ≥ 0, we define the fractional part {x} := x − ⌊x⌋ = mod(x , 1).
For x < 0, {x} := x + ⌊|x |⌋. For x ∈ Rs , we define

{x} := ({x1}, {x2}, . . . , {xs}).

For example, {(1.2, 0.5, 2.77)} = (0.2, 0.5, 0.77).

For u ⊆ {1 : s}, we define xu = (xj)j∈u and

∂|u|

∂xu
f (x) :=

∏
j∈u

∂

∂xj
f (x).

For example, with u = {1, 2, 4}, we have |u| = 3, xu = (x1, x2, x4),
and

∂|u|

∂xu
f (x) =

∂3

∂x1∂x2∂x4
f (x).
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Quasi-Monte Carlo methods

Let f ∈ C ([0, 1]s). We consider the problem of approximating the
high-dimensional integral

Is f =

∫
[0,1]s

f (y)dy .

Quasi-Monte Carlo (QMC) methods are a class of equal weight cubature
rules

Qn,s f =
1

n

n−1∑
i=0

f (t i ),

where (t i )n−1
i=0 is an ensemble of deterministic nodes in [0, 1]s (not a

random sample of U([0, 1]s)).

QMC methods exploit the smoothness and anisotropy of an integrand in
order to achieve better-than-Monte Carlo cubature convergence rates.

134



Rank-1 lattice rules

Rank-1 lattice rules

Qn,s f =
1

n

n−1∑
i=0

f (t i )

have the points

t i = mod

(
iz
n
, 1

)
, i ∈ {0, . . . , n − 1},

where the entire point set is determined by
the generating vector z ∈ Ns , with all
components coprime to n.
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Lattice rule with z = (1, 55) and n = 89
nodes in [0, 1]2

The quality of the lattice rule is determined by the generating vector
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Historical remarks on the development of lattice rules

Number theorists (Korobov, Zaremba, Hua) in the 1950s and 60s.

Lattice rules for multiple integration (Sloan and Kachoyan 1987;
Sloan and Joe 1994).

Weighted spaces (Sloan and Woźniakowski 1998; Hickernell 1996).

Component-by-component (CBC) construction of lattice rules (Kuo,
Joe, Sloan 2002).

Fast CBC algorithm (Cools and Nuyens 2006; Kuo, Cools, and
Nuyens 2006).

Uncertainty quantification of PDEs using QMC methods (Kuo,
Schwab, Sloan 2012).

and of course many, many others! (Dick, Giles, Goda, Graham, Kritzer,
Niederreiter, Pillichshammer, Wasilkowski, . . .)
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Brief introduction to the classical theory of lattice rules
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Let f : [0, 1]s → R be an absolutely continuous and 1-periodic function, i.e.,

f (y1, y2, . . . , ys) = f (y1 + 1, y2, . . . , ys) = f (y1, y2 + 1, . . . , ys) = · · · ,
with an absolutely convergent Fourier series

f (x) =
∑
h∈Zs

f̂ (h)e2πih·x , f̂ (h) :=
∫
[0,1]s

f (x)e−2πih·x dx .

Then the lattice rule error is precisely the sum of the integrand’s Fourier
coefficients over the so-called dual lattice.

Theorem (Rank-1 lattice rule error)

Under the aforementioned conditions on f : [0, 1]s → R, there holds

Qn,s(f )− Is(f ) =
∑

h∈Λ⊥\{0}

f̂ (h),

where the dual lattice

Λ⊥ := {h ∈ Zs | h · z ≡ 0 (mod n)}

is determined entirely by the generating vector z ∈ Ns and n ∈ N.
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For future convenience, let us prove a couple of helpful auxiliary identities.

Lemma

Let h = (h1, . . . , hs) ∈ Zs and n ∈ N. Then∫
[0,1]s

e2πih·x dx =

{
1 if h = 0

0 otherwise

1

n

n−1∑
k=0

e2πikh·z/n =

{
1 if h · z ≡ 0 (mod n)

0 otherwise.

Proof. By Fubini’s theorem∫
[0,1]s

e2πih·x dx =
s∏

j=1

∫ 1

0
e2πihjxj dxj , (1)

where ∫ 1

0
e2πihjxj dxj =

{∫ 1
0 dxj if hj = 0[
e
2πihj xj

2πihj

]xj=1

xj=0
if hj ̸= 0

=

{
1 if hj = 0

0 if hj ̸= 0.

Thus the expression (1) is zero unless h1 = h2 = · · · = hs = 0.
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To prove the second claim

1

n

n−1∑
k=0

e2πikh·z/n =

{
1 if h · z ≡ 0 (mod n)

0 otherwise

consider two cases:

If h · z is a multiple of n, i.e., h · z ≡ 0 (mod n), then clearly

1

n

n−1∑
k=0

e2πikh·z/n =
1

n

n−1∑
k=0

e0 = 1.

If h · z is not a multiple of n, then by the geometric sum formula

1

n

n−1∑
k=0

e2πikh·z/n =
1

n

n−1∑
k=0

(
e2πih·z/n

)k

=
1

n

1− (e2πih·z/n)n

1− e2πih·z/n
= 0.

This yields the assertion.
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Proof (Rank-1 lattice rule error). Using the Fourier series representation

f (x) =
∑
h∈Zs

f̂ (h)e2πih·x , f̂ (h) :=
∫
[0,1]s

f (x)e−2πih·x dx ,

and noting that e2πi
{

kz
n

}
·h = e2πikz ·h/n, we can change the order of the

series (note that the Fourier series is absolutely convergent!) to obtain

Qn,s(f )− Is(f ) =
1

n

n−1∑
k=0

f

({
kz
n

})
−
∫
[0,1]s

f (x)dx

=
1

n

n−1∑
k=0

∑
h∈Zs

f̂ (h)e2πih·z/n − f̂ (0)

=
∑
h∈Zs

f̂ (h)
1

n

n−1∑
k=0

e2πih·z/n︸ ︷︷ ︸
=1 if h·z≡0 (mod n)

=0 otherwise

− f̂ (0)

=
∑
h∈Zs

h·z≡0 (mod n)

f̂ (h)− f̂ (0) =
∑

h∈Zs\{0}
h·z≡0 (mod n)

f̂ (h).

153



Ultimately, we are interested in applying lattice rules for non-periodic,
smooth functions. We will need to put in a bit more effort to make this
method work in the non-periodic setting...
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Worst-case error and reproducing kernel Hilbert space (RKHS)
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Worst-case error

In the classical study of quadrature and cubature rules, we usually consider
the so-called worst-case error. Suppose that f ∈ H, where H is a Hilbert
space continuously embedded in C ([0, 1]s). Let Is : H → R be an integral
operator

Is f :=

∫
[0,1]s

f (x)dx

and let Qn,s : H → R be a QMC rule

Qn,s f :=
1

n

n−1∑
i=0

f (t i ),

where P := {t i ∈ [0, 1]s | 0 ≤ i ≤ n − 1} is a collection of cubature nodes.
The worst-case error of cubature rule Qn,s in H is defined by

en,s(P;H) := sup
f ∈H

∥f ∥H≤1

|Is f − Qn,s f |.

Note that this is precisely the operator norm of ∥Is − Qn,s∥H→R.
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Since the worst-case error is just the operator norm of Is − Qn,s , we can
express the cubature error as

|Is f − Qn,s f | ≤ en,s(P;H)∥f ∥H .

Worst-case errors are in general hard to compute – except for the special
case, when H is a reproducing kernel Hilbert space (RKHS).

Our strategy will be to choose the Hilbert space H (where our integrand f
lives) to be such that it is possible to write down the expression for
en,s(P;H) explicitly given a family of QMC rules. This allows us to
analyze the dependence of the cubature error w.r.t. n and s.

We will end up taking H as an unanchored, weighted Sobolev space since
this choice turns out to be “compatible” with the family of (randomly
shifted) lattice rules!
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Reproducing kernel Hilbert space (RKHS)

Let H be a Hilbert space of functions on D ⊆ Rs , with the property that
every point evaluation is a bounded linear functional. That is, for any
y ∈ D, let

Ty (f ) := f (y) for all f ∈ H.

Then, since Ty is a bounded linear functional, by Riesz representation
theorem there exists a unique representer ay := K (·, y) ∈ H such that

Ty (f ) = ⟨f , ay ⟩ = ⟨f ,K (·, y)⟩ for all f ∈ H.

The function K (x , y) is known as the reproducing kernel of H.

Definition (Reproducing kernel)

A reproducing kernel of a Hilbert space H of functions on D ⊆ Rs is a
function K : D × D → R which satisfies

K (·, y) ∈ H for all y ∈ D

and f (y) = ⟨f ,K (·, y)⟩ for all f ∈ H and y ∈ D.

The latter property is known as the reproducing property. 158



Remarks

A reproducing kernel Hilbert space (RKHS) is a Hilbert space
equipped with a reproducing kernel, or equivalently, it is a Hilbert
space in which every point evaluation is a bounded linear functional.

For any other bounded linear functional A : H → R, its representer
a ∈ H satisfying A(f ) = ⟨f , a⟩ for all f ∈ H is given by

a(y) = ⟨a,K (·, y)⟩ = ⟨K (·, y), a⟩ = A(K (·, y)) for all y ∈ D.

Any reproducing kernel K (x , y) is symmetric in its arguments:

K (x , y) = K (y , x) for all x , y ∈ D.

Proof. For fixed y ∈ D, apply the reproducing property to the
function f = K (·, y) to get

K (x , y) = f (x) = ⟨f ,K (·, x)⟩ = ⟨K (·, y), ⟨K (·, x)⟩
= ⟨K (·, x),K (·, y)⟩ = K (y , x).

159



Example

Suppose that we have a Hilbert space containing continuous functions on
[0, 1] with square-integrable first order derivatives, equipped with the inner
product

⟨f , g⟩ =
(∫ 1

0
f (x) dx

)(∫ 1

0
g(x)dx

)
+

∫ 1

0
f ′(x)g ′(x) dx .

Then this space has the reproducing kernel

K (x , y) = 1 + η(x , y), η(x , y) = 1
2B2(|x − y |) + (x − 1

2)(y −
1
2),

where B2(x) := x2 − x + 1
6 denotes the Bernoulli polynomial of degree 2.

That is, we claim that

⟨f ,K (·, y)⟩ = f (y) for all y ∈ [0, 1].
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Example (continued)

By observing that∫ 1

0

K(x , y)dx = 1 and
∂

∂x
K(x , y) = x − 1

2
− 1

2
sign(x − y),

there holds

⟨f ,K(·, y)⟩ =
(∫ 1

0

f (x)dx

)(∫ 1

0

K(x , y) dx

)
︸ ︷︷ ︸

=1

+

∫ 1

0

f ′(x)

(
x − 1

2
− 1

2
sign(x − y)

)
dx

=

∫ 1

0

f (x)dx +

∫ 1

0

f ′(x)x dx − 1

2

∫ 1

0

f ′(x) dx +
1

2

∫ y

0

f ′(x) dx − 1

2

∫ 1

y

f ′(x)dx

=
��

���
∫ 1

0

f (x)dx +��f (1)−
��

���
∫ 1

0

f (x)dx −
�
��

1

2
f (1) +

�
��

1

2
f (0) +

1

2
f (y)−

�
��

1

2
f (0)−

�
��

1

2
f (1) +

1

2
f (y)

= f (y)

for all y ∈ [0, 1], as desired.
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Theorem

Let H := Hs(K ) be an RKHS and let K : [0, 1]s × [0, 1]s → R be a
reproducing kernel that satisfies∫

[0,1]s

∫
[0,1]s

K (x , y) dx dy <∞.

Then

e2n,s(P;Hs(K )) =

∫
[0,1]s

∫
[0,1]s

K (x , y) dx dy − 2

n

n−1∑
i=0

∫
[0,1]s

K (t i , y) dy

+
1

n2

n−1∑
i=0

n−1∑
j=0

K (t i , t j).

(2)

162



Proof. For f ∈ H, we apply the reproducing property f (tk) = ⟨f ,K (·, tk)⟩H
and average the results to obtain

Qn,s f =
1

n

n−1∑
k=0

f (tk) =
1

n

n−1∑
k=0

⟨f ,K (·, tk)⟩H =

〈
f ,

1

n

n−1∑
k=0

K (·, tk)
〉

H

. (3)

Similarly, we find that

Is f =

∫
[0,1]s

f (x) dx =

∫
[0,1]s
⟨f ,K (·, x)⟩H dx =

〈
f ,

∫
[0,1]s

K (·, x) dx
〉

H

,

(4)

which holds provided that
∫
[0,1]s K (·, x) dx ∈ H. However, this is

guaranteed by our assumption since∥∥∥∥∫
[0,1]s

K (·, x)dx
∥∥∥∥2
H

=

∫
[0,1]s

∫
[0,1]s
⟨K (·, x),K (·, y)⟩H dx dy

=

∫
[0,1]s

∫
[0,1]s

K (x , y) dx dy <∞,

which will hold for all the kernels we shall consider.
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Taking the difference of (3) and (4) yields

Is f − Qn,s f =

〈
f ,

∫
[0,1]s

K (·, x)dx − 1

n

n−1∑
i=0

K (·, t i )
〉

H

= ⟨f , ξ⟩H ,

where

ξ(y) :=
∫
[0,1]s

K (x , y) dx − 1

n

n−1∑
i=0

K (y , t i ), y ∈ [0, 1]s

is called the representer of the integration error since

en,s(P;H) = sup
∥f ∥≤1

|⟨f , ξ⟩H | = ∥ξ∥H .

Especially, the supremum is attained by f = ξ/∥ξ∥ ∈ H and we obtain

e2n,s(P;H) =

∥∥∥∥∫
[0,1]s

K (·, x) dx − 1

n

n−1∑
i=0

K (x , t i )
∥∥∥∥2

=

∫
[0,1]s

∫
[0,1]s

K (x , y) dx dy− 2

n

n−1∑
i=0

∫
[0,1]s

K (x , t i ) dx+
1

n2

n−1∑
i=0

n−1∑
j=0

K (t i , t j),

as desired.
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Randomly shifted rank-1 lattice points

In what follows, we will discuss randomly shifted QMC rules.

Consider the rank-1 lattice point set tk := {kz
n } for some generating vector

z ∈ Ns and fixed n ∈ N. Given a vector ∆ ∈ [0, 1]s , known as the shift,
the ∆-shift of the QMC points t0, . . . , tn−1 is defined as the point set

{tk +∆}, k = 0, . . . , n − 1.

Shifting preserves the lattice structure. In practice, we will generate a
number of independent random shifts ∆0, . . . ,∆R−1 from U([0, 1]s) and
take the average of ∆0, . . . ,∆R−1-shifted QMC rules as our
approximation of Is .

Advantages:

Leads to a shift-invariant kernel (advantageous for high-dimensional
computation).

Randomization yields an unbiased estimator of the integral.

Randomization provides a practical error estimate.
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Shifted rank-1 lattice rules have points{
kz
n

+∆

}
, k = 0, . . . , n − 1.

Use a number of random shifts for error estimation.
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Lattice rule shifted by ∆ = (0.1, 0.3).
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Randomization in practice

Generate R independent random shifts ∆0, . . . ,∆R−1 from U([0, 1]s).
For a given QMC rule with points (t i )n−1

i=0 ⊂ [0, 1]s , form the

approximations Q
(0)
n,s f , . . . ,Q

(R−1)
n,s f , where

Q∆r
n,s f =

1

n

n−1∑
i=0

f ({t i +∆r}), r = 0, . . . ,R − 1,

is the approximation of the integral using a ∆r -shift of the original
QMC rule.
We take the average

Qn,s,R f =
1

R

R−1∑
r=0

Q∆r
n,s f

as our final approximation of the integral.
An unbiased estimate for the mean-square error of Qn,s,R f is given by

E∆|Is f − Q∆
n,s f |2 ≈

1

R(R − 1)

R−1∑
r=0

(Q∆r
n,s f − Qn,s,R f )

2.
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Q∆0
n,s f = 1

n

∑n−1
i=0 f ({t i +∆0}), Q∆1

n,s f = 1
n

∑n−1
i=0 f ({t i +∆1}), Q∆2

n,s f = 1
n

∑n−1
i=0 f ({t i +∆2})

QMC approximation with 3 random shifts: Qn,s,3f =
Q

∆0
n,s f+Q

∆1
n,s f+Q

∆2
n,s f

3
.
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Q∆0
n,s f = 1

n

∑n−1
i=0 f ({t i +∆0}), Q∆1

n,s f = 1
n

∑n−1
i=0 f ({t i +∆1}), Q∆2

n,s f = 1
n

∑n−1
i=0 f ({t i +∆2})

QMC approximation with 3 random shifts: Qn,s,3f =
Q

∆0
n,s f+Q

∆1
n,s f+Q

∆2
n,s f

3
.
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Q∆0
n,s f = 1

n

∑n−1
i=0 f ({t i +∆0}), Q∆1

n,s f = 1
n

∑n−1
i=0 f ({t i +∆1}), Q∆2

n,s f = 1
n

∑n−1
i=0 f ({t i +∆2})

QMC approximation with 3 random shifts: Qn,s,3f =
Q

∆0
n,s f+Q

∆1
n,s f+Q

∆2
n,s f

3
.
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Q∆0
n,s f = 1

n

∑n−1
i=0 f ({t i +∆0}), Q∆1

n,s f = 1
n

∑n−1
i=0 f ({t i +∆1}), Q∆2

n,s f = 1
n

∑n−1
i=0 f ({t i +∆2})

QMC approximation with 3 random shifts: Qn,s,3f =
Q

∆0
n,s f+Q

∆1
n,s f+Q

∆2
n,s f

3
.
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Q∆0
n,s f = 1

n

∑n−1
i=0 f ({t i +∆0}), Q∆1

n,s f = 1
n

∑n−1
i=0 f ({t i +∆1}), Q∆2

n,s f = 1
n

∑n−1
i=0 f ({t i +∆2})

QMC approximation with 3 random shifts: Qn,s,3f =
Q

∆0
n,s f+Q

∆1
n,s f+Q

∆2
n,s f

3
.
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Shift-averaged worst-case error

For any QMC point set P = {t0, . . . , tn−1} and any shift ∆ ∈ [0, 1]s , let

P +∆ := {{t i +∆} | i = 0, 1, . . . , n − 1}
denote the shifted QMC point set, and let Q∆

n,s f denote a corresponding
shifted QMC rule (over the point set P +∆). For any integrand f ∈ H, it
follows from the definition of the worst-case error that

|Is f − Qn,s(∆; f )| ≤ en,s(P +∆;H)∥f ∥H ,
where en,s(P +∆;H) := sup∥f ∥H≤1 |Is(f )− Q∆

n,s f |. We deduce a bound
for the root-mean-square error√

E∆|Is f − Q∆
n,s f |2 ≤ eshn,s(P;H)∥f ∥H ,

where the expected value E∆ is taken over the random shift ∆ which is
uniformly distributed over [0, 1]s and the quantity

eshn,s(P;H) :=

√∫
[0,1]s

e2n,s(P +∆;H) d∆

is called the shift-averaged worst-case error. 173



Theorem (Formula for the shift-averaged worst-case error)

[eshn,s(P;Hs(K ))]2 = −
∫
[0,1]s

∫
[0,1]s

K (x , y)dx dy +
1

n2

n−1∑
i=0

n−1∑
j=0

K sh(t i , t j),

where

K sh(x , y) :=
∫
[0,1]s

K ({x +∆}, {y +∆})d∆, x , y ∈ [0, 1]s .

Proof. The definition of shift-averaged WCE and (2) imply

[eshn,s(P;Hs(K))]2 =

∫
[0,1]s

e2n,s(P +∆;H)d∆

=

∫
[0,1]s

∫
[0,1]s

K(x , y)dx dy − 2

n

n−1∑
i=0

∫
[0,1]s

∫
[0,1]s

K({t i +∆}, y) d∆dy

+
1

n2

n−1∑
i=0

n−1∑
j=0

∫
[0,1]s

K({t i +∆}, {t j +∆}) d∆.

The result follows by a change of variables x = {t i +∆} in the second term.
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Remarks

K sh(x , y) :=
∫
[0,1]s

K ({x +∆}, {y +∆})d∆, x , y ∈ [0, 1]s .

The function K sh is actually a reproducing kernel, with the
shift-invariant property

K sh(x , y) = K sh({x +∆}, {y +∆}) for all x , y ,∆ ∈ [0, 1].

Equivalently,

K sh(x , y) = K sh({x − y}, 0) for all x , y ∈ [0, 1].

The function K sh is called the shift-invariant kernel associated with K .
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Weighted Sobolev spaces
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Unanchored, weighted Sobolev space

For our purposes, the relevant function space setting will be the
unanchored, weighted Sobolev space. For any given collection (γu)u⊆{1:s}
of positive numbers (called weights), we associate a space Hs,γ containing
continuous functions on [0, 1]s whose mixed first partial derivatives are
square-integrable. It is defined by the reproducing kernel

Ks,γ(x , y) =
∑

u⊆{1:s}

γu
∏
j∈u

η(xj , yj), η(x , y) := 1
2B2(|x−y |)+(x−1

2)(y−
1
2),

where B2(x) := x2 − x + 1
6 is the Bernoulli polynomial of degree 2.

Norm ∥f ∥s,γ =
√
⟨f , f ⟩s,γ induced by the inner product

⟨f , g⟩s,γ =
∑

u⊆{1:s}

1

γu

∫
[0,1]|u|

(∫
[0,1]s−|u|

∂|u|

∂xu
f (x) dx−u

)

×
(∫

[0,1]s−|u|

∂|u|

∂xu
g(x) dx−u

)
dxu,

where dxu :=
∏

j∈u dxj and dx−u :=
∏

j∈{1:s}\u dxj .
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Remarks

We sum over all 2s possible subsets of the indices {1 : s}. By
convention, an empty product is 1.

Each term of the sum corresponds to a subset of variables
xu = {xj | j ∈ u}. We refer to these as the “active” variables, and
denote the remaining “inactive” variables by x−u.

The cardinality |u| of the set u is referred to as the “order” of the
subset of variables xu. There is a weight parameter γu associated
with every subset of variables xu. The weights together model the
relative importance between different subsets of variables. A small

weight γu means that the L2 norm of ∂|u|f
∂xu

must also be small.

Note that ∥ · ∥s,γ and ∥ · ∥s,cγ are equivalent norms for any c > 0.†

Therefore we do not lose any generality by assuming that the weights
have been normalized s.t. γ∅ = 1. WLOG, we will always use the
convention that γ∅ := 1.

†Here, cγ = (cγu)u⊆{1:s}.
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Special forms of weights

Product weights: we have a sequence of numbers satisfying
γ1 ≥ γ2 ≥ · · · and we take

γu =
∏
j∈u

γj .

In this case, the reproducing kernel is given by the product

Ks,γ(x , y) =
∏
j∈u

(
1 + γjη(xj , yj)

)
.

Finite order weights: there exists q ∈ N s.t. γu = 0 for all |u| > q.
Order dependent weights: we have a sequence of numbers Γ1, Γ2, . . .,
and take

γu = Γ|u|.

Product-and-order dependent (POD) weights: we have two sequences
γ1, γ2, . . . and Γ1, Γ2, . . ., and take

γu = Γ|u|
∏
j∈u

γj .
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Why weighted spaces are interesting

Theorem (Sloan and Woźniakowski 1998)

Consider Hs,γ equipped with product weights γu =
∏

j∈u γj . Then there
exist point sets Pn ⊂ [0, 1]s for n = 1, 2, . . . such that the worst-case error
en,s(Pn;Hs,γ) is bounded independently of s if and only if

∞∑
j=1

γj <∞. (5)

To be more precise, the result has two parts:

If condition (5) does not hold, then no matter how the points are
chosen, the worst-case error is unbounded as s →∞.

However, if (5) holds, then “good points” exist (although the result
does not say how to find them).
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Recall that Hs,γ is defined via the reproducing kernel

Ks,γ(x , y) =
∑

u⊆{1:s}

γu
∏
j∈u

η(xj , yj), η(x , y) := 1
2B2(|x−y |)+(x−1

2)(y−
1
2),

where B2(x) := x2 − x + 1
6 is the Bernoulli polynomial of degree 2.

Lemma ∫
[0,1]s

Ks,γ(x , y)dy = 1,∫
[0,1]s

∫
[0,1]s

Ks,γ(x , y)dx dy = 1,∫
[0,1]s

Ks,γ(x , x) dx =
∑

u⊆{1:s}

γu(
1
6)

|u|.

Proof. Left as an exercise.
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Recall that Hs,γ is defined via the reproducing kernel

Ks,γ(x , y) =
∑

u⊆{1:s}

γu
∏
j∈u

η(xj , yj), η(x , y) := 1
2B2(|x−y |)+(x−1

2)(y−
1
2),

where B2(x) := x2 − x + 1
6 is the Bernoulli polynomial of degree 2.

For our analysis, we will need the shift-invariant kernel associated with Ks,γ .

Lemma

K sh
s,γ(x , y) :=

∫
[0,1]s

Ks,γ({x +∆}, {y +∆})d∆

=
∑

u⊆{1:s}

γu
∏
j∈u

B2(|xj − yj |).

Proof. This is an immediate consequence of∫ 1

0
η({x +∆}, {y +∆}) d∆ = B2(|x − y |).
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Let

P =

{{
kz
n

}
| k = 0, . . . , n − 1

}
be a rank-1 lattice point set corresponding to generating vector z ∈ Ns

and n ∈ N.

When dealing with the shift-invariant kernel corresponding to the
unanchored, weighted Sobolev space Hs,γ , we use the shorthand notation

eshn,s(z) := eshn,s(P;Hs,γ).
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Lemma

The shift-averaged worst-case error for a rank-1 lattice rule in the
weighted unanchored Sobolev space satisfies

[eshn,s(z)]
2 =

1

n

∑
∅̸=u⊆{1:s}

γu

n−1∑
k=0

∏
j∈u

B2

({
kzj
n

})
.

Proof. Let t j =
{ jz

n

}
. We have the kernel

Ks,γ(x , y) =
∑

u⊆{1:s}

γu
∏
j∈u

η(xj , yj), η(x , y) := 1
2B2(|x−y |)+(x−1

2)(y−
1
2),

which satisfies
∫
[0,1]s

∫
[0,1]s Ks,γ(x , y) dx dy = 1. We showed that the

shift-invariant kernel related to K is given by

K sh
s,γ(x , y) =

∑
u⊆{1:s}

γu
∏
k∈u

B2(|xk − yk |).

Moreover, we showed that the shift-averaged WCE is given by

[eshn,s(z)]
2 = −

∫
[0,1]s

∫
[0,1]s

Ks,γ(x , y) dx dy +
1

n2

n−1∑
i=0

n−1∑
j=0

K sh
s,γ(t i , t j).
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Making the obvious substitutions, we arrive at

[eshn,s(z)]
2 =− 1 +

1

n2

n−1∑
i=0

n−1∑
j=0

∑
u⊆{1:s}

γu
∏
k∈u

B2

({
(i − j)zk

n

})
(γ∅ := 1)

=
1

n2

n−1∑
i=0

n−1∑
j=0

∑
∅̸=u⊆{1:s}

γu
∏
k∈u

B2

({
mod(i − j , n)zk

n

})
.

As i and j range from 0 to n − 1, the values of mod(i − j , n) are just
0, . . . , n − 1 in some order (see next slide for illustration), with each value
occurring n times. Thus the double sum can be reduced into a single sum:

[eshn,s(z)]
2 =

1

n

n−1∑
ℓ=0

∑
∅̸=u⊆{1:s}

γu
∏
k∈u

B2

({
ℓzk
n

})
,

as desired.
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An illustration of the counting argument used on the
previous slide

i/j 0 1 2 3 4 · · · n − 1

0 0 1 2 3 4 · · · n − 1
1 n − 1 0 1 2 3 · · · n − 2
2 n − 2 n − 1 0 1 2 · · · n − 3
3 n − 3 n − 2 n − 1 0 1 · · · n − 4
4 n − 4 n − 3 n − 2 n − 1 0 · · · n − 5
...

...
...

...
...

...
. . .

...
n − 1 1 2 3 4 5 · · · 0

Table of the values mod(i − j , n), when i , j ∈ {0, 1, . . . , n − 1}.

By a simple counting argument we can write

n−1∑
i=0

n−1∑
j=0

f (mod(i − j , n)) = n
n−1∑
ℓ=0

f (ℓ)

for any function f : {0, 1, . . . , n − 1} → R.
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Two easy technical results

Lemma (Fourier expansion of the Bernoulli polynomial B2)

B2(x) =
1

2π2

∑
h∈Z\{0}

e2πihx

h2
for x ∈ [0, 1].

Proof. Short argument: let F (x) = 1
2π2

∑
h∈Z\{0}

e2πihx

h2
. Now†

F ′(x) = i
π

∑
h∈Z\{0}

e2πihx

h = 2x − 1, so F (x) = x2 − x + c0. Moreover,

F (0) = 1
6 , so c0 =

1
6 . Hence F (x) = x2 − x + 1

6 = B2(x).

Lemma (“Jensen-like” inequality)

∞∑
k=1

ak ≤
( ∞∑

k=1

aλk

)1/λ

, ak ≥ 0, λ ∈ (0, 1].

Proof. Suppose that
∑∞

k=1 a
λ
k = 1. Then ak ≤ 1 ⇒ ak ≤ aλk

⇒
∑∞

k=1 ak ≤
∑∞

k=1 a
λ
k = 1, and hence

∑∞
k=1 ak ≤

(∑∞
k=1 a

λ
k

)1/λ
. The

general case
∑∞

k=1 a
λ
k = C ∈ R+ follows by applying the same argument

for the scaled sequence ak ← 1
C1/λ ak .

†F is absolutely convergent, so exchanging differentiation and summation is OK. 187



Component-by-component construction

The components of the generating vector z can be restricted to the set

Un := {z ∈ Z | 1 ≤ z ≤ n and gcd(z , n) = 1},

whose cardinality is given by the Euler totient function φ(n) := |Un|.
When n is prime, φ(n) takes its largest value n − 1.

We know that for f ∈ Hs,γ , there holds√
E∆|Is f − Q∆

n,s f |2 ≤ eshn,s(z)∥f ∥s,γ .

Finding z∗ = argminz∈Un
eshn,s(z) is not computationally feasible: the

search space contains altogether up to (n − 1)s possible choices for z .
However, the component-by-component (CBC) construction provides a
feasible way to obtain good lattice generating vectors.
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CBC construction

CBC construction. Given n, s, and weights (γu)u⊆{1:s}.
1. Set z1 = 1.
2. For k = 2, 3, . . . , s, choose zk ∈ Un to minimize [eshn,k(z1, . . . , zk)]

2.
Remarks:

Note that we have the (in principle computable) expression

[eshn,k(z)]
2 =

1

n

∑
∅̸=u⊆{1:k}

γu

n−1∑
ℓ=0

∏
j∈u

B2

({
ℓzj
n

})
. (6)

We will show that when the weights (γu)u⊆{1:s} are so-called product-and-order
dependent (POD) weights, i.e., they can be written in the form

γu := Γ|u|
∏
j∈u

γj , u ⊆ {1 : s},

where γ∅ := 1, (Γk)
∞
k=1 and (γj)

∞
j=1 are sequences of positive numbers, then the

value of (6) can be obtained in O(s n log n + s2n) time using the so-called fast
CBC algorithm. This is quadratic, not exponential, w.r.t. the dimension s.

The CBC algorithm is a greedy algorithm: in general, it will not produce a
generating vector which minimizes eshn,s(z). Regardless, we can produce an error
estimate for the QMC rule based on a generating vector constructed by the CBC
algorithm!
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Theorem (CBC error bound)

The generating vector z ∈ Us
n constructed by the CBC algorithm,

minimizing the squared shift-averaged worst-case error [eshn,s(z)]2 for the
weighted unanchored Sobolev space in each step, satisfies

[eshn,s(z)]
2 ≤

(
1

φ(n)

∑
∅̸=u⊆{1:s}

γλu

(
2ζ(2λ)

(2π2)λ

)|u|)1/λ

for all λ ∈ (1/2, 1],

(1)

where ζ(x) :=
∑∞

k=1 k
−x denotes the Riemann zeta function for x > 1.

Proof. Step s = 1: by direct calculation, it is easy to see that

[eshn,1(z1)]
2 = γ1

6n2
and this is less than or equal to

(
1

φ(n)γ
λ
1

( 2ζ(2λ)
(2π2)λ

))1/λ
for

all n ≥ 1, λ ∈ (1/2, 1], and γ1 > 0. Induction step: suppose that we have
chosen the first s − 1 components z1, . . ., zs−1, and that (1) holds with s
replaced by s − 1.
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We can write the squared worst-case error in dimension-recursive form as

[eshn,s(z1, . . . , zs)]
2 =

1

n

∑
∅̸=u⊆{1:s}

γu

n−1∑
k=0

∏
j∈u

B2

({
kzj
n

})
= [eshn,s−1(z1, . . . , zs−1)]

2 + θ(z1, . . . , zs−1, zs), (2)

where (suppressing the dependence of θ on z1, . . . , zs−1)

θ(zs) :=
∑

s∈u⊆{1:s}

γu

(
1

n

n−1∑
k=0

∏
j∈u

B2

({
kzj
n

}))
(use Fourier expansion of B2)

=
∑

s∈u⊆{1:s}

γu
(2π2)|u|

(
1

n

n−1∑
k=0

∑
hu∈(Z\{0})|u|

e2πikhu·zu/n∏
j∈u h

2
j

)

=
∑

s∈u⊆{1:s}

γu
(2π2)|u|

( ∑
hu∈(Z\{0})|u|

hu·zu≡0 (mod n)

1∏
j∈u h

2
j

)
,

where we used the character property 1
n

∑n−1
k=0 e

2πikh·z/n =

{
1 if h · z ≡ 0 (mod n)

0 otherwise
.

Noting that hu · zu ≡ 0 (mod n) can be written equivalently as
hu\{s} · zu\{s} ≡ −hszs (mod n) for s ∈ u ⊆ {1 : s}, we arrive at...
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θ(zs) =
∑

s∈u⊆{1:s}

γu

(2π2)|u|

( ∑
hs∈Z\{0}

1

h2s

∑
hu\{s}∈(Z\{0})|u|−1

hu\{s}·zu\{s}≡−hszs (mod n)

1∏
j∈u\{s} h

2
j

)
.

If z∗s denotes the value chosen by the CBC algorithm in dimension s, then
we use the following principle:

Averaging argument: The minimum is always smaller than or equal to
the average.
In particular, this implies for all λ ∈ (0, 1] that

[θ(z∗s )]
λ ≤ 1

φ(n)

∑
zs∈Un

[θ(zs)]
λ

≤ 1

φ(n)

∑
zs∈Un

[ ∑
s∈u⊆{1:s}

γu
(2π2)|u|

( ∑
hs∈Z\{0}

1

h2
s

∑
hu\{s}∈(Z\{0})|u|−1

hu\{s}·zu\{s}≡−hs zs (mod n)

1∏
j∈u\{s} h

2
j

)]λ

≤ 1

φ(n)

∑
zs∈Un

∑
s∈u⊆{1:s}

γλ
u

(2π2)|u|λ

∑
hs∈Z\{0}

1

|hs |2λ
∑

hu\{s}∈(Z\{0})|u|−1

hu\{s}·zu\{s}≡−hs zs (mod n)

1∏
j∈u\{s} |hj |2λ

,

where we used the inequality
(∑

k ak
)λ ≤

∑
k a

λ
k , ak ≥ 0, λ ∈ (0, 1].
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We separate the terms depending on whether or not hs is a multiple of n. Note that this
means ∑

hs∈Z\{0}

1

|hs |2λ
=

∞∑
k=−∞
k ̸=0

1

|kn|2λ +
∑

hs∈Z\{0}
hs ̸≡0 (mod n)

1

|hs |2λ

=
2ζ(2λ)

n2λ
+

n−1∑
c=1

∑
hs∈Z\{0}

hs≡c (mod n)

1

|hs |2λ
.

It will be convenient to carry out a change of variable to eliminate the dependence on hs
from the innermost sum on the previous slide. Denote by z−1

s the multiplicative inverse
of zs in Un, i.e., zsz

−1
s ≡ 1 (mod n). Then

1

φ(n)

∑
zs∈Un

∑
s∈u⊆{1:s}

γλ
u

(2π2)|u|λ

∑
hs∈Z\{0}

1

|hs |2λ
∑

hu\{s}∈(Z\{0})|u|−1

hu\{s}·zu\{s}≡−hs zs (mod n)

1∏
j∈u\{s} |hj |2λ

=
∑

s∈u⊆{1:s}

γλ
u

(2π2)|u|λ
2ζ(2λ)

n2λ

∑
hu\{s}∈(Z\{0})|u|−1

hu\{s}·zu\{s}≡0 (mod n)

1∏
j∈u\{s} |hj |2λ

+
1

φ(n)

∑
zs∈Un

n−1∑
c=1

∑
s∈u⊆{1:s}

γλ
u

(2π2)|u|λ

∑
hs∈Z\{0}

hs≡c (mod n)

1

|hs |2λ
∑

hu\{s}∈(Z\{0})|u|−1

hu\{s}·zu\{s}≡−czs (mod n)

1∏
j∈u\{s} |hj |2λ

.
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We separate the terms depending on whether or not hs is a multiple of n. Note that this
means ∑

hs∈Z\{0}

1

|hs |2λ
=

∞∑
k=−∞
k ̸=0

1

|kn|2λ +
∑

hs∈Z\{0}
hs ̸≡0 (mod n)

1

|hs |2λ

=
2ζ(2λ)

n2λ
+

n−1∑
c=1

∑
hs∈Z\{0}

hs≡c (mod n)

1

|hs |2λ
.

It will be convenient to carry out a change of variable to eliminate the dependence on hs
from the innermost sum on the previous slide. Denote by z−1

s the multiplicative inverse
of zs in Un, i.e., zsz

−1
s ≡ 1 (mod n). Then

1

φ(n)

∑
zs∈Un

∑
s∈u⊆{1:s}

γλ
u

(2π2)|u|λ

∑
hs∈Z\{0}

1

|hs |2λ
∑

hu\{s}∈(Z\{0})|u|−1

hu\{s}·zu\{s}≡−hs zs (mod n)

1∏
j∈u\{s} |hj |2λ

=
∑

s∈u⊆{1:s}

γλ
u

(2π2)|u|λ
2ζ(2λ)

n2λ

∑
hu\{s}∈(Z\{0})|u|−1

hu\{s}·zu\{s}≡0 (mod n)

1∏
j∈u\{s} |hj |2λ

+
1

φ(n)

∑
zs∈Un

n−1∑
c=1

∑
s∈u⊆{1:s}

γλ
u

(2π2)|u|λ

∑
hs∈Z\{0}

hs≡−cz−1
s (mod n)

1

|hs |2λ
∑

hu\{s}∈(Z\{0})|u|−1

hu\{s}·zu\{s}≡c (mod n)

1∏
j∈u\{s} |hj |2λ

.
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For c ∈ {1, . . . , n−1}, {mod(cz−1
s , n) : zs ∈ Un} = {mod(cz , n) : z ∈ Un}

and gcd(c/g , n/g) = 1 with g = gcd(c , n). We obtain∑
zs∈Un

∑
hs∈Z\{0}

hs≡−cz−1
s (mod n)

1

|hs |2λ
=

∑
z∈Un

∑
hs∈Z\{0}

hs≡−cz (mod n)

1

|hs |2λ

=
∑
z∈Un

∑
m∈Z

1

|mn − cz |2λ

= g−2λ
∑
z∈Un

∑
m∈Z

1

|m(n/g)− (c/g)z |2λ

= g−2λ
∑
z∈Un

∑
h∈Z\{0}

h≡−(c/g)z (mod n/g)

1

|h|2λ

≤ g−2λg

n/g−1∑
a=1

∑
h∈Z\{0}

h≡a (mod n/g)

1

|h|2λ
≤ g1−2λ

∑
h∈Z\{0}

1

|h|2λ
≤ 2ζ(2λ),

where the last step holds since g ≥ 1 and λ > 1/2. (The condition
λ > 1/2 is needed to ensure that ζ(2λ) < ∞.) 196



Hence

[θ(z∗s )]
λ ≤

∑
s∈u⊆{1:s}

γλu
(2π2)|u|λ

2ζ(2λ)

n2λ

∑
hu\{s}∈(Z\{0})|u|−1

hu\{s}·zu\{s}≡0 (mod n)

1∏
j∈u\{s} |hj |2λ

+
1

φ(n)

∑
s∈u⊆{1:s}

γλu
(2π2)|u|λ

2ζ(2λ)
∑

hu\{s}∈(Z\{0})|u|−1

hu\{s}·zu\{s} ̸≡0 (mod n)

1∏
j∈u\{s} |hj |2λ

≤ 1

φ(n)

∑
s∈u⊆{1:s}

γλu

(
2ζ(2λ)

(2π2)λ

)|u|
,

where we used 1
n2λ

≤ 1
φ(n) for n ≥ 1 and λ ∈ (1/2, 1].†

†φ(n) ≤ n ≤ n2λ ⇒ 1
n2λ

≤ 1
φ(n)

.
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Returning to our original dimension-wise decomposition (2), using the
bound on θ(z∗s ) and the induction hypothesis yield

[eshn,s(z1, . . . , zs)]
2 = [eshn,s−1(z1, . . . , zs−1)]

2 + θ(z1, . . . , zs−1, zs)

≤
(

1

φ(n)

∑
∅̸=u⊆{1:s−1}

γλ
u

(
2ζ(2λ)

(2π2)λ

)|u|)1/λ

+

(
1

φ(n)

∑
s∈u⊆{1:s}

γλ
u

(
2ζ(2λ)

(2π2)λ

)|u|)1/λ

≤
(

1

φ(n)

∑
∅̸=u⊆{1:s−1}

γλ
u

(
2ζ(2λ)

(2π2)λ

)|u|

+
1

φ(n)

∑
s∈u⊆{1:s}

γλ
u

(
2ζ(2λ)

(2π2)λ

)|u|)1/λ

=

(
1

φ(n)

∑
∅̸=u⊆{1:s}

γλ
u

(
2ζ(2λ)

(2π2)λ

)|u|)1/λ

,

proving the assertion.
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Significance: Suppose that f ∈ Hs,γ for all γ = (γu)u⊆{1:s}. Then for any
given sequence of weights γ, we can use the CBC algorithm to obtain a
generating vector satisfying the error bound√

E∆|Is f − Q∆
n,s f |2 ≤

(
1

φ(n)

∑
∅̸=u⊆{1:s}

γλu

(
2ζ(2λ)

(2π2)λ

)|u|)1/(2λ)

∥f ∥s,γ (3)

for all λ ∈ (1/2, 1]. We can use the following strategy:

For a given integrand f , estimate the norm ∥f ∥s,γ .
Find weights γ which minimize the error bound (3).
Using the optimized weights γ as input, use the CBC algorithm to
find a generating vector which satisfies the error bound (3).

Remarks:

If n is prime, then 1
φ(n) =

1
n−1 . If n = 2k , then 1

φ(n) =
2
n . For general

(composite) n ≥ 3, 1
φ(n) ≤

eγ log log n+ 3
log log n

n , where

γ = 0.57721566 . . . (Euler–Mascheroni constant).
The optimal convergence rate close to O(n−1) is obtained with
λ → 1/2, but note that λ = 1/2 is not permitted since ζ(2λ) → ∞
as λ → 1/2.
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Let a, b ∈ Z and m ∈ Z+. Recall that

a ≡ b (mod m) ⇔ a− b

m
∈ Z ⇔ a = km + b for some k ∈ Z.

Theorem (Bézout’s identity)

Let a, b ∈ Z. Then there exist x , y ∈ Z such that ax + by = gcd(a, b).

Corollary

Let a, b ∈ Z and m ∈ Z+.

The linear congruence ax ≡ b (mod m) has a solution if and only if
gcd(a,m)|b.
If gcd(a,m)|b, then there are exactly gcd(a,m) solutions modulo m
to the linear congruence ax ≡ b (mod m).

Let z , n ∈ N be such that gcd(z , n) = 1. Then the above corollary implies
that the linear congruence

zx ≡ 1 (mod n)

has exactly one solution (modulo n). This solution is called the modular
multiplicative inverse and it is often denoted by z−1 := x .
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Let f ∈ Hs,γ , where we assume that the positive weights γ := (γu)u⊆{1:s}
have the following product-and-order dependent (POD) form

γu := Γ|u|
∏
j∈u

γj , u ⊆ {1 : s},

where (Γk)
s
k=0 and (γj)

s
j=1 are positive numbers such that Γ0 = 1 and the

empty product is interpreted as 1.

A randomly shifted rank-1 lattice rule with generating vector z ∈ Ns

satisfies the error bound√
E∆|Is f − Q∆

n,s f |2 ≤ eshn,s(z)∥f ∥s,γ ,

where the squared shift-averaged worst-case error in the weighted
unanchored Sobolev space is given by the formula

[eshn,s(z)]
2 =

1

n

n−1∑
k=0

∑
∅̸=u⊆{1:s}

γu
∏
j∈u

B2

({
kzj
n

})
,

with B2(x) = x2 − x + 1
6 denoting the Bernoulli polynomial of degree 2.
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The components of the generating vector z can be restricted to the set

Un := {z ∈ Z | 1 ≤ z ≤ n and gcd(z , n) = 1},

whose cardinality is given by the Euler totient function φ(n) := |Un|.
Component-by-component (CBC) construction.
Given n, s, and weights (γu)u⊆{1:s}, do

1. Set z1 = 1.

2. With z1 fixed, choose z2 ∈ Un to minimize [eshn,2(z1, z2)]
2.

3. With z1 and z2 fixed, choose z3 ∈ Un to minimize [eshn,3(z1, z2, z3)]
2.

...

From the previous lecture, we know that the generating vector obtained
using the CBC algorithm satisfies a certain a priori cubature error bound.

This week’s lecture: How to implement the CBC algorithm efficiently for
POD weights and prime n?

Remark: The so-called POD weights arise in the context of elliptic PDEs
with random coefficients (next week’s lecture), hence our interest in
weights having this abstract form.
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Our strategy will be as follows:

First, we will describe a computationally inefficient version of the
CBC algorithm. This will serve as a basis for a more efficient
implementation.

We will address the computational bottlenecks inherent in the näıve
implementation of the CBC algorithm in order to construct an
implementation of the so-called fast CBC algorithm.

For the fast CBC algorithm, we will require some sophisticated
mathematical machinery (specifically, an algorithm for computing a
primitive root modulo n and carrying out circulant matrix-vector
multiplication using the fast Fourier transform), which will be discussed
later on.
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Näıve CBC construction
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We write the error criterion as

[eshn,d(z1, . . . , zd)]
2 =

1

n

n−1∑
k=0

∑
∅ ̸=u⊆{1:d}

γu
∏
j∈u

B2

({
kzj
n

})

=
1

n

n−1∑
k=0

d∑
ℓ=1

∑
|u|=ℓ

u⊆{1:d}

γu
∏
j∈u

B2

({
kzj
n

})
︸ ︷︷ ︸

=:pd,ℓ(k)

.

By plugging in the POD weights γu := Γ|u|
∏

j∈u γj , note that we have the following
recursion (we split the sum over u in two parts depending on whether d ∈ u):

pd,ℓ(k) =
∑
|u|=ℓ

u⊆{1:d}

Γℓ

(∏
j∈u

γjB2

({
kzj
n

}))

=
∑
|u|=ℓ

u⊆{1:d−1}

Γℓ

(∏
j∈u

γjB2

({
kzj
n

}))

+
∑

|u|=ℓ−1
u⊆{1:d−1}

ΓℓγdB2

({
kzd
n

})(∏
j∈u

γjB2

({
kzj
n

}))

= pd−1,ℓ(k) +
Γℓ

Γℓ−1
γdB2

({
kzd
n

})
pd−1,ℓ−1(k).
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Plugging the recurrence

pd ,ℓ(k) = pd−1,ℓ(k) +
Γℓ
Γℓ−1

γdB2

({
kzd
n

})
pd−1,ℓ−1(k)

into the expression for the squared shift-averaged WCE yields

[eshn,d(z1, . . . , zd)]
2 =

1

n

n−1∑
k=0

d∑
ℓ=1

pd ,ℓ(k)

=
1

n

n−1∑
k=0

d∑
ℓ=1

pd−1,ℓ(k) +
1

n

n−1∑
k=0

d∑
ℓ=1

Γℓ
Γℓ−1

γdB2

({
kzd
n

})
pd−1,ℓ−1(k)

= [eshn,d−1(z1, . . . , zd−1)]
2 +

1

n

n−1∑
k=0

B2

({
kzd
n

}) d∑
ℓ=1

Γℓ
Γℓ−1

γdpd−1,ℓ−1(k).

Recall that in the d th step of the CBC algorithm, the components
z1, . . . , zd−1 are fixed and it is therefore sufficient to find zd ∈ Un which
minimizes the expression

∑n−1
k=0 B2

({
kzd
n

})∑d
ℓ=1

Γℓ
Γℓ−1

γdpd−1,ℓ−1(k).
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Let us introduce the matrix Ωn :=
[
B2

({
kz
n

})]
z∈Un

k∈{0,...,n−1}
and define a set

of n-vectors recursively via

pd ,ℓ = pd−1,ℓ + γd
Γℓ
Γℓ−1

Ωn(zd , :). ∗ pd−1,ℓ−1

starting from the initial values

pd ,0 = 1n for all d ≥ 1,

pd ,ℓ = 0n for all d ≥ 1 and ℓ > d ,

with .∗ denoting the componentwise product between two vectors.

Then the value of
∑n−1

k=0 B2

({
kzd
n

})∑d
ℓ=1

Γℓ
Γℓ−1

γdpd−1,ℓ−1(k) in the d th

step of the CBC algorithm can be obtained for all zd ∈ Un via

Ωnx , where x =
d∑

ℓ=1

Γℓ
Γℓ−1

γdpd−1,ℓ−1.
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CBC algorithm – näıve version

1. Define the matrix Ωn :=
[
B2

({
kz
n

})]
z∈Un

k∈{0,...,n−1}
and initialize the

n-vectors

pd ,0 = 1n for all d ≥ 1,

pd ,ℓ = 0n for all d ≥ 1 and ℓ > d .

for d = 1, . . . , s, do
2. Pick the value zd ∈ {1, . . . , n − 1} corresponding to the smallest entry

in the matrix-vector product

Ωnx , where x =
d∑

ℓ=1

Γℓ
Γℓ−1

γdpd−1,ℓ−1. (1)

3. Update pd,ℓ = pd−1,ℓ + γd
Γℓ

Γℓ−1
Ωn(zd , :). ∗ pd−1,ℓ−1.

end for

Remarks: We only need the ratio aℓ :=
Γℓ

Γℓ−1
for the implementation, e.g.,

for Γℓ = ℓ! this is aℓ = ℓ. The computational bottleneck is the dense
matrix-vector product Ωnx in (1), which has complexity O(n2). The fast
CBC algorithm reduces this product down to O(n log n) complexity.
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Fast CBC algorithm
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What makes fast CBC fast?

The matrix-vector product Ωnx has time complexity O(n2), which is too
slow if n is, say, of the order of a million or more. (Not to mention the
problem of storing a dense matrix of such size!)

However, the matrix Ωn has a lot of structure. It turns out that we can
implement the matrix-vector product Ωnx in O(n log n) time using some
sophisticated mathematical tools.

In a nutshell, we let n ≥ 3 be prime and do the following:

Using some natural symmetries of Ωn, we can ignore the first column
(since it corresponds to shifting the objective functional in the CBC
minimization step by a constant value) and it will be sufficient to
consider only the top-left block Ω′

n := Ωn(1 : m, 2 : m+ 1), where
m := (n − 1)/2.
For prime n, we can find a generator g (primitive root modulo n) and
use this to permute Ω′

n into a circulant matrix.
A circulant matrix implements a circular convolution, so a
matrix-vector product (in the permuted indexing) can be implemented
in O(n log n) time using the fast Fourier transform (FFT). 212



Before getting to the implementational details of fast CBC, we will need to

discuss an algorithm to find a primitive root modulo n;

discuss how to compute a circulant matrix-vector product using FFT.
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Primitive root modulo n

Definition

Let g , n ∈ N. The number g is called a primitive root modulo n if for any
integer a ∈ N such that gcd(a, n) = 1, there exists an integer k (called the
index) such that

gk ≡ a (mod n).

Such a number g is the generator of the multiplicative group of integers
modulo n, i.e., (Z/nZ)×.

Theorem (Gauss 1801)

A primitive root modulo n exists if and only if

n is 1, 2, 4, or

n = pk , where p ≥ 3 is a prime and k ∈ N, or
n = 2pk , where p ≥ 3 is a prime and k ∈ N.

Note especially that a primitive root modulo n exists whenever n is prime.
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Recall that the Euler totient function is defined by
φ(n) := |{k ∈ N | 1 ≤ k ≤ n, gcd(k, n) = 1}|. We have the following.

Proposition

The number g is a primitive root modulo n if and only if the smallest
positive integer k for which gk ≡ 1 (mod n) is precisely k = φ(n).

Lagrange’s theorem: the smallest k satisfying gk ≡ 1 (mod n) divides
φ(n). Therefore, it is enough to check for all proper divisors d |φ(n) that
gd ̸≡ 1 (mod n).

However, we can do even better!
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Find the prime number factorization φ(n) = pa11 · · · paℓℓ . It turns out that it

is enough to check that gd ̸≡ 1 (mod n) for all d ∈
{φ(n)

p1
, . . . , φ(n)pℓ

}
. To

see this, let d be any proper divisor of φ(n). Then there exists j such that

d |φ(n)pj
, meaning that dk = φ(n)

pj
for some k ∈ N. However, if

gd ≡ 1 (mod n), we would get

g
φ(n)
pj ≡ gdk ≡ (gd)k ≡ 1k ≡ 1 (mod n).

That is, if g was not a primitive root, then one could find a number of the

form φ(n)
pj

for which g
φ(n)
pj ≡ 1 (mod n).

∴ It is enough to check that g
ϕ(n)
pj ̸≡ 1 (mod n) for all j ∈ {1, . . . , ℓ}.
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Algorithm for finding a primitive root modulo n

1. Find the prime number factorization φ(n) = pa11 · · · paℓℓ .

Iterate through all numbers g = 1, 2, . . . , n − 1 and, for each number,
check whether it is a primitive root by doing the following:

2. Calculate mod(g
φ(n)
pj , n) for all j ∈ {1, . . . , ℓ}.

3. If all the calculated values are different from 1, then g is a primitive
root.

Remark: In Python, the quantities in step 2 can be computed, e.g., via
pow(g,sympy.totient(n)/pj,n)
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Discrete and fast Fourier transform

The discrete Fourier transform of (complex) vector x := (xj)
n
j=1 is defined

as the vector y := (yj)
n
j=1 with

yj =
n∑

k=1

xke
−2πi(j−1)(k−1)/n, j ∈ {1, . . . , n},

and the inverse discrete Fourier transform is given by

xj =
1

n

n∑
k=1

yke
2πi(j−1)(k−1)/n, j ∈ {1, . . . , n}.

The fast Fourier transform (FFT) can be used to carry out these
operations in O(n log n) time. In Python, one has y = numpy.fft.fft(x)
and x = numpy.fft.ifft(y).
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Circular convolution

Let x := (xi )
n
i=1 and y := (yi )

n
i=1 be (complex) vectors. Then the

sequence z := (zi )
n
i=1 defined by

zi =
n∑

k=1

xkymod(i−k,n)+1, i ∈ {1, . . . , n},

is called the circular convolution of x and y and we denote it by z := x ⋆ y .

Similarly to the continuous convolution, we have the following identity
using discrete/fast Fourier transform:

fft(x ⋆ y) = fft(x).∗fft(y),

where x .∗y := (xiyi )
n
i=1 is the pointwise product of two vectors.
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Circular convolution and circulant matrices

A matrix A ∈ Rn×n is called circulant if it has the form

A =


a0 an−1 · · · a2 a1
a1 a0 an−1 a2
... a1 a0

. . .
...

an−2
. . .

. . . an−1

an−1 an−2 · · · a1 a0

 .

Each row is equal to the row above shifted to the right by one
(wrapping around the edge in a periodic way).

The first column/row contains all information about the matrix.

A circulant matrix implements a circular convolution:

Ax = a ⋆ x , (2)

where a := [a0, a1, . . . , an−1]
T is the first column of matrix A.

The identity (2) implies that a circulant matrix-vector product can be
implemented in O(n log n) time as Ax = ifft(fft(a).∗fft(x)).
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Putting it all together

The matrix-vector product Ωnx in the CBC loop costs O(n2) operations.
However, it was shown by Kuo, Nuyens, and Cools (2006) that the blocks
of Ωn can be permuted into circulant form → the matrix-vector product
can be implemented in O(n log n) operations using FFT.

Figure: Example with Ω17. Note that the first column is a constant and can be
left out (the components of Ωnx are shifted by a constant → the smallest
component stays invariant). Noting the obvious symmetries in the remaining four
blocks, we can focus on the top left block.
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When n is prime, it is possible to use the so-called Rader transformation to
permute the block matrices into circulant form. The permutation matrices
can be easily obtained by computing the generator, i.e., primitive root
modulo n.

Figure: The original block matrix is multiplied from both sides by Rader
permutation matrices (the black elements indicate the value 1 and white elements
indicate the value 0) to obtain a circulant matrix.
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Example with n = 1009

Figure: LHS: Original Ω1009. RHS: top left block of Ω1009 (sans first column).

Figure: Rader transformation turns the top left block matrix circulant.
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Python implementation given in the file fastcbc.py available on the
course webpage!
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The overall cost of the CBC algorithm with POD weights is
O(s n log n + s2n).

For simplicity, we considered only the case where n is prime. An
extension for composite n was discussed by Nuyens and Cools
(J. Complexity 2006). The idea for composite n is that the complete
matrix Ωn can be partitioned in blocks which have a circulant or
block-circulant structure. The special case of n being a power of 2
has been discussed by Cools, Kuo, and Nuyens (SIAM
J. Sci. Comput. 2006).

There also exist freely available software implementing the fast CBC
construction, cf., e.g.,
https://people.cs.kuleuven.be/~dirk.nuyens/qmc4pde/,
https://people.cs.kuleuven.be/~dirk.nuyens/fast-cbc/,
https://qmcpy.org/, . . .
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Recap: Suppose that f ∈ Hs,γ for all γ = (γu)u⊆{1:s}. The unanchored,
weighted Sobolev space Hs,γ is equipped with the norm

∥f ∥2s,γ :=
∑

u⊆{1:s}

1

γu

∫
[0,1]|u|

(∫
[0,1]s−|u|

∂|u|

∂yu

f (y) dy−u

)2

dyu.

For any given sequence of weights γ, we can use the CBC algorithm
(implementational details were considered during the 7th lecture) to obtain
a generating vector for a randomly shifted rank-1 lattice QMC rule
satisfying the error bound√

E∆|Is f − Q∆
n,s f |2 ≤

(
1

φ(n)

∑
∅̸=u⊆{1:s}

γλu

(
2ζ(2λ)

(2π2)λ

)|u|)1/(2λ)

∥f ∥s,γ (1)

for all λ ∈ (1/2, 1]. We can use the following strategy:

For a given integrand f , estimate the norm ∥f ∥s,γ .
Find weights γ which minimize the error bound (1).

Using the optimized weights γ as input, use the CBC algorithm to
find a generating vector which satisfies the error bound (1).
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Application to parametric PDE problems
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For the application of QMC methods to parametric PDE problems, we
follow the survey papers

F. Y. Kuo and D. Nuyens. Application of quasi-Monte Carlo methods
to elliptic PDEs with random diffusion coefficients - a survey of
analysis and implementation. Found. Comput. Math. 16:1631–1696,
2016. arXiv version: https://arxiv.org/abs/1606.06613

F. Y. Kuo and D. Nuyens. Application of quasi-Monte Carlo methods
to PDEs with random coefficients – an overview and tutorial. In:
A. Owen and P. Glynn (eds), Monte Carlo and Quasi-Monte Carlo
Methods 2016, pp. 53–71. arXiv version:
https://arxiv.org/abs/1710.10984
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Let us first consider applying QMC for the uniform and affine model
problem discussed during week 4.
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Recall the uniform and affine model: let D ⊂ Rd , d ∈ {2, 3}, be a
bounded Lipschitz domain, let f ∈ L2(D), and let
U := [−1/2, 1/2]N := {(aj)j≥1 : −1/2 ≤ aj ≤ 1/2} be a set of parameters.
Consider the problem of finding, for all y ∈ U, u(·, y) ∈ H1

0 (D) such that∫
D
a(x , y)∇u(x , y) · ∇v(x) dx =

∫
D
f (x)v(x)dx for all v ∈ H1

0 (D),

where the diffusion coefficient has the parameterization

a(x , y) := a0(x) +
∞∑
j=1

yjψj(x), x ∈ D, y ∈ U,

where a0 ∈ L∞(D), there exist amin, amax > 0
s.t. 0 < amin ≤ a(x , y) ≤ amax <∞ for all x ∈ D and y ∈ U, and the
stochastic fluctuations ψj : D → R are functions of the spatial variable
such that

ψj ∈ L∞(D) for all j ∈ N,∑∞
j=1 ∥ψj∥L∞(D) <∞,∑∞
j=1 ∥ψj∥pL∞(D) <∞ for some p ∈ (0, 1).
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Total error decomposition

In practice, we need to truncate the infinite-dimensional parametric vector
y ∈ [−1/2, 1/2]N to a finite number of terms. Moreover, the PDE needs
to be discretized spatially using, e.g., the finite element method.

Let us(y) := us(y1, . . . , ys , 0, 0, . . .) denote the dimensionally-truncated
PDE solution for y ∈ [−1/2, 1/2]N (we often abuse notation and also
write us(y) for y ∈ [−1/2, 1/2]s), and let us,h(·, y) ∈ Vh denote the
dimensionally-truncated FE solution in the FE subspace spanned by
piecewise linear FE basis functions. Furthermore, let {t i}ni=1 be a QMC
point set in [−1/2, 1/2]s .
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Total error decomposition

For simplicity, let us consider the problem of computing E[G (u)], where
u(·, y) ∈ H1

0 (D) is the PDE solution for y ∈ U and G : H1
0 (D) → R is a

linear functional (quantity of interest). We decompose the total error as∫
[−1/2,1/2]N

G (u(·, y))dy − 1

n

n∑
i=1

G (us,h(·, t i ))

=

∫
[−1/2,1/2]N

(G (u(·, y)− us(·, y)))dy

+

∫
[−1/2,1/2]s

G (us(·, y)− us,h(·, y))dy

+

∫
[−1/2,1/2]s

G (us,h(·, y))dy − 1

n

n∑
i=1

G (us,h(·, t i )).
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Using the triangle inequality, we are left with the total error decomposition∣∣∣∣ ∫
[−1/2,1/2]N

G (u(·, y))dy − 1

n

n∑
i=1

G (us,h(·, t i ))
∣∣∣∣

≤
∣∣∣∣ ∫

[−1/2,1/2]N
(G (u(·, y)− us(·, y))dy

∣∣∣∣ (dimension-truncation error)

+

∣∣∣∣ ∫
[−1/2,1/2]s

G (us(·, y)− us,h(·, y))dy
∣∣∣∣ (finite element error)

+

∣∣∣∣ ∫
[−1/2,1/2]s

G (us,h(·, y))dy − 1

n

n∑
i=1

G (us,h(·, t i ))
∣∣∣∣. (cubature error)

Let us focus today on the cubature error.
Remarks:

We’ll discuss the other error contributions (dimension truncation and
finite element errors) later. Furthermore, we’ll see how the analysis
differs in the lognormal setting.
It turns out that if we can control the error for all linear quantities of
interest G : H1

0 (D) → R, we can control the error for the full PDE
solution with respect to the ∥ · ∥H1

0 (D) norm using a duality argument.
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Multi-index notation

We introduce the set of finitely-supported multi-indices

F := {ν ∈ NN
0 : |supp(ν)| <∞},

where the support of a multi-index ν is defined as the set

supp(ν) := {i ∈ N : νi ̸= 0}.

As before, the order of a multi-index is defined as

|ν| :=
∑
j≥1

νj

and we use the special multi-index notations

∂ν := ∂νy :=
∏

j∈supp(ν)

∂νj

∂y
νj
j

, xν :=
∏

j∈supp(ν)

x
νj
j ,

(
ν

m

)
:=

∏
j∈supp(ν)

(
νj
mj

)
.
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Recursive bound

Consider the weak formulation∫
D
a(x , y)∇u(x , y) · ∇v(x) dx =

∫
D
f (x)v(x) dx . (2)

Noting that

∂νa(x , y) =


a(x , y) if ν = 0,

ψj(x) if ν = e j ,

0 otherwise,

then by differentiating (2) on both sides with ∂ν and using the Leibniz
product rule† yields

∂ν

∫
D

a(x , y)∇u(x , y) · ∇v(x) dx = 0

⇔
∑
m≤ν

(
ν

m

)∫
D

∂ma(x)∇∂ν−mu(x , y) · ∇v(x) dx = 0

⇔
∫
D

a(x , y)∇∂νu(x , y) · ∇v(x)dx = −
∑

j∈supp(ν)

νj

∫
D

ψj(x)∇∂ν−e j u(x , y) · ∇v(x)dx .

†∂ν(fg) =
∑

m≤ν

(
ν
m

)
∂mf ∂ν−mg (exercise) 236



Testing this against v = ∂νu(x , y) yields

amin∥∂νu(·, y)∥2H1
0 (D)

≤
∫
D
a(x , y)∥∇∂νu(x , y)∥2 dx

≤
∑

j∈supp(ν)

νj∥ψj∥L∞(D)∥∂ν−e ju(·, y)∥H1
0 (D)∥∂νu(·, y)∥H1

0 (D)

Thus we obtain the recursive relation

∥∂νu(·, y)∥H1
0 (D) ≤

∑
j∈supp(ν)

νj
∥ψj∥L∞(D)

amin︸ ︷︷ ︸
=:bj

∥∂ν−e ju(·, y)∥H1
0 (D).

For later convenience, we introduce here the sequence b := (bj)j≥1 defined

by bj :=
∥ψj∥L∞(D)

amin
. Recall that by the assumptions we placed on the

uniform and affine model, there holds b ∈ ℓp for some p ∈ (0, 1).
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Parametric regularity

Proposition

For all y ∈ [−1/2, 1/2]N and ν ∈ F , there holds

∥∂νu(·, y)∥H1
0 (D) ≤

CP∥f ∥L2(D)

amin
bν |ν|!,

where CP is the Poincaré constant satisfying ∥v∥L2(D) ≤ CP∥v∥H1
0 (D) for

all v ∈ H1
0 (D).

Proof. By induction w.r.t. the order of the multi-index ν ∈ F . If ν = 0, then this is the
ordinary Lax–Milgram a priori bound

amin

∫
D

|∇u(x , y)|2 dx︸ ︷︷ ︸
=∥u(·,y)∥2

H1
0
(D)

≤
∫
D

a(x , y)∇u(x , y) · ∇u(x , y)dx =

∫
D

f (x)u(x , y) dx

≤ ∥f ∥L2(D)∥u(·, y)∥L2(D) ≤ CP∥f ∥L2(D)∥u(·, y)∥H1
0 (D)

whence

∥u(·, y)∥H1
0 (D) ≤

CP∥f ∥L2(D)

amin
.
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Next, let ν ∈ F and suppose that the claim has been proved for all
multi-indices with order less than |ν|. Then using the recursive relation we
derived previously, we obtain

∥∂νu(·, y)∥H1
0 (D) ≤

∑
j∈supp(ν)

νjbj∥∂ν−e ju(·, y)∥H1
0 (D)

≤
CP∥f ∥L2(D)

amin

∑
j∈supp(ν)

νjbj |ν − e j |!bν−e j

=
CP∥f ∥L2(D)

amin
bν(|ν| − 1)!

∑
j≥1

νj

=
CP∥f ∥L2(D)

amin
bν |ν|!,

as desired.
Remark. Note that the same regularity bound holds for the
dimensionally-truncated FE solution us,h as long as a (conforming)
Galerkin FE discretization has been used to construct the FE
approximation. This is due to the fact that the weak formulation of the
Galerkin discretization is exactly the same (only the function space differs).
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Now that we know the regularity of the PDE problem, we can analyze the
QMC cubature error! Let G : H1

0 (D) → R be a linear and bounded
functional, us,h the dimensionally-truncated FE solution, and define
F (y) := G (us,h(·, y − 1

2)) for y ∈ [0, 1]s . Let γ = (γu)u⊆{1:s} be a
sequence of positive weights. Then we know that the generating vector
obtained by the CBC algorithm satisfies the error bound√

E∆|IsF − Q∆
n,sF |2 ≤

(
1

φ(n)

∑
∅̸=u⊆{1:s}

γλu

(
2ζ(2λ)

(2π2)λ

)|u|)1/(2λ)

∥F∥s,γ

for all λ ∈ (1/2, 1], where

∥F∥2s,γ =
∑

u⊆{1:s}

1

γu

∫
[0,1]|u|

(∫
[0,1]s−|u|

∂|u|

∂xu
F (y) dy−u

)2

dyu

≤
(
CP∥G∥H1

0 (D)→R∥f ∥L2(D)

amin

)2 ∑
u⊆{1:s}

1

γu
(|u|!)2

∏
j∈u

b2j .

Plugging this norm bound back into the QMC error bound yields...
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√
E∆|IsF − Q∆

n,sF |2 ≲
(

1

φ(n)

)1/(2λ)( ∑
∅̸=u⊆{1:s}

γλu

(
2ζ(2λ)

(2π2)λ

)|u|)1/(2λ)

×
( ∑

u⊆{1:s}

1

γu
(|u|!)2

∏
j∈u

b2j

)1/2

.

The upper bound can be minimized by choosing the POD weights

γu :=

(
|u|!

∏
j∈u

bj√
2ζ(2λ)
(2π2)λ

)2/(1+λ)

,

as explained by the following lemma.
Lemma

Let (αi ) and (βi ) be sequences of positive real numbers. The expression

g(γ) :=

(∑
i

αiγ
λ
i

)1/λ(∑
i

βiγ
−1
i

)

is minimized by γi = c
( βi
αi

)1/(1+λ)
for arbitrary c > 0.
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Proof. Let us find out when the gradient vanishes:

0 = ∂jg(γ) =
1

λ

(∑
i

αiγ
λ
i

)1/λ−1

λαjγ
λ−1
j

(∑
i

βiγ
−1
i

)

− βjγ
−2
j

(∑
i

αiγ
λ
i

)1/λ

.

After some trivial simplifications, we can see that this is equivalent to

γλ+1
j =

βj
αj

∑
i αiγ

λ
i∑

i βiγ
−1
i

.

Furthermore, this condition is satisfied if

γj = c

(
βj
αj

)1/(1+λ)

,

where c > 0 is arbitrary.
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Note that plugging γi = c
( βi
αi

)1/(1+λ)
into

(∑
i αiγ

λ
i

)1/(2λ)(∑
i βiγ

−1
i

)1/2
yields the expression

(∑
i α

1/(1+λ)
i β

λ/(1+λ)
i

)(1+λ)/(2λ)
. Thus, plugging the

optimal POD weights into the QMC error bound results in√
E∆|IsF − Q∆

n,sF |2 ≲
(

1

φ(n)

)1/(2λ)

C (s,γ, λ)(1+λ)/(2λ),

where

C (s,γ, λ) :=
∑

u⊆{1:s}

(
2ζ(2λ)

(2π2)λ

)|u|/(1+λ)
(|u|!)2λ/(1+λ)

∏
j∈u

b
2λ/(1+λ)
j .

This is the punchline:

Lemma

By choosing

λ =

{
p

2−p when p ∈ (2/3, 1)
1

2−2δ for arbitrary δ ∈ (0, 1/2) when p ∈ (0, 2/3],

there exists a constant C (γ, λ) <∞ independently of s
s.t. C (s,γ, λ) ≤ C (γ, λ) <∞.
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Proof. First observe that

C (s,γ, λ) =
∑

u⊆{1:s}

(
2ζ(2λ)

(2π2)λ

)|u|/(1+λ)
(|u|!)2λ/(1+λ)

∏
j∈u

b
2λ/(1+λ)
j

=
s∑
ℓ=0

(
2ζ(2λ)

(2π2)λ

)ℓ/(1+λ)
(ℓ!)2λ/(1+λ)

∑
|u|=ℓ

u⊆{1:s}

∏
j∈u

b
2λ/(1+λ)
j

≤
∞∑
ℓ=0

(
2ζ(2λ)

(2π2)λ

)ℓ/(1+λ)
(ℓ!)2λ/(1+λ)−1

(∑
j≥1

b
2λ/(1+λ)
j

)ℓ
where we used the inequality

∑
|u|=ℓ,u⊆Z+

∏
j∈u cj ≤

1
ℓ!

(∑
j≥1 cj

)ℓ
.

Case 1: p ∈ (2/3, 1). We choose p = 2λ
1+λ ⇔ λ = p

2−p ∈ (1/2, 1), and

C (s,γ, λ) ≤
∞∑
ℓ=0

(
2ζ(2λ)

(2π2)λ

)ℓ/(1+λ)
(ℓ!)p−1

(∑
j≥1

bpj

)ℓ
︸ ︷︷ ︸

=:aℓ

It is easy to see that aℓ+1

aℓ

ℓ→∞−−−→ 0. By the ratio test, this upper bound is
finite independently of s.
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Case 2: p ∈ (0, 2/3]. Let δ ∈ (0, 1/2) be arbitrary. We choose
λ = 1

2−2δ ∈ (1/2, 1). Now 2λ
1+λ = 2

3−2δ ∈ (2/3, 1). Especially,
∥b∥ℓ2λ/(1+λ) ≤ ∥b∥ℓp , and we obtain from the estimate on the previous
slide that

C (s,γ, λ) ≤
∞∑
ℓ=0

(
2ζ(2λ)

(2π2)λ

)ℓ/(1+λ)
(ℓ!)2λ/(1+λ)−1

(∑
j≥1

b
2λ/(1+λ)
j

)ℓ

≤
∞∑
ℓ=0

(
2ζ(2λ)

(2π2)λ

)ℓ/(1+λ)
(ℓ!)2/(3−2δ)−1

(∑
j≥1

bpj

)2ℓ/((3−2δ)p)

︸ ︷︷ ︸
=:aℓ

Again, aℓ+1

aℓ

ℓ→∞−−−→ 0, so by the ratio test this upper bound is finite
independently of s.
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Theorem

Let δ ∈ (0, 1/2) be arbitrary. By choosing the POD weights

γu :=

(
|u|!

∏
j∈u

bj√
2ζ(2λ)
(2π2)λ

)2/(1+λ)

, λ :=

{
p

2−p if p ∈ (2/3, 1),
1

2−2δ if p ∈ (0, 2/3],

then the QMC approximation for the expected value of the PDE problem
satisfies

R.M.S. error ≲

{(
1

φ(n)

)1/p−1/2
if p ∈ (2/3, 1),(

1
φ(n)

)1−δ
if p ∈ (0, 2/3],

where the implied coefficient is independent of the dimension s.

Remark: We have the following dimension-independent convergence rates:

n is prime ⇒ 1
φ(n) =

1
n−1 ⇒ QMC rate O(nmax{−1/p+1/2,−1+δ}).

n = 2k ⇒ 1
φ(n) =

2
n ⇒ QMC rate O(nmax{−1/p+1/2,−1+δ}).

For general composite n, the dimension-independent QMC rate is at
best essentially linear up to a double logarithmic factor of n.
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Remarks on implementation

Let G : H1
0 (D) → R be a bounded linear functional. Consider the problem

of approximating

E[G (us,h)] =

∫
[−1/2,1/2]s

G (us,h(·, y))dy ,

where us,h is the dimensionally-truncated FE approximation to the elliptic
PDE with a uniform and affine diffusion coefficient.

Our QMC approximation is guaranteed to satisfy the R.M.S. error bound
from the previous slide if we plug the theoretically derived weights as input
to the fast CBC algorithm. This produces a generating vector z ∈ Ns . The
generating vector is designed to be used to compute the estimate

Qn,s,RG (us,h) :=
1

R

R−1∑
r=0

Q∆r
n,sG (us,h),

where Q∆r
n,sF := 1

n

∑n−1
i=0 f ({t i +∆r} − 1

2), tk := {kz
n }, and

∆0, . . . ,∆R−1 are independent random shifts drawn from U([0, 1]s).
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Typically, the number of random shifts is taken to be rather small,
e.g., 8 ≤ R ≤ 64.

A practical estimate for the R.M.S. error is given by the formula

√
E∆|IsF − Q∆

n,sF |2 ≈

√√√√ 1

R(R − 1)

R−1∑
r=0

(Q∆r
n,sF − Qn,s,RF )2.

For the computation of the variance, note that

Var[G (us,h)] = E[G (us,h)
2]− E[G (us,h)]

2.

We already know how to approximate E[G (us,h)] using QMC, but the
weights need to be updated if we wish to construct a QMC rule with
a dimension-independent convergence rate for E[G (us,h)

2] (exercise).

If a QMC rule converges independently of s for the approximation of
E[G (us,h)

2], then the same rule will have dimension-independent
convergence for E[G (us,h)] as well.

If we instead wish to estimate E[us,h(x , ·)] or Var[us,h(x , ·)] (i.e., leave
out the quantity of interest G : H1

0 (D) → R), the same weights can be
used as input to the CBC algorithm (but we still need to prove this).
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We continue studying the uniform and affine model: let D ⊂ Rd ,
d ∈ {2, 3}, be a bounded Lipschitz domain, let f ∈ L2(D), and let
U := [−1/2, 1/2]N := {(aj)j≥1 : −1/2 ≤ aj ≤ 1/2} be a set of parameters.
Consider the problem of finding, for all y ∈ U, u(·, y) ∈ H1

0 (D) such that∫
D
a(x , y)∇u(x , y) · ∇v(x) dx =

∫
D
f (x)v(x)dx for all v ∈ H1

0 (D),

where the diffusion coefficient has the parameterization

a(x , y) := a0(x) +
∞∑
j=1

yjψj(x), x ∈ D, y ∈ U,

where we assume

(A1) a0 ∈ L∞(D) and ψj ∈ L∞(D) for all j ∈ N,
(A2) there exist amin, amax > 0 s.t. 0 < amin ≤ a(x , y) ≤ amax <∞ for all

x ∈ D and y ∈ U,

(A3)
∑∞

j=1 ∥ψj∥pL∞(D) <∞ for some p ∈ (0, 1).

(Note that (A3) implies that
∑∞

j=1 ∥ψj∥L∞(D) <∞.)
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Let us(·, y) := us(·, (y1, . . . , ys , 0, 0, . . .)) denote the
dimensionally-truncated PDE solution for y ∈ U (we sometimes also write
us(·, y) for y ∈ [−1/2, 1/2]s), and let us,h(·, y) ∈ Vh denote the
dimensionally-truncated FE solution in the FE space spanned by piecewise
linear FE basis functions. Let G : H1

0 (D) → R be a bounded linear
functional.
During the last lecture, we split the overall approximation error as∣∣∣∣ ∫

[−1/2,1/2]N
G(u(·, y)) dy − 1

n

n∑
i=1

G(us,h(·, t i ))
∣∣∣∣

≤
∣∣∣∣ ∫

[−1/2,1/2]N
(G(u(·, y)− us(·, y)))dy

∣∣∣∣ (dimension-truncation error)

+

∣∣∣∣ ∫
[−1/2,1/2]s

G(us(·, y)− us,h(·, y)) dy
∣∣∣∣ (finite element error)

+

∣∣∣∣ ∫
[−1/2,1/2]s

G(us,h(·, y)) dy − 1

n

n∑
i=1

G(us,h(·, t i ))
∣∣∣∣, (cubature error)

and found that it is possible to construct a QMC point set t i := { iz
n }

satisfying the QMC cubature error rate O(φ(n)max{−1/p+1/2,−1+δ}), where
the implied coefficient is independent of s, n, and h, and δ ∈ (0, 1/2) is
arbitrary. Let us consider the other error contributions next. 251



Some auxiliary results
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Neumann series: “Sufficiently small perturbations of the
identity are still invertible”

We will require the following well-known generalization of the geometric
series formula, named after 19th century mathematician Carl Neumann.

Theorem (Neumann series)

Let H be a Hilbert space and let A ∈ L(H) be a bounded linear functional
with operator norm ∥A∥ < 1. Then I − A is invertible in L(H) with

(I − A)−1 = I + A+ · · ·+ An + · · · =
∞∑
k=0

Ak ,

and this series converges in operator norm.

Proof. Let Bm,n :=
∑n

k=m Ak , m < n. Since ∥A∥ < 1, we have

∥Bm,n∥ ≤
n∑

k=m

∥A∥k = ∥A∥m
m−n∑
k=0

∥A∥k = ∥A∥m 1− ∥A∥n−m+1

1− ∥A∥
m,n→∞−−−−−→ 0.

∴ The partial sums
∑n

k=0 A
k form a Cauchy sequence in L(H). 253



Since H is a Hilbert space, L(H) is a Banach space and the limit

B := lim
n→∞

n∑
k=0

Ak ∈ L(H)

exists. We need to prove that (I − A)B = I = B(I − A). Let

Bn := I + A+ · · ·+ An.

Then

(I − A)Bn = I − An+1,

Bn(I − A) = I − An+1,

and since ∥A∥ < 1, ∥An+1∥ ≤ ∥A∥n+1 n→∞−−−→ 0, we thus obtain

I − An+1 n→∞−−−→ I in L(H)

and

(I − A)B = lim
n→∞

(I − A)Bn = I = lim
n→∞

Bn(I − A) = B(I − A).
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Multinomial theorem

The multinomial theorem is a generalization of Newton’s binomial formula.
Using multi-index notation, it can be expressed as

(x1 + · · ·+ xs)
k =

∑
|ν|=k
ν∈Ns

0

k!

ν!
xν .

In fact, if x := (xj)
∞
j=1 ∈ ℓ1, then we have( ∞∑

j=1

xj

)k

=
∑
|ν|=k
ν∈F

k!

ν!
xν

and we will later require the following special case:( ∞∑
j=s+1

xj

)k

=
∑
|ν|=k
ν∈F

νj=0 ∀j≤s

k!

ν!
xν . (1)
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The following lemma frequently appears in the context of best N-term
approximation.

Lemma (Stechkin’s lemma)

Let Λ be a countable index set, let 0 < p ≤ q <∞, and let (aν)ν∈Λ be a
sequence. Let ∅ ̸= ΛN ⊂ Λ be a set of indices containing the N largest
terms of the sequence (aν)ν∈Λ. Then( ∑

ν∈Λ\ΛN

|aν |q
)1/q

≤ N−r

(∑
ν∈Λ

|aν |p
)1/p

, r =
1

p
− 1

q
.

Proof. WLOG, we can relabel the a-sequence so that (aj)j≥1 is
non-increasing, i.e., aj+1 ≤ aj for all j ≥ 1. We obtain( ∞∑

j=N+1

|aj |q
)1/q

=

( ∞∑
j=N+1

|aj |q−p|aj |p
)1/q

≤ |aN |1−p/q

( ∞∑
j=N+1

|aj |p
)1/q

≤ |aN |1−p/q

( ∞∑
j≥1

|aj |p
)1/q

.

The key is to bound |aN |1−p/q in terms of N. 256



Standard technique: the monotonicity of the a-sequence implies that

N|aN |p = |aN |p + · · ·+ |aN |p ≤ |a1|p + · · ·+ |aN |p ≤
∑
j≥1

|aj |p

⇒ |aN |p ≤ N−1
∑
j≥1

|aj |p.

Hence

|aN |1−p/q = |aN |pr ≤ N−r

(∑
j≥1

|aj |p
)r

.

Plugging this into the inequality on the previous page yields( ∞∑
j=N+1

|aj |q
)1/q

≤ |aN |1−p/q

( ∞∑
j≥1

|aj |p
)1/q

≤ N−r

(∑
j≥1

|aj |p
)r+1/q

= N−r

(∑
j≥1

|aj |p
)1/p

,

where the final equality follows from the definition r = 1/p − 1/q.
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Dimension truncation error
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Remark about infinite-dimensional integrals

Recall that U := [−1/2, 1/2]N. We will be discussing infinite-dimensional
Lebesgue integrals of the form ∫

U
f (y) dy ,

where we have the infinite tensor product measure

dy :=
∞⊗
j=1

dyj .

The σ-algebra F for dy is generated by finite rectangles
∏∞

j=1 Sj , where
only a finite number of Sj are different from [−1/2, 1/2] and those that
are different are contained in [−1/2, 1/2]. The resulting triplet (U,F ,dy)
is a probability space.

For in-depth measure-theoretic considerations cf., e.g., “Measure Theory”
by Halmos.
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For the purposes of this course, we can regard infinite-dimensional
integrals as limits of finite-dimensional integrals in the following sense:∫

U
f (y) dy = lim

s→∞

∫
[−1/2,1/2]s

f (y1, . . . , ys , 0, 0, . . .) dy1 · · · dys . (2)

The justification for this can be found, e.g., in “Infinite-dimensional
integration and the multivariate decomposition method” by Kuo, Nuyens,
Plaskota, Sloan, and Wasilkowski (J. Comput. Appl. Math., 2017). The
result is stated below without proof. (Homework: verify that the
conditions of the following theorem are valid for our PDE model problem.)

Theorem (Kuo et al. 2017)

Let f : U → R be integrable w.r.t. the measure dy :=
⊗∞

j=1 dyj which
satisfies

lim
s→∞

f (y1, . . . , ys , 0, 0, . . .) = f (y) for a.e. y ∈ U,

|f (y1, . . . , ys , 0, 0, . . .)| ≤ |g(y)| for a.e. y ∈ U

for some integrable function g : U → R w.r.t. the measure dy . Then the
characterization (2) holds.
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The following rate was proved in “Dimension truncation in QMC for
affine-parametric operator equations” by Gantner (MCQMC 2016).

Theorem (Dimension truncation error)

Suppose that the assumptions (A1)–(A3) hold and
∥ψ1∥L∞(D) ≥ ∥ψ2∥L∞(D) ≥ ∥ψ3∥L∞(D) ≥ · · · . Then for every f ∈ L2(D)
and every bounded linear functional G : H1

0 (D) → R, there holds∣∣∣∣ ∫
U
G (u(·, y)− us(·, y))dy

∣∣∣∣ ≤ C
∥f ∥L2(D)∥G∥H1

0 (D)→R

amin
s−

2
p
+1
,

where the constant C > 0 is independent of s, f , and G .
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Intermezzo

The dimension truncation proof is based on recasting the variational
formulation as an affine-parametric operator equation. Specifically, if
u(·, y) denotes the parametric PDE solution and f the source term, we
require for the analysis the (linear) forward operator

A(y) : u(·, y) 7→ f

and the solution operator

A(y)−1 : f 7→ u(·, y).

To this end, we need to be careful with the function space setting (the
domains and codomains of A(y) and A(y)−1).
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First of all, let us denote the dual space of H1
0 (D) as

H−1(D) := (H1
0 (D))′ := {F : H1

0 (D) → R | F is linear and bounded}.

(This is a Hilbert space as a consequence of Riesz representation theorem.)

Let F ∈ H−1(D) and v ∈ H1
0 (D). Then the duality pairing of F and v is

defined as
⟨F , v⟩H−1(D),H1

0 (D) := F (v).

In a certain sense, the element F ∈ H−1(D) is defined by its action on the
elements of H1

0 (D). For example, fix some f ∈ L2(D). Then (weighted)
integration over (parts of) the domain D, e.g.,

⟨F , v⟩H−1(D),H1
0 (D) :=

∫
D
f (x)v(x) dx ,

would be an example of an element of H−1(D).
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Let y ∈ U and consider the bilinear form

By (v ,w) =

∫
D
a(x , y)∇v(x) · ∇w(x) dx , v ,w ∈ H1

0 (D).

Now

By (v ,w) ≤ amax∥v∥H1
0 (D)∥w∥H1

0 (D), v ,w ∈ H1
0 (D), (boundedness)

|By (v , v)| ≥ amin∥v∥2H1
0 (D), v ∈ H1

0 (D). (coercivity)

Then the Lax–Milgram lemma implies that for any F ∈ H−1(D), there
exists a unique element u(·, y) ∈ H1

0 (D) such that

By (u(·, y), v) = F (v) for all v ∈ H1
0 (D)

and
∥u(·, y)∥H1

0 (D) ≤
∥F∥H−1(D)

amin
.

Especially, the linear map A(y) : H1
0 (D) → H−1(D), u(y) 7→ F , is

boundedly invertible† with
∥A(y)∥H1

0 (D)→H−1(D) ≤ amax and ∥A(y)−1∥H−1(D)→H1
0 (D) ≤ 1

amin
.

†Not trivial! See, e.g., Remark 2.7 in “Theory and Practice of Finite Elements” by
Ern and Guermond.
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Proof (dimension truncation). Let us introduce the operators
A(y),As(y) : H1

0 (D) → H−1(D),

A(y) := B0 +
∞∑
j=1

yjBj and As(y) := B0 +
s∑

j=1

yjBj ,

where Bj : H
1
0 (D) → H−1(D) are defined by setting

⟨B0v ,w⟩H−1(D),H1
0 (D) := ⟨a0∇v ,∇w⟩L2(D),

⟨Bjv ,w⟩H−1(D),H1
0 (D) := ⟨ψj∇v ,∇w⟩L2(D) for j ≥ 1.

The variational problem∫
D
a(x , y)∇u(x , y) · ∇v(x) dx = ⟨F , v⟩H−1(D),H1

0 (D) for all v ∈ H1
0 (D),

a(x , y) = a0(x) +
∞∑
j=1

yjψj(x),

where F ∈ H−1(D), can be expressed as an affine-parametric parametric
operator equation

A(y)u(·, y) = F .

Our assumptions (A1)–(A3) ensure that both A(y) and As(y) are
boundedly invertible linear maps for all y ∈ U.
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Suppose that 1 ≤ s < s ′. As a consequence of the a priori bound for the
PDE, we have∫

D
G (u(y)− us(y))dy ≤

2∥G∥H−1(D)∥F∥H−1(D)

amin

=
2∥G∥H−1(D)∥F∥H−1(D)

amin

s−2/p+1

s−2/p+1
≤

2∥G∥H−1(D)∥F∥H−1(D)

amin

s−2/p+1

(s ′)−2/p+1
.

Thus it is sufficient to prove the claim for s ≥ s ′ with s ′ large enough. To
this end, we assume that s ≥ s ′ where s ′ is chosen to be large enough such
that

∞∑
j=s+1

bj ≤
1

2
for all s ≥ s ′. (3)

For future reference, note that (3) also implies for all s ≥ s ′ that

bj ≤
1

2
for all j ≥ s + 1 and

∞∑
j=s+1

b2j ≤
∞∑

j=s+1

bj ≤
1

2
. (4)
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We also have for all y ∈ U that

∥A(y)∥H1
0 (D)→H−1(D) ≤ amax, ∥As(y)∥H1

0 (D)→H−1(D) ≤ amax

∥A(y)−1∥H−1(D)→H1
0 (D) ≤

1

amin
, ∥As(y)−1∥H−1(D)→H1

0 (D) ≤
1

amin
.

For brevity, let us denote

u(y) := u(·, y), y ∈ U,

us(y) := us(·, y), y ∈ U.

Now u(y) = A(y)−1F , us(y) = As(y)−1F , and we can write

A(y)− As(y) =
∞∑

j=s+1

yjBj , y ∈ U, s ∈ N.
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Let w ∈ H1
0 (D). Then

∥As(y)−1Bjw∥H1
0 (D) ≤

∥Bjw∥H−1(D)

amin

=
1

amin
sup

v∈H1
0 (D)\{0}

⟨ψj∇w ,∇v⟩L2(D)

∥v∥H1
0 (D)

≤ bj∥w∥H1
0 (D),

where the sequence b = (bj)j≥1 is defined as bj :=
∥ψj∥L∞(D)

amin
. In

consequence,

sup
y∈U

∥As(y)−1Bj∥L(H1
0 (D)) ≤ bj ,

sup
y∈U

∥As(y)−1(A(y)− As(y))∥L(H1
0 (D)) ≤

∞∑
j=s+1

bj
(3)

≤ 1

2
< 1.
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It follows from the previous discussion and the assumption s ≥ s ′ that the
Neumann series

A(y)−1 = (I + As(y)−1(A(y)− As(y)))−1As(y)−1

=
∞∑
k=0

(−As(y)−1(A(y)− As(y)))kAs(y)−1

is well-defined. Moreover, we have the representation∫
U
G (u(y)− us(y))dy =

∫
U
G ((A(y)−1 − As(y)−1)f )dy

=
∞∑
k=1

∫
U
G ((−As(y)−1(A(y)− As(y)))kus(y))dy

=
∞∑
k=1

(−1)k
∫
U
G

(( ∞∑
j=s+1

yjA
s(y)−1Bj

)k

us(y)
)
dy .
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The integrand can be expanded as( ∞∑
j=s+1

yjA
s(y)−1Bj

)k

=
∞∑

η1,...,ηk=s+1

( k∏
i=1

yηi

)( k∏
i=1

As(y)−1Bηi

)
,

where the second product symbol is assumed to respect the order of the
noncommutative operators. By Fubini’s theorem, we obtain∫
U
G

(( ∞∑
j=s+1

yjA
s(y)−1Bj

)k

us(y)
)
dy

=
∞∑

η1,...,ηk=s+1

(∫
U

k∏
i=1

yηi dy
)

︸ ︷︷ ︸
=:I1

(∫
Us

G

(( k∏
i=1

As(y)−1Bηi

)
us(y)

)
dy{1:s}

)
︸ ︷︷ ︸

=:I2

.

I1 ≥ 0 can be written as a product of univariate integrals of the form

0 ≤
∫ 1/2
−1/2 y

m
j dyj ≤ 1, m ∈ N. Note that this vanishes when m = 1.

|I2| ≤ ∥G∥H−1(D)

(∏k
i=1 supy∈U ∥As(y)−1Bηi∥

)
∥us(y)∥H1

0 (D)

≤
∥G∥H−1(D)∥F∥H−1(D)

amin

(∏k
i=1 bηi

)
.
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Earlier we arrived at∫
U
G (u(y)− us(y))dy =

∞∑
k=1

(−1)k
∫
U
G

(( ∞∑
j=s+1

yjA
s(y)−1Bj

)k

us(y)
)
dy .

We can estimate the summands as∣∣∣∣(−1)k
∫
U
G

(( ∞∑
j=s+1

yjA
s(y)−1Bj

)k

us(y)
)
dy

∣∣∣∣
≤

∥G∥H−1(D)∥F∥H−1(D)

amin

∞∑
η1,...,ηk=s+1

(∫
U

k∏
k=1

yηi dy
)( k∏

i=1

bηi

)

=
∥G∥H−1(D)∥F∥H−1(D)

amin

∫
U

∞∑
η1,...,ηk=s+1

( k∏
k=1

yηi

)( k∏
i=1

bηi

)
dy

=
∥G∥H−1(D)∥F∥H−1(D)

amin

∫
U

( ∞∑
j=s+1

yjbj

)k

dy

(1)
=

∥G∥H−1(D)∥F∥H−1(D)

amin

∫
U

∑
|ν|=k

νj=0 ∀j≤s

k!

ν!

( ∞∏
j=s+1

y
νj
j

)( ∞∏
j=s+1

b
νj
j

)
dy .
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The integrals vanish whenever ν contains an element equal to 1, hence∣∣∣∣(−1)k
∫
U
G

(( ∞∑
j=s+1

yjA
s(y)−1Bj

)k

us(y)
)
dy

∣∣∣∣
≤

∥G∥H−1(D)∥F∥H−1(D)

amin

∑
|ν|=k

νj=0 ∀j≤s
νj ̸=1 ∀j>s

k!

ν!
bν .

We arrive at (note that the summand corresponding to k = 1 vanishes!)∣∣∣∣ ∫
U
G (u(y)− us(y))dy

∣∣∣∣ ≤ ∥G∥H−1(D)∥F∥H−1(D)

amin

∞∑
k=1

∑
|ν|=k

νj=0 ∀j≤s
νj ̸=1 ∀j>s

k!

ν!
bν

=
∥G∥H−1(D)∥F∥H−1(D)

amin

[ ∞∑
k=k ′

∑
|ν|=k

νj=0 ∀j≤s
νj ̸=1 ∀j>s

k!

ν!
bν +

k ′−1∑
k=2

∑
|ν|=k

νj=0 ∀j≤s
νj ̸=1 ∀j>s

k!

ν!
bν

]
,

where we split the sum into two w.r.t. k ′ ≥ 3 to be specified later.
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The sum over k ≥ k ′ can be bounded using the geometric series as

∞∑
k=k ′

∑
|ν|=k

νj=0 ∀j≤s
νj ̸=1 ∀j>s

k!

ν!
bν ≤

∞∑
k=k ′

( ∞∑
j=s+1

bj

)k

≤
( ∞∑

j=s+1

bj

)k ′
1

1−
∑∞

j=s+1 bj
≤ Csk

′(−1/p+1),

where Stechkin’s lemma yields
∑∞

j=s+1 bj ≤
(∑∞

j=1 b
p
j

)1/p
s−1/p+1 and the

resulting constant C1 := 2
(∑∞

j=1 b
p
j

)k ′/p
is independent of s, f , and G .
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On the other hand, for the sum over 2 ≤ k < k ′, we estimate

k ′−1∑
k=2

∑
|ν|=k

νj=0 ∀j≤s
νj ̸=1 ∀j>s

k!

ν!
bν ≤ (k ′ − 1)!

k ′−1∑
k=2

∑
|ν|=k

νj=0 ∀j≤s
νj ̸=1 ∀j>s

bν .

For each 2 ≤ k < k ′, we obtain∑
|ν|=k

νj=0 ∀j≤s
νj ̸=1 ∀j>s

bν ≤
∑

0̸=|ν|∞≤k
νj=0 ∀j≤s
νj ̸=1 ∀j>s

bν =
∞∏

j=s+1

(
1 +

k∑
ℓ=2

bℓj

)
− 1

=
∞∏

j=s+1

(
1 + b2j

1− bj−1
j

1− bj

)
− 1 ≤

∞∏
j=s+1

(1 + 2b2j )− 1

≤ exp

(
2

∞∑
j=s+1

b2j

)
− 1 ≤ C2s

−2/p+1, C2 := 2(e− 1)
( ∞∑
j=1

bpj
)1/p

,

where we used ex ≤ 1 + (e− 1)x for x ∈ [0, 1] and Stechkin’s lemma∑∞
j=s+1 b

2
j ≤

(∑∞
j=1 b

p
j

)1/p
s−2/p+1. C2 is independent of s, f , and G .
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Putting everything together, we conclude that∣∣∣∣ ∫
U
G (u(y)− us(y))dy

∣∣∣∣
≤

∥G∥H−1(D)∥F∥H−1(D)

amin

(
C1s

k ′(−1/p+1) + k ′!(k ′ − 2)C2s
−2/p+1

)
.

The two terms can be balanced by choosing k ′ := ⌈(2− p)/(1− p)⌉,
where ⌈x⌉ := min{k ∈ Z | k ≥ x} is the ceiling function. (Note that
k ′ ≥ 3 for all p ∈ (0, 1).)

Since we already know that the result holds for all s ≤ s ′, the assertion for
all s ≥ 1 follows by a trivial adjustment of the constant factors.

Finally, if the source term f ∈ L2(D), we can associate it with an element
F ∈ H−1(D) defined by

⟨F , v⟩H−1(D),H1
0 (D) :=

∫
D
f (x)v(x) dx , v ∈ H1

0 (D).

Especially, ∥F∥H−1(D) ≤ CP∥f ∥L2(D), where CP > 0 is the Poincaré
constant.

275



Finite element error
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Suppose that D ⊂ Rd , d ∈ {2, 3}, is a bounded, convex polyhedral
domain.

Let {Vh}h be a family of finite element subspaces of H1
0 (D), indexed by

the mesh size h > 0 and spanned by continuous, piecewise linear finite
element basis functions over a sequence of regular, simplicial meshes in D
obtained from an initial, regular triangulation of D by recursive, uniform
bisection of simplices.

In this setup, it is known (cf., e.g., Gilbarg and Trudinger) that for
functions v ∈ H1

0 (D) ∩ H2(D), there exists a constant C1 > 0 such that

inf
vh∈Vh

∥v − vh∥H1
0 (D) ≤ C1h∥v∥H1

0 (D)∩H2(D) as h → 0, (5)

where ∥v∥H1
0 (D)∩H2(D) := (∥v∥2L2(D) + ∥∆v∥2L2(D))

1/2.

Note that we need higher H2(D) regularity of the PDE solution in order to
derive the asymptotic convergence rate as h → ∞. This can be ensured,
e.g., when the diffusion coefficient is Lipschitz, f ∈ L2(D), and the domain
D is a bounded, convex polyhedron.
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Proposition (Elliptic regularity)

Suppose that a0 ∈ W 1,∞(D) and ψj ∈ W 1,∞(D) for all j ≥ 1 such that
Cψ :=

∑
j≥1 ∥ψj∥W 1,∞(D) <∞, where

∥v∥W 1,∞(D) := max{∥v∥L∞(D), ∥∇v∥L∞(D)}.

Then there exists a constant C2 > 0 independent of y and f such that the
solution u(·, y) ∈ H1

0 (D) of the parametric PDE problem satisfies

∥u(·, y)∥H1
0 (D)∩H2(D) ≤ C2∥f ∥L2(D) for all y ∈ U. (6)

Proof (sketch). Standard ellipticity theory implies that u(·, y) ∈ H1
0 (D) is

such that ∃∆u(·, y) ∈ L2(D) for all y ∈ U. Since now
∥a(·, y)∥W 1,∞(D) <∞ for all y ∈ U, we obtain

−∇ · (a(x , y)∇u(x , y)) = f (x) (∇ · (ψ∇φ) = ∇ψ · ∇φ+ ψ∆φ)

⇔ −a(x , y)∆u(x , y) = f (x) +∇a(x , y) · ∇u(x , y)

⇒ ∥∆u(·, y)∥L2(D) ≤
∥f ∥L2(D)

amin
+

∥∇a(·, y)∥L∞(D)

amin
∥u(·, y)∥H1

0 (D)

≤
∥f ∥L2(D)

amin
+

∥a0∥W 1,∞(D) + Cψ

amin

CP∥f ∥L2(D)

amin
=: C2∥f ∥L2(D).
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Dimensionally-truncated finite element solution

Let as(x , y) := a(x , (y1, . . . , ys , 0, 0, . . .)) for y ∈ U. For y ∈ U,
us,h(·, y) ∈ Vh is the dimensionally-truncated finite element solution if∫

D
as(x , y)∇us,h(x , y) · ∇v(x) dx =

∫
D
f (x)v(x)dx for all v ∈ Vh.
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Finite element error in H1
0 (D)

Recall that by Céa’s lemma, the finite element solution is a quasi-optimal
approximation in the following sense:

∥us(·, y)− us,h(·, y)∥H1
0 (D) ≤ C (y) inf

vh∈Vh

∥us(·, y)− vh∥H1
0 (D),

where the constant C (y) := supx∈D a(x ,y)
infx∈D a(x ,y) ≤ amax

amin
=: C3 <∞ can be

bounded independently of y ∈ U due to our uniform ellipticity assumption.
Combining this with the approximation property (5) and the elliptic
regularity shift (6) yields

∥us(·, y)− us,h(·, y)∥H1
0 (D) ≤ C3 inf

vh∈Vh

∥us(·, y)− vh∥H1
0 (D)

(5)

≤ C3C1h∥us(·, y)∥H2(D)∩H1
0 (D)

(6)

≤ C3C1C2h∥f ∥L2(D) as h → 0. (7)

However, if we measure the error in the L2(D) norm, the finite element
convergence rate can be improved by an order of magnitude.
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Finite element error in L2(D)

Proposition

Under the same assumptions as the previous proposition, there exists a
constant C > 0 independent of s, h, f , and y such that

∥us(·, y)− us,h(·, y)∥L2(D) ≤ Ch2∥f ∥L2(D) as h → 0.

Proof. Let g ∈ L2(D). For y ∈ U, let ug ,s(·, y) ∈ H1
0 (D) denote the

solution to∫
D
as(x , y)∇ug ,s(·, y) · ∇v(x) dx =

∫
D
g(x)v(x) dx for all v ∈ H1

0 (D),

where as(·, y) := a(·, (y1, . . . , ys , 0, 0, . . .)). We test this against
v = us(·, y)− us,h(·, y) and let vh ∈ Vh be arbitrary.
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It follows from Galerkin orthogonality of the finite element solution that

⟨g , us(·, y)− us,h(·, y)⟩L2(D)

=

∫
D
as(x , y)∇ug ,s(x , y) · ∇(us(x , y)− us,h(x , y))dx

=

∫
D
as(x , y)∇(ug ,s(x , y)− vh(x)) · ∇(us(x , y)− us,h(x , y))dx

≤ amax∥ug ,s(·, y)− vh∥H1
0 (D)∥us(·, y)− us,h(·, y)∥H1

0 (D).

In consequence,

⟨g , us(·, y)− us,h(·, y)⟩L2(D)

≤ amax∥us(·, y)− us,h(·, y)∥H1
0 (D) inf

vh∈Vh

∥ug ,s(·, y)− vh∥H1
0 (D),

(8)

where g ∈ L2(D) is arbitrary. We now use the Aubin–Nitsche trick: recall
from the exercises of week 2(!) that the following identity holds

∥F∥L2(D) = sup
g∈L2(D)

∥g∥L2(D)≤1

⟨g ,F ⟩L2(D) for all F ∈ L2(D).

We take the supremum over {g ∈ L2(D) : ∥g∥L2(D) ≤ 1} in (8) to obtain...
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∥us(·, y)− us,h(·, y)∥L2(D)

= sup
g∈L2(D)

∥g∥L2(D)≤1

⟨g , us(·, y)− us,h(·, y)⟩L2(D)

≤ amax∥us(·, y)− us,h(·, y)∥H1
0 (D)︸ ︷︷ ︸

(7)

≤C3C1C2h∥f ∥L2(D)

sup
g∈L2(D)

∥g∥L2(D)≤1

(
inf

vh∈Vh

∥ug ,s(·, y)− vh∥H1
0 (D)︸ ︷︷ ︸

(5)

≤C1h∥ug,s(·,y)∥H1
0
(D)∩H2(D)

(6)

≤C1C2h∥g∥L2(D)

)

≤ Ch2∥f ∥L2(D),

where the constant C := amax(C1C2)
2C3 is independent of s, h, f , and

y .
Note especially that if G : L2(D) → R is a bounded linear operator, then∫

U
|G (us(·, y)− us,h(·, y))| dy ≤ C∥G∥L2(D)→R∥f ∥L2(D)h

2,

where C > 0 is independent of s, h, and f .
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Overall error

Let I (F ) :=
∫
U F (y)dy .

Theorem

Let D ⊂ Rd , d ∈ {2, 3}, be a bounded polyhedron, assume (A1)–(A3),
∥ψ1∥L∞(D) ≥ ∥ψ2∥L∞(D) ≥ ∥ψ3∥L∞(D) ≥ · · · , and suppose that
a0 ∈ W 1,∞(D) and ψj ∈ W 1,∞(D) with

∑∞
j=1 ∥ψj∥W 1,∞(D) <∞. Let

G : L2(D) → R be a bounded linear functional and define bj :=
∥ψj∥L∞(D)

amin
.

Then using the CBC algorithm with the POD weights

γu :=
(
|u|!

∏
j∈u

bj√
2ζ(2λ)/(2π2)λ

)2/(1+λ)
, λ :=

{
p

2−p if p ∈ (2/3, 1),
1

2−2δ if p ∈ (0, 2/3],

as inputs to construct a randomly shifted rank-1 lattice rule
Q∆

n,s(F ) :=
∑n−1

k=0 F ({
kz
n +∆} − 1

2), ∆ ∈ [0, 1]s , we have the overall error√
E∆|I (G (u))− Q∆

n,s(G (us,h))|2≤C (φ(n)max{−1/p+1/2,−1+δ}+s−2/p+1+h2),

where the constant C > 0 is independent of s, n, and h.
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Proof. We have the total error decomposition†

E∆[|I (G (u))− Q∆
n,s(us,h)|2] ≤ 9|(I − Is)(G (u))|2

+ 9|Is(G (us − us,h))|2

+ 9E∆[|Is(G (us,h))− Q∆
n,s(G (us,h))|2].

We have already proved, under the stated assumptions, that there hold

|(I − Is)(G (u))| = O(s−2/p+1),

|Is(G (us − us,h))| = O(h2),

E∆[|Is(G (us,h))− Q∆
n,s(G (us,h))|2] = O(nmax{−1/p+1/2,−1+δ}),

from which the claim immediately follows.

†Let a, b, c ≥ 0. Then
a+ b + c ≤ 3max{a, b, c} = 3

√
max{a, b, c}2 ≤ 3

√
a2 + b2 + c2.
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Extension of QMC theory to the full PDE solution without
a bounded linear quantity of interest G

Earlier, we discussed the QMC approximation for integrals of the form

E[G (us)] =

∫
Us

G (us(·, y))dy ,

where G : H1
0 (D) → R (or G : L2(D) → R) is a bounded linear functional

(quantity of interest).

But what if we wanted to approximate

E[us(x , ·)] =
∫
Us

us(x , y) dy

without a linear quantity of interest instead?

Idea: recall the variational characterization

∥f ∥L2(D) = sup
G∈L2(D)

∥G∥L2(D)≤1

⟨G , f ⟩L2(D)

of the L2 norm.
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By Fubini’s theorem, we have that

∥Is(us)− Q∆
n,s(us)∥L2(D) = sup

G∈L2(D)
∥G∥L2(D)≤1

|⟨G , Is(us)− Q∆
n,s(us)⟩L2(D)|

= sup
G∈L2(D)

∥G∥L2(D)≤1

|Is(⟨G , us⟩L2(D))− Q∆
n,s(⟨G , us⟩L2(D))|

≤ en,s(z ;∆) sup
G∈L2(D)

∥G∥L2(D)≤1

∥⟨G , us⟩L2(D)∥s,γ ,

where en,s(z ;∆) denotes the worst-case error of the shifted lattice
{t i +∆ : i ∈ {1, . . . , n}}. Especially:√

E∆∥Is(us)− Q∆
n,s(us)∥2L2(D)

≤ eshn,s(z) sup
G∈L2(D)

∥G∥L2(D)≤1

∥⟨G , us⟩L2(D)∥s,γ .

The shift-averaged worst-case error eshn,s(z) is precisely the same object
that we have considered in the past, i.e.,

[eshn,s(z)]2 =
1
n

∑
∅̸=u⊆{1:s} γu

∑n−1
k=0

∏
j∈u B2

({kzj
n

})
.
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In summary, even in this setting, we have the CBC search criterion

[eshn,s(z)]
2 =

1

n

∑
∅̸=u⊆{1:s}

γu

n−1∑
k=0

∏
j∈u

B2

({
kzj
n

})
.

The generating vector obtained using the CBC algorithm satisfies the
estimate√

E∆∥Is(us)− Q∆
n,s(us)∥2L2(D)

≤
(

1

φ(n)

∑
∅̸=u⊆{1:s}

γλu

(
2ζ(2λ)

(2π2)λ

)|u|)1/λ

× sup
G∈L2(D)

∥G∥L2(D)≤1

∥⟨G , us⟩L2(D)∥s,γ

for all λ ∈ (1/2, 1].
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Precisely the same analysis that we carried out before shows that choosing
the weights

γu :=

(
|u|!

∏
j∈u

bj√
2ζ(2λ)/(2π2)λ

)2/(1+λ)

, λ :=

{
p

2−p if p ∈ (2/3, 1),
1

2−2δ if p ∈ (0, 2/3],

with arbitrary δ > 0, yields the QMC convergence rate√
E∆∥Is(us)− Q∆

n,s(us)∥2L2(D)
= O(φ(n)max{−1/p+1/2,−1+δ}),

where the implied coefficient is independent of the dimension s.

Naturally, the dimensionally-truncated PDE solution in the above formula
can be replaced by the dimensionally-truncated FE solution us,h (provided
that we use a conforming FE method, i.e., the domain D is a polygon and
we use, e.g., piecewise linear finite element basis functions to span the
finite element space Vh).
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Today’s lecture follows the survey article
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to elliptic PDEs with random diffusion coefficients - a survey of
analysis and implementation. Found. Comput. Math. 16:1631–1696,
2016. arXiv version: https://arxiv.org/abs/1606.06613

291

https://arxiv.org/abs/1606.06613


Introduction: transformation to the unit cube

Consider the (univariate) integral∫ ∞

−∞
g(y)ϕ(y)dy ,

where ϕ : R → R≥0 is a univariate probability density function, i.e.,∫∞
−∞ ϕ(y)dy = 1. How do we transform the integral into [0, 1]?

Let Φ: R → [0, 1] denote the cumulative distribution function of ϕ, defined
by Φ(y) :=

∫ y
−∞ ϕ(t)dt and let Φ−1 : [0, 1] → R denote its inverse. Then

we use the change of variables

x = Φ(y) ⇔ y = Φ−1(x)

to obtain ∫ ∞

−∞
g(y)ϕ(y)dy =

∫ 1

0
g(Φ−1(x))dx =

∫ 1

0
f (x) dx ,

where f := g ◦ Φ−1 is the transformed integrand.
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Actually, we can multiply and divide by any other probability density
function ϕ̃ and then map to [0, 1] using its inverse cumulative distribution
function Φ̃−1:∫ ∞

−∞
g(y)ϕ(y) dy =

∫ ∞

−∞

g(y)ϕ(y)

ϕ̃(y)
ϕ̃(y) dy

=

∫ ∞

−∞
g̃(y)ϕ̃(y)dy (g̃(y) := g(y)ϕ(y)

ϕ̃(y)
)

=

∫ 1

0
g̃(Φ̃−1(x))dx =

∫ 1

0
f̃ (x) dx . (f̃ := g̃ ◦ Φ̃−1)

Ideally we would like to use a density function which leads to an easy
integrand in the unit cube. (Compare this with importance sampling for
the Monte Carlo method.)
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This transformation can be generalized to s dimensions in the following
way. If we have a product of univariate densities, then we can apply the
mapping Φ−1 componentwise

y = Φ−1(x) = [Φ−1(x1), . . . ,Φ
−1(xs)]

T

to obtain∫
Rs

g(y)
s∏

j=1

ϕ(yj)dy =

∫
(0,1)s

g(Φ−1(x))dx =

∫
(0,1)s

f (x)dx .

(Of course, dividing and multiplying by a product of arbitrary probability
density functions would work here as well!)
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Lognormal model

Let D ⊂ Rd , d ∈ {2, 3}, be a bounded Lipschitz domain. In the
“lognormal” case, we assume that the parameter y is distributed in RN

according to the product Gaussian measure µG =
⊗∞

j=1N (0, 1). The
parametric coefficient a(x , y) now takes the form

a(x , y) := a0(x) exp
( ∞∑

j=1

yjψj(x)
)
, x ∈ D, y ∈ RN, (1)

where a0 ∈ L∞(D) with a0(x) > 0, x ∈ D.
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A coefficient of the form (1) can arise from the Karhunen–Loève (KL)
expansion in the case where log(a) is a stationary Gaussian random field
with a specified mean and a covariance function.

Example

Consider a Gaussian random field with an isotropic Matérn covariance
Cov(x , x ′) := ρν(|x − x ′|), with

ρν(r) := σ2
21−ν

Γ(ν)

(
2
√
ν

r

λC

)ν

Kν

(
2
√
ν

r

λC

)
,

where Γ is the gamma function and Kν is the modified Bessel function of
the second kind. The parameter ν > 1/2 is a smoothness parameter, σ2 is
the variance, and λC is the correlation length scale.

If {(λj , ξj)}∞j=1 is the sequence of eigenvalues and eigenfunctions of the

covariance operator (Cf )(x) :=
∫
D ρν(|x − x ′|)f (x ′)dx ′, i.e., Cξj = λjξj ,

where we assume that λ1 ≥ λ2 ≥ · · · and the eigenfunctions are
normalized s.t. ∥ξj∥L2(D) = 1, then we can set ψj(x) :=

√
λjξj(x) in (1)

to obtain the KL expansion for this Gaussian random field.
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Lognormal model: let D ⊂ Rd , d ∈ {2, 3}, be a bounded Lipschitz
domain, and let f ∈ H−1(D). Let ψj ∈ L∞(D) and bj := ∥ψj∥L∞ for
j ∈ N such that

∑∞
j=1 bj <∞, and set

Ub :=

{
y ∈ RN :

∞∑
j=1

bj |yj | <∞
}
.

Consider the problem of finding, for all y ∈ U, u(·, y) ∈ H1
0 (D) such that∫

D
a(x , y)∇u(x , y) · ∇v(x) dx = ⟨f , v⟩H−1(D),H1

0 (D) for all v ∈ H1
0 (D),

where the diffusion coefficient is assumed to have the parameterization

a(x , y) := a0(x) exp
( ∞∑

j=1

yjψj(x)
)
, x ∈ D, y ∈ Ub,

where a0 ∈ L∞(D) is such that a0(x) > 0, x ∈ D.
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Standing assumptions for the lognormal model

(B1) We have a0 ∈ L∞(D) and
∑∞

j=1 bj <∞.

(B2) For every y ∈ Ub, the expressions amax(y) := maxx∈D a(x , y) and
amin(y) := minx∈D a(x , y) are well-defined and satisfy
0 < amin(y) ≤ a(x , y) ≤ amax(y) <∞.

(B3)
∑∞

j=1 b
p
j <∞ for some p ∈ (0, 1).

Remark: Note that in the lognormal case, a(x , y) can take values which
are arbitrarily close to 0 or arbitrarily large. Thus, the best we can do is to
find y -dependent lower and upper bounds amin(y) and amax(y). This will
lead to a y -dependent a priori bound and, consequently, y -dependent
parametric regularity bounds. This will make the QMC analysis more
involved, leading one to consider “special” weighted, unanchored Sobolev
spaces.
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Clearly, the diffusion coefficient a(x , y) blows up for certain values of
y ∈ RN (think of yj = b−1

j ), but the PDE problem is well-defined in the
parameter set Ub which turns out to be of full measure in
(RN,B(RN), µG ).

Lemma

There holds Ub ∈ B(RN), where B denotes the Borel σ-algebra and
µG (Ub) = 1.

Proof. See Lemma 2.28 in “Sparse tensor discretizations of
high-dimensional parametric and stochastic PDEs” by Ch. Schwab and
C. J. Gittelson (2011).
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The previous lemma implies that

I (F ) :=

∫
RN

F (y)µG (dy) =
∫
Ub

F (y)µG (dy).

Thus, it is sufficient to restrict our parametric regularity analysis to
y ∈ Ub, for which a(x , y) (and hence u(x , y)) are well-defined.

Let G ∈ H−1(D), our (dimensionally-truncated) integral quantity of
interest can thus be written as

Is(G (us)) :=

∫
Rs

G (us(·, y))
s∏

j=1

ϕ(yj) dy =

∫
(0,1)s

G (u(Φ−1(w)))dw

≈ 1

n

n∑
i=1

G (u(Φ−1(t i )))

=: Qn,s(G (u(·,Φ−1(·)))),

where Qn,s represents a QMC rule over an s-dimensional point set
{t i}ni=1 ⊂ (0, 1)s .
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Akin to the uniform case, we have a total error decomposition of the form

|I (G (u))− Qn,s(G (us,h))| ≤ |I (G (u − uh))|
+ |I (G (uh)− G (us,h))|
+ |Is(G (us,h))− Qn,s(G (us,h))|.

We focus on the QMC error, but briefly mention the corresponding
dimension truncation and finite element error results below. For further
details, see Graham, Kuo, Nichols, Scheichl, Schwab, Sloan (2015).

If D ⊂ R2 is a bounded convex polyhedron, f ∈ L2(D), G ∈ L2(D)′,
and a(·, y) is Lipschitz for all y ∈ Ub, then the finite element error
satisfies E[G (u − uh)] = O(h2). (Similar result holds for D ⊂ R3.)

For the Matérn covariance with ν > d/2, there holds

|I (G (uh))− I (G (us,h))| = O(s−χ), 0 < χ < ν
d − 1

2 .

There has been some recent work on generalizing this result, cf., e.g.,
Guth and Kaarnioja (2024): https://arxiv.org/abs/2209.06176
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Let us focus on the QMC error∫
Rs

G (us,h(·, y))dy − 1

n

n∑
k=1

G (us,h(·,Φ−1(tk))).

In this setting, we have

Is(F ) :=

∫
Rs

F (y)
s∏

j=1

ϕ(yj)dy =

∫
(0,1)s

F (Φ−1(w))dw

and the randomly shifted QMC rules

Q
(r)
n,s (F ) =

1

n

n∑
k=1

F (Φ−1({tk +∆r})),

Qn,R(F ) :=
1

R

R∑
r=1

Q
(r)
n,s (F ),

where we have R independent random shifts ∆1, . . . ,∆R drawn from
U([0, 1]s), tk := {kz

n }, with generating vector z ∈ Ns .
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Function space setting

Kuo, Sloan, Wasilkowski, Waterhouse (2010): It turns out that the
appropriate function space for unbounded integrands is a “special”
weighted, unanchored Sobolev space equipped with the norm

∥F∥s,γ =

[ ∑
u⊆{1:s}

1

γu

∫
R|u|

(∫
Rs−|u|

∂|u|

∂yu

F (y)
( ∏

j∈{1:s}\u

ϕ(yj)

)
dy−u

)2

×
(∏

j∈u
ϖ2

j (yj)

)
dyu

]1/2
where we have the weights

ϖ2
j (y) := exp(−2αj |yj |), αj > 0.

Brief idea: We’re interested in functions of the form g(y) = f (Φ−1(y)), where f ∈ F .
Now there exists an isometric space G of functions s.t.

f ∈ F ⇔ g = f (Φ−1(·)) ∈ G and ∥f ∥F = ∥g∥G .
If F is a RKHS with kernel KF , then G is a RKHS with kernel
KG(x , y) = KF (Φ−1(x),Φ−1(y)). Thus the core idea is to investigate Sobolev spaces
over unbounded domains which can be mapped isomorphically onto weighted Sobolev
spaces over (0, 1)s . 303



Theorem (Graham, Kuo, Nichols, Scheichl, Schwab, Sloan (2015))

Let F belong to the special weighted space over Rs with weights γ, with ϕ
being the standard normal density, and the weight functions ϖj defined as
above. A randomly shifted lattice rule in s dimensions with n being a
prime power can be constructed by a CBC algorithm such that√

E∆|IsF − Q∆
n,sF |2 ≤

(
2

n

∑
∅̸=u⊆{1:s}

γλu
∏
j∈u

ϱj(λ)

)1/(2λ)

∥F∥s,γ ,

where λ ∈ (1/2, 1] and

ϱj(λ) = 2

( √
2π exp(α2

j /η∗)

π2−2η∗(1− η∗)η∗

)λ

ζ(λ+ 1
2) and η∗ =

2λ− 1

4λ
,

with ζ(x) :=
∑∞

k=1 k
−x denoting the Riemann zeta function for x > 1.

The steps for QMC analysis are the same as in the uniform case: (1)
estimate ∥ · ∥s,γ for a given integrand (2) find weights γ which minimize
the upper bound (3) plug the weights into the new error bound and
estimate the constant (which ideally can be bounded independently of s). 304



Applying the theory in practice

Let us consider the parametric regularity of∫
D
a(x , y)∇u(x , y) · ∇v(x) dx = ⟨f , v⟩H−1(D),H1

0 (D) for all v ∈ H1
0 (D),

where a(x , y) := a0(x) exp
(∑∞

j=1 yjψj(x)
)
and f ∈ H−1(D).

Our strategy will be to obtain a parametric regularity bound for

∥
√
a(·, y)∇∂νu(·, y)∥L2(D),

that is, we find a sharp estimate ∂νu(·, y) in the energy norm, and then
use the coercivity of the problem to bound this from below by

∥
√

a(·, y)∇∂νu(·, y)∥L2(D) ≥
√

amin(y)∥∇∂νu(·, y)∥L2(D)

=
√

amin(y)∥∂νu(·, y)∥H1
0 (D).

(Compare with task 1 of Exercise 2, where we used a similar technique to
obtain a better constant for Céa’s lemma!)
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Lemma

∥
√
a(·, y)∇∂νu(·, y)∥L2(D) ≤ Λ|ν|b

ν ∥f ∥H−1(D)√
amin(y)

,

where (Λk)
∞
k=0 are the ordered Bell numbers defined by the recursion

Λ0 := 1 and Λk :=
k∑

ℓ=1

(
k

ℓ

)
Λk−ℓ, k ≥ 1.

Proof. By induction with respect to the order of the multi-indices. The
case |ν| = 0 is resolved by observing that

∥a(·, y)1/2∇u(·, y)∥2L2(D) =

∫
D
a(x , y)|∇u(x , y)|2 dx =

∫
D
f (x)u(x , y) dx

≤ ∥f ∥H−1(D)∥u(·, y)∥H1
0 (D)

≤
∥f ∥H−1(D)√

amin(y)
∥a(·, y)1/2∇u(·, y)∥L2(D)
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Next, let ν ∈ F \ {0} be such that the claim has been proved for all
multi-indices with order < |ν|. By exploiting the fact that∥∥∥∥∂ma(·, y)

a(·, y)

∥∥∥∥
L∞(D)

=

∥∥∥∥∏
j≥1

ψj(·)νj
∥∥∥∥
L∞(D)

≤ bν ,

we obtain (using the Leibniz product rule)∑
m≤ν

(
ν

m

)∫
D
∂ma(x , y)∇∂ν−mu(x , y) · ∇v(x)dx = 0

⇔
∫
D
a(x , y)∇∂νu(x , y) · ∇v(x) dx

= −
∑

0 ̸=m≤ν

(
ν

m

)∫
D

∂ma(x , y)︸ ︷︷ ︸
= ∂ma(x,y)

a(x,y) a(x ,y)

∇∂ν−mu(x , y) · ∇v(x) dx .

Testing against v = ∂νu yields...
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∥a1/2(·, y)∇∂νu(·, y)∥2L2(D) =

∫
D
a(x , y)|∇u(x , y)|2 dx

≤
∑

0̸=m≤ν

(
ν

m

)∫
D

∣∣∣∣∂ma(x , y)
a(x , y)

∣∣∣∣ a(x , y)∇∂ν−mu(x , y) · ∇∂νu(x , y) dx

≤
∑

0 ̸=m≤ν

(
ν

m

)
bm∥a1/2(·, y)∇∂ν−mu(·, y)∥L2(D)∥a1/2(·, y)∇∂νu(·, y)∥L2(D)

leading to the recurrence relation

∥a1/2(·, y)∇∂νu(·, y)∥L2(D) ≤
∑

0 ̸=m≤ν

(
ν

m

)
bm∥a1/2(·, y)∇∂ν−mu(·, y)∥L2(D)

By our induction hypothesis,

∥a1/2(·, y)∇∂ν−mu(·, y)∥L2(D) ≤ Λ|ν|−|m|b
ν−m ∥f ∥H−1(D)√

amin(y)
. This results in...

308



∥a1/2(·, y)∇∂νu(·, y)∥L2(D) ≤
∑

0 ̸=m≤ν

(
ν

m

)
bm∥a1/2(·, y)∇∂ν−mu(·, y)∥L2(D)

≤ bν ∥f ∥H−1(D)√
amin(y)

∑
0 ̸=m≤ν

(
ν

m

)
Λ|ν|−|m|

= bν ∥f ∥H−1(D)√
amin(y)

|ν|∑
ℓ=1

Λ|ν|−ℓ

∑
|m|=ℓ
m≤ν

(
ν

m

)

= bν ∥f ∥H−1(D)√
amin(y)

|ν|∑
ℓ=1

Λ|ν|−ℓ

(
|ν|
ℓ

)
= bν ∥f ∥H−1(D)√

amin(y)
Λ|ν|.
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A bound for Λk

The ordered Bell numbers have the following simple upper bound.

Lemma (Beck, Tempone, Nobile, Tamellini (2012))

Λk ≤ k!

(log 2)k

Proof. By definition Λk =
∑k

ℓ=1

(k
ℓ

)
Λk−ℓ =

∑k
ℓ=1

k!
ℓ!

Λk−ℓ

(k−ℓ)! , Λ0 = 1. Define

fk := Λk
k! ; then clearly

fk =
k∑

ℓ=1

fk−ℓ

ℓ!
, f0 = f1 = 1.

We prove by induction that fk ≤ αk for some α ≥ 1. The base steps
k = 0, 1 hold for all α ≥ 1 due to f0 = f1 = 1. Thus we assume that the
claim holds for f1, . . . , fk−1.
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fk =
k∑

ℓ=1

fk−ℓ

ℓ!
≤

k∑
ℓ=1

αk−ℓ

ℓ!
= αk

k∑
ℓ=1

α−ℓ

ℓ!
≤ αk(e

1
α − 1) ≤ αk ,

where the last step holds provided that

e
1
α − 1 ≤ 1 ⇔ e

1
α ≤ 2

⇔ 1

α
≤ log 2

⇔ α ≥ 1

log 2
.

Thus fk ≤ αk for all α ≥ 1
log 2(> 1). We get the sharpest bound by taking

α = 1
log 2 , which yields

Λk = k!fk ≤ k!

(log 2)k

as desired.
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Proposition

∥∂νu(·, y)∥H1
0 (D) ≤

∥f ∥H−1(D)

minx∈D a0(x)
|ν|!

(log 2)|ν|
bν

∏
j≥1

exp(bj |yj |)

Proof. From the previous discussion, we have that√
amin(y)∥∇∂νu(·, y)∥L2(D) ≤ ∥

√
a(·, y)∇∂νu(·, y)∥L2(D)

≤ Λ|ν|b
ν ∥f ∥H−1(D)√

amin(y)

≤ |ν|!
(log 2)|ν|

bν ∥f ∥H−1(D)√
amin(y)

⇒ ∥∂νu(·, y)∥H1
0 (D) ≤

∥f ∥H−1(D)

amin(y)
|ν|!

(log 2)|ν|
bν .

The claim follows by observing that

1

amin(y)
=

1

minx∈D
(
a0(x) exp(

∑
j≥1 yjψj(x))

) ≤
exp(

∑
j≥1 |yj |∥ψj∥L∞(D))

minx∈D a0(x)
.
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Estimating the special weighted Sobolev norm

Let G ∈ H−1(D). Then

∥G (u)∥2s,γ

=
∑

u⊆{1:s}

1

γu

∫
R|u|

(∫
Rs−|u|

∂|u|

∂yu

G (u(·, y))
∏
j ̸∈u

ϕ(yj)dy−u

)2∏
j∈u

ϖ2
j (yj) dyu

≲
∑

u⊆{1:s}

(|u|!)2

γu

(∏
j∈u

bj
log 2

)2 ∫
Rs

s∏
j=1

exp(2bj |yj |)
∏
j ̸∈u

ϕ(yj)
∏
j∈u

ϖ2
j (yj) dy

=
∑

u⊆{1:s}

(|u|!)2

γu

(∏
j∈u

bj
log 2

)2(∏
j ̸∈u

∫
R
exp(2bj |yj |)ϕ(yj) dyj︸ ︷︷ ︸
=2 exp(2b2j )Φ(2bj )

)

×
(∏

j∈u

∫
R
exp(2bj |yj |)ϖ2

j (yj)dyj

)
Multiplying and dividing the summand by

∏
j∈u 2 exp(2b

2
j )Φ(2bj) yields...
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∥G (u)∥2s,γ

≤
∑

u⊆{1:s}

(|u|!)2

γu

( s∏
j=1

2 exp(2b2j )Φ(2bj)

)

×
(∏

j∈u

b2j
2(log 2)2 exp(2b2j )Φ(2bj)

∫
R
exp(2bj |yj |)ϖ2

j (yj) dyj

)
.

Recall that ϖ2
j (yj) = exp(−2αj |yj |). If αj > bj , then∫

R exp(2bj |yj |)ϖ2
j (yj) dyj =

1
αj−bj

and we obtain

∥G (u)∥2s,γ

≤
∑

u⊆{1:s}

(|u|!)2

γu

( ∞∏
j=1

2 exp(2b2j )Φ(2bj)

)

×
(∏

j∈u

b2j
2(log 2)2 exp(2b2j )Φ(2bj)(αj − bj)

)
.
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The remainder of the argument follows by similar reasoning as the uniform
setting: the error criterion is minimized by choosing the weights

γu =

(
|u|!

∏
j∈u

bj√
2(log 2) exp(b2j )

√
Φ(2bj)(αj − bj)ϱj(λ)

)2/(1+λ)

(2)

for u ⊆ {1 : s}, with

λ =

{
1

2−2δ for arbitrary δ ∈ (0, 1/2) if p ∈ (0, 2/3],
p

2−p if p ∈ (2/3, 1).

The resulting bound can be minimized with respect to the parameters αj .
This corresponds to minimizing ϱj(λ)

1/λ/(αj − bj) with respect to αj ,
which yields

αj =
1

2

(
bj +

√
b2j + 1− 1

2λ

)
.

We obtain the overall cubature error rate O(nmax{−1/p+1/2,−1+δ})
independently of the dimension s. Thus using the weights (2) as inputs to
a (fast) CBC algorithm produces a QMC rule with a dimension
independent convergence rate in the lognormal setting!
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Elliptic PDE

Many physical phenomena can be modeled using elliptic partial differential
equations of the form{

−∇ · (a(x)∇u(x)) = f (x), x ∈ D,

+boundary conditions

Uncertainties can appear in the material parameter a, source term f ,
boundary conditions, or the domain D.

For the purposes of analysis, we consider the weak formulation of the
PDE. Under certain conditions, the solution to the weak formulation
can be shown to exist and be uniquely defined.

When we solve the PDE numerically using the finite element method,
we are actually approximating the solution to the the weak
formulation of the PDE problem.

Under suitably strong regularity assumptions (D convex Lipschitz
domain, f ∈ L2(D), and a Lipschitz), the weak solution satisfies
−∇ · (a(x)∇u(x)) = f (x) for a.e. x ∈ D with u|∂D = 0.
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Let D ⊂ Rd be a nonempty open set.

L2(D) := {v : D → R | v is measurable, ∥v∥L2(D) :=

(∫
D

|v(x)|2 dx
)1/2

<∞},

H1(D) := {v ∈ L2(D) | ∂jv ∈ L2(D) for all j ∈ {1, . . . , d}},

with ∥v∥H1(D) := (∥v∥2L2(D) + ∥∇v∥2L2(D))
1/2,

C∞
0 (D) := {v ∈ C∞(D) | supp(v) ⊂ D is a compact set},

where supp(v) := {x ∈ D | v(x) ̸= 0},

H1
0 (D) := clH1(D)(C

∞
0 (D)).

The spaces L2(D), H1(D), and H1
0 (D) are Hilbert spaces.

Poincaré’s inequality: if D ⊂ Rd is a bounded domain, then there exists a constant
CP > 0 (depending on the domain D) such that

∥v∥L2(D) ≤ CP∥∇v∥L2(D) for all v ∈ H1
0 (D).

Therefore, we can define an equivalent norm in H1
0 (D) by setting

∥v∥H1
0 (D) := ∥∇v∥L2(D).

This induces exactly the same topology in H1
0 (D) as the usual Sobolev norm ∥ · ∥H1(D).
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Trace theorem and boundary values

Trace theorem: Let D be a bounded Lipschitz domain. Then the trace
operator

γ : C∞(D) → C∞(∂D), γu = u|∂D ,

has a unique extension to a bounded linear operator γ : H1(D) → L2(∂D).

This means that even though u ∈ H1(D) is not well-defined over a set of
measure zero, we can interpret its restriction to the boundary of the
domain D as the trace γu ∈ L2(∂D).

Especially, Sobolev functions u ∈ H1(D) with zero trace are precisely the
elements of H1

0 (D):

u ∈ H1
0 (D) ⇔ γu = 0: ∂D → R.
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Q: How to solve such PDE problems in practice?
A: We consider the weak formulation of the PDE problem: given
f ∈ L2(D), find u ∈ H1

0 (D) such that∫
D
a(x)∇u(x) · ∇v(x)dx︸ ︷︷ ︸

=:B(u,v)

=

∫
D
f (x)v(x) dx︸ ︷︷ ︸
=:F (v)

for all v ∈ H1
0 (D), (1)

where F : H1
0 (D) → R is a bounded linear functional. If there exist

amin, amax > 0 s.t. 0 < amin ≤ a(x) ≤ amax <∞ for all x ∈ D, then the
bilinear form B : H1

0 (D)× H1
0 (D) → R is bounded, i.e.,

|B(u, v)| =
∣∣∣∣ ∫

D
a(x)∇u(x) · ∇v(x)dx

∣∣∣∣ ≤ amax∥u∥H1
0 (D)∥v∥H1

0 (D)

for all u, v ∈ H1
0 (D), and coercive, i.e.,

B(u, u) =

∣∣∣∣ ∫
D
a(x)∇u(x) ·∇u(x) dx

∣∣∣∣ ≥ amin∥u∥H1
0 (D) for all u ∈ H1

0 (D),

the Lax–Milgram lemma ensures that there exists a unique solution
u ∈ H1

0 (D) to (1).
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Galerkin method

To solve the system approximately, let Vm ⊂ H1
0 (D) be a

finite-dimensional subspace of the solution space H1
0 (D).

The Galerkin solution um ∈ Vm of the system (1) is the unique solution
such that∫

D
a(x)∇um(x) · ∇v(x) dx =

∫
D
f (x)v(x)dx for all v ∈ Vm.

Let Vm be spanned by ψ1, . . . , ψm. We can write the solution as
um =

∑m
i=1 ciψi . The above system reduces to the linear system of

equations


∫
D ∇ψ1(x) · ∇ψ1(x) dx · · ·

∫
D ∇ψ1(x) · ∇ψm(x) dx

...
. . .

...∫
D ∇ψm(x) · ∇ψ1(x)dx · · ·

∫
D ∇ψm(x) · ∇ψm(x)dx


c1

...
cm

 =


∫
D f (x)ψ1(x) dx

...∫
D f (x)ψm(x) dx

 .
Solving this system and plugging the expansion coefficients back into the
expression for um yields the Galerkin solution.
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Céa’s lemma

The solution to the Galerkin system is quasi-optimal in the following sense:

∥u − um∥H1
0 (D) ≤

amax

amin
inf

vm∈Vm

∥u − vm∥H1
0 (D).

That is, the H1
0 (D) error between the true PDE solution u and the

Galerkin approximation um differs from the optimal approximation in Vm

up to a constant factor.
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Finite element method

The finite element method is a particular method of constructing the
finite-dimensional subspaces Vm of the solution space H1

0 (D).

Construct a triangulation for the computational domain D.

The space Vm is spanned by piecewise linear functions ψ1, . . . , ψm

which are constructed to satisfy

ψi (nj) =

{
1 if i = j ,

0 otherwise,

where n1, . . . ,nm are the interior nodes of the triangulation.

The finite element solution can be written as
uh(x) =

∑m
i=1 ciψi (x) ∈ Vh, where the expansion coefficients are

solved from the Galerkin system. Note that uh(nj) = cj .

If vh(x) =
∑m

i=1 ciψi (x) ∈ Vh, then, e.g., ∥vh∥L2(D) =
√

cTMc ,
where c := [c1, . . . , cm]

T and M = [Mi ,j ]
m
i ,j=1 is the mass matrix

defined elementwise by Mi ,j :=
∫
D ψi (x)ψj(x) dx , i , j ∈ {1, . . . ,m}.

323



Figure: Left: An illustration of global, piecewise linear FE basis functions
spanning Vh over a regular, uniform triangulation of (0, 1)2. Right: Bird’s-eye
view of the same global FE basis functions.

324



Random field

Definition

Let D ⊂ Rd and let (Ω,F , µ) be a probability space. A function
A : D × Ω → X is called a random field if A(x , ·) is an X -valued random
variable for all x ∈ D.

Definition

We call a random field A : D × Ω → X square-integrable if∫
Ω
|A(x , ω)|2 µ(dω) <∞ for all x ∈ D.

Our goal will be to model (infinite-dimensional) input random fields using
finite-dimensional expansions with s variables.

Comment on notation: In what follows, s will always refer to the
“stochastic dimension” (dimension of the stochastic/parametric space)
while d will refer to the “spatial dimension” (dimension of the spatial
Lipschitz domain D ⊂ Rd , d ∈ {2, 3}).
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Mercer’s theorem

Let a(x , ω) be a square-integrable random field with mean

a(x) =
∫
Ω

a(x , ω)µ(dω), x ∈ D,

and a continuous, symmetric, positive definite† covariance

K(x , x ′) =

∫
Ω

(a(x , ω)− a(x))(a(x ′, ω)− a(x ′))µ(dω).

Mercer’s theorem: the covariance operator C : L2(D) → L2(D),

(Cu)(x) =
∫
D

K(x , x ′)u(x ′) dx ′, x ∈ D,

has a countable sequence of eigenvalues {λk}k≥1 and corresponding eigenfunctions
{ψk}k≥1 satisfying Cψk = λkψk such that λ1 ≥ λ2 ≥ · · · ≥ 0 and λk → 0 and the
eigenfunctions form an orthonormal basis for L2(D).
Note that this means:∫

D

K(x , x ′)ψk(x ′) dx ′ = λkψk(x),
∫
D

ψk(x)ψℓ(x) dx = δk,ℓ.

†In this context, positive definite means: for all choices of finitely many points
x1, . . . , xk ∈ D, k ∈ N, the Gram matrix G := [K(xi , xj)]

k
i,j=1 is positive semidefinite.
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The Karhunen–Loève (KL) expansion of a random field

Theorem

Let (Ω,F , µ) be a probability space, let D ⊂ Rd be closed and bounded,
and let a : D × Ω → R be a square-integrable random field with
continuous, symmetric, positive definite covariance
K (x , x ′) = E[(a(x , ·)− a(x))(a(x ′, ·)− a(x ′))]. Then the eigensystem
(λk , ψk) ∈ R+ × L2(D) of the covariance operator C : L2(D) → L2(D), as
described on the previous slide, can be used to write

a(x , ω) = a(x) +
∞∑
k=1

√
λkξk(ω)ψk(x),

where ξk(ω) =
1√
λk

∫
D
(a(x , ω)− a(x))ψk(x) dx ,

where the convergence is in L2 w.r.t. the stochastic parameter and uniform
in x . Furthermore, the random variables ξk are zero-mean uncorrelated
random variables with unit variance, i.e.,

E[ξk ] = 0 and E[ξkξℓ] = δk,ℓ.
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The Karhunen–Loève (KL) expansion of random field a(x , ω) can be
written as

a(x , ω) = a(x) +
∞∑
k=1

√
λkξk(ω)ψk(x).

The KL expansion minimizes the mean-square truncation error:∥∥a(x , ω)−a(x)−
∑s

k=1

√
λkξk(ω)ψk(x)

∥∥
L2(Ω,µ;L2(D))

=
(∑∞

k=s+1 λk
)1/2

.

The random variables ξk are centered and uncorrelated, but not
necessarily independent.
If the random field a(x , ω) is Gaussian – by definition, this means that
(a(x1, ω), . . . , a(xk , ω)) is a multivariate Gaussian random variable for
all x1, . . . , xk ∈ D, k ∈ N – then the random variables ξk are
independent.
The KL expansion is an effective method of representing input
random fields when their covariance structure is known. If the
(infinite-dimensional) input random field has a known covariance
(which satisfies the conditions of Mercer’s theorem), then we can use
the KL expansion to find a finite-dimensional approximation, optimal
in the mean-square error sense. 328



Modeling assumptions

In engineering and practical applications, the idea is that we have some a priori
knowledge/belief that the unknown input random field is distributed according to some
known probability distribution with a known covariance.

If the input random field is Gaussian with a known, nice covariance function†, then
we use the KL expansion to find a reasonable finite-dimensional approximation of
true input. Since the KL expansion decorrelates the stochastic variables, and
uncorrelated jointly Gaussian random variables are independent, we can exploit the
independence of the stochastic variables to parameterize the model problem.

If the input random field is not Gaussian, then the stochastic variables in the KL
expansion are uncorrelated but not necessarily independent. For the purposes of
mathematical analysis, we typically assume that the random variables in the input
random field are independent so that we can parameterize the model problem.
(Transforming dependent random variables into independent random variables can
be done using, e.g., the Rosenblatt transformation, but this is computationally
expensive.)

Note especially that in the Gaussian setting we do not need to make any “extra” effort
to ensure the independence of the stochastic variables in the KL expansion.

†Matérn covariance is an especially popular choice.
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Example (Lognormal input random field)

Let D ⊂ Rd , d ∈ {2, 3}, be a Lipschitz domain and consider the PDE
problem {

−∇ · (a(x , ω)∇u(x , ω)) = f (x) for x ∈ D,

u(·, ω)|∂D = 0,

where f : D → R is a fixed (deterministic) source term. We can model a
lognormally distributed random diffusion coefficient a : D × Ω → R using
the KL expansion, e.g., as

a(x , ω) = a0(x) exp
( ∞∑

k=1

yk(ω)ψk(x)
)
, yk ∼ N (0, 1),

where a0 ∈ L∞(D) is such that a0(x) > 0 and the random variables yk are
uncorrelated (and thus independent in the Gaussian case).

Due to the independence, we can consider the above as a parametric PDE
with a(x , y) ≡ a(x , y(ω)) and u(x , y) ≡ u(x , y(ω)), where (formally)
y ∈ RN is a parametric vector endowed with a product Gaussian measure.
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Example (Uniform and affine input random field)

Let D ⊂ Rd , d ∈ {2, 3}, be a Lipschitz domain, f : D → R is a fixed
(deterministic) source term, and consider the PDE problem{

−∇ · (a(x , ω)∇u(x , ω)) = f (x) for x ∈ D,

u(·, ω)|∂D = 0.

We can model a uniformly distributed random diffusion coefficient
a : D × Ω → R using the KL expansion, e.g., as

a(x , ω) = a0(x) +
∞∑
k=1

yk(ω)ψk(x), yk ∼ U(−1
2 ,

1
2),

where the random variables yk are uncorrelated. Unlike the Gaussian
setting, the random variables yk are generally not independent!

In numerical analysis, the random variables yk are often assumed to be
independent – this allows us to consider the above as a parametric PDE
with a(x , y) ≡ a(x , y(ω)) and u(x , y) ≡ u(x , y(ω)), where y ∈ [−1

2 ,
1
2 ]

N

is a parametric vector endowed with a uniform probability measure.
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To estimate the statistical response, note that in the lognormal model the
expected value of the PDE solution is given by

E[u(x , ·)] = lim
s→∞

∫
Rs

u(x , y)
s∏

j=1

e−
1
2
y2
j

√
2π

dy

while in the affine and uniform model the expected value of the PDE
solution is given by

E[u(x , ·)] = lim
s→∞

∫
[−1/2,1/2]s

u(x , y) dy .

In practice, we need to truncate these infinite-dimensional integrals
into finite-dimensional ones, incurring the so-called dimension
truncation error. Since the PDE is solved numerically using the finite
element method, this also incurs a finite element discretization error.

To compute the resulting high-dimensional integrals for the
dimensionally-truncated, finite element discretized PDE solution we
use a quasi-Monte Carlo (QMC) method.
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Quasi-Monte Carlo (QMC) methods are a class of equal weight cubature
rules ∫

[0,1]s
f (y) dy ≈ 1

n

n∑
i=1

f (t i ),

where (t i )ni=1 is an ensemble of deterministic nodes in [0, 1]s .

The nodes (t i )ni=1 are chosen deterministically.

QMC methods exploit the smoothness and anisotropy of an integrand in
order to achieve better-than-Monte Carlo rates.
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Lattice rules

Rank-1 lattice rules

Qn,s(f ) =
1

n

n∑
i=1

f (t i )

have the points

t i = mod

(
iz
n
, 1

)
, i ∈ {1, . . . , n},

where the entire point set is determined by
the generating vector z ∈ Ns , with all
components coprime to n.
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Lattice rule with z = (1, 55) and n = 89
nodes in [0, 1]2

The quality of the lattice rule is determined by the choice of z .
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Randomly shifted lattice rules

Shifted rank-1 lattice rules have points

t i = mod

(
iz
n

+∆, 1

)
, i ∈ {1, . . . , n}.

∆ ∈ [0, 1)s is the shift

Use a number of random shifts for error estimation.
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Lattice rule shifted by ∆ = (0.1, 0.3).
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Let ∆r , r = 1, . . . ,R, be independent random shifts drawn from U([0, 1]s)
and define

Q∆r
n,s (f ) :=

1

n

n∑
i=1

f (mod(t i +∆r , 1)). (QMC rule with 1 random shift)

Then

Qn,s(f ) =
1

R

R∑
r=1

Q∆r
n,s f (QMC rule with R random shifts)

is an unbiased estimator of Is(f ).
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Let f : [0, 1]s → R be sufficiently smooth.

Error bound (one random shift):

|Is(f )− Q∆
n,s(f )| ≤ e∆n,s,γ(z)∥f ∥γ .

R.M.S. error bound (shift-averaged):√
E∆[|Is(f )− Qn,s(f )|2] ≤ eshn,s,γ(z)∥f ∥γ .

We consider weighted Sobolev spaces with dominating mixed smoothness,
equipped with norm

∥f ∥2γ =
∑

u⊆{1:s}

1

γu

∫
[0,1]|u|

(∫
[0,1]s−|u|

∂|u|f

∂yu

(y)dy−u

)2

dyu

and (squared) worst case error

P(z) := eshn,s,γ(z)
2 =

1

n

n−1∑
k=0

∑
∅̸=u⊆{1:s}

γu
∏
j∈u

ω

({
kzj
n

})
where ω(x) = x2 − x + 1

6 .
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CBC algorithm (Sloan, Kuo, Joe 2002)

The idea of the component-by-component (CBC) algorithm is to find a
good generating vector z = (z1, . . . , zs) by proceeding as follows:

1. Set z1 = 1 (this is a freebie since P(1) = P(z) for all z ∈ N);
2. With z1 fixed, choose z2 to minimize error criterion P(z1, z2);

3. With z1 and z2 fixed, choose z3 to minimize error criterion
P(z1, z2, z3)
...
The CBC algorithm is a greedy algorithm: in general, it will not find
the generating vector z that minimizes P(z). However, it can be
shown that the generating vector obtained by the CBC algorithm
satisfies an error bound (see next slide).

For generic γ = (γu)u⊆{1:s}, evaluating P(z) = P(γ, z) takes
O(2s) operations. For an efficient implementation, it is desirable that
the weights γ can be characterized by an expression that does not
contain too many degrees of freedom.

Efficient implementation using FFT! (QMC4PDE, QMCPy, etc.)
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Theorem (CBC error bound)

The generating vector z ∈ Us
n constructed by the CBC algorithm,

minimizing the squared shift-averaged worst-case error [eshn,s,γ(z)]2 for the
weighted unanchored Sobolev space in each step, satisfies

[eshn,s,γ(z)]
2 ≤

(
1

φ(n)

∑
∅̸=u⊆{1:s}

γλu

(
2ζ(2λ)

(2π2)λ

)|u|)1/λ

for all λ ∈ (1/2, 1],

where ζ(x) :=
∑∞

k=1 k
−x denotes the Riemann zeta function for x > 1.

Remarks:

Optimal rate of convergence O(n−1+δ) in weighted Sobolev spaces,
independently of s under an appropriate condition on the weights.

Cost of algorithm for POD weights is O(s n log n + s2 n) using FFT.

Fast CBC works for any (composite) number n ≥ 2, but the
implementation is more involved when n is not prime.
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Significance: Suppose that f ∈ Hs,γ for all γ = (γu)u⊆{1:s}. Then for any
given sequence of weights γ, we can use the CBC algorithm to obtain a
generating vector satisfying the error bound√

E∆|Is f − Q∆
n,s f |2 ≤

(
1

φ(n)

∑
∅̸=u⊆{1:s}

γλu

(
2ζ(2λ)

(2π2)λ

)|u|)1/(2λ)

∥f ∥s,γ (2)

for all λ ∈ (1/2, 1]. We can use the following strategy:

For a given integrand f , estimate the norm ∥f ∥s,γ .
Find weights γ which minimize the error bound (2).

Using the optimized weights γ as input, use the CBC algorithm to
find a generating vector which satisfies the error bound (2).

Remarks:

If n is prime, then 1
φ(n) =

1
n−1 . If n = 2k , then 1

φ(n) =
2
n . For general

(composite) n ≥ 3, 1
φ(n) ≤

eγ log log n+ 3
log log n

n , where

γ = 0.57721566 . . . (Euler–Mascheroni constant).

The optimal convergence rate close to O(n−1) is obtained with

λ→ 1/2, but λ = 1/2 is not permitted since ζ(2λ)
λ→1/2+→ ∞.
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Example: applying QMC theory for a simplified parametric PDE
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Let D ⊂ Rd , d ∈ {2, 3}, be a convex, bounded Lipschitz domain and
consider the following (simplified!) elliptic PDE{

−∇ · (a(y)∇u(x , y)) = f (x), x ∈ D, y ∈ [−1/2, 1/2]s ,

u(x , y) = 0, x ∈ ∂D, y ∈ [−1/2, 1/2]s ,

where the source term f ∈ L2(D) is fixed and

a(y) := 1 +
s∑

j=1

βjyj , yj ∈ [−1/2, 1/2],

where βj ≥ 0 are assumed to be constants for all j ≥ 1 (i.e., independent
of x) s.t. a(y) ≥ amin > 0 for all y ∈ [−1/2, 1/2]s and

∑∞
j=1 β

p
j <∞ for

some p ∈ (0, 1). Due to the linearity of the PDE problem, we can write

u(x , y) =
g(x)

1 +
∑s

j=1 βjyj
, where

{
−∆g(x) = f (x), x ∈ D,

g |∂D = 0.

Note that the Poisson problem has a continuous solution g ∈ C (D).
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Clearly,

E[u(x , ·)] = g(x)
∫
[−1/2,1/2]s

1

1 +
∑s

j=1 βjyj︸ ︷︷ ︸
=:F (y)

dy .

(Note the similarity to exercise 2 of week 8!)

Steps of QMC analysis:

Estimate the (parametric) derivatives ∂νF (y).
Using the above, estimate ∥F (· − 1

2)∥s,γ .
Plug the weighted Sobolev norm into QMC error bound and choose
the weights γ = (γu)u⊆{1:s} to minimize the resulting error bound.

The resulting weights are used as inputs to the CBC algorithm. The
generating vector (and the resulting randomly shifted QMC point set)
are guaranteed to satisfy the rigorous CBC error bound.

Analysis: is the coefficient of the CBC error bound independent of the
dimension s with the chosen weights?
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Step 1: Parametric regularity. It is not difficult to see that

∂|u|

∂yu

F (y) = |u|!F (y)|u|+1
∏
j∈u

(−βj) for all u ⊆ {1 : s}.

Exploiting the fact that we assumed before that 1 +
∑s

j=1 βjyj ≥ amin > 0
for all y ∈ [−1/2, 1/2]s , we can define

bj :=
βj
amin

for all j ≥ 1,

and estimate the parametric regularity of the first order mixed partial
derivatives as∣∣∣∣ ∂|u|∂yu

F (y)
∣∣∣∣ ≤ 1

amin
|u|!

∏
j∈u

bj for all u ⊆ {1 : s}.
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Step 2: Estimate the weighted Sobolev norm. It is easy to see that

∥F (· − 1
2)∥

2
s,γ ≲

∑
u⊆{1:s}

(|u|!)2

γu

∏
j∈u

b2j .

Step 3: Plugging this into the CBC error bound√
E∆|IsF − Q∆

n,sF |2 ≤
(

1

φ(n)

∑
∅̸=u⊆{1:s}

γλu

(
2ζ(2λ)

(2π2)λ

)|u|)1/(2λ)

∥F (·−1
2)∥s,γ

yields√
E∆|IsF − Q∆

n,sF |2 ≲
(

1

φ(n)

)1/(2λ)( ∑
∅̸=u⊆{1:s}

γλu

(
2ζ(2λ)

(2π2)λ

)|u|)1/(2λ)

×
( ∑

u⊆{1:s}

(|u|!)2

γu

∏
j∈u

b2j

)1/2

.

(We have separated the dependence on the number of QMC nodes n since
this is unaffected by the choice of weights. The weights only affect the
constant in the error bound, which we try to minimize next.)
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Step 4: Choosing the weights. Note that the square of the objective
functional has the form

g(γ) :=

(∑
u

αuγ
λ
u

)1/λ(∑
u

βuγ
−1
u

)
,

which is minimized by

γu := c

(
βu
αu

)1/(1+λ)

for arbitrary c > 0.

(In fact, with c = 1, the minimizer is equivalent to setting the summands
equal: αuγ

λ
u = βuγ

−1
u .)

Thus the minimizing weights for our problem are the product-and-order
(POD) dependent weights:

γu :=

(
|u|!

∏
j∈u

bj√
2ζ(2λ)
(2π2)λ

)2/(1+λ)

, u ⊆ {1 : s}.

(The POD form is important since it doesn’t contain “too many degrees
of freedom”: the cost of fast CBC used to find the generating vector
satisfying the CBC error bound is O(s n log n + s2n) with these weights.)
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Step 5: Plugging the optimized POD weights into the QMC error bound
results in√

E∆|IsF − Q∆
n,sF |2 ≲

(
1

φ(n)

)1/(2λ)

C (s,γ, λ)(1+λ)/(2λ),

where

C (s,γ, λ) :=
∑

u⊆{1:s}

(
2ζ(2λ)

(2π2)λ

)|u|/(1+λ)
(|u|!)2λ/(1+λ)

∏
j∈u

b
2λ/(1+λ)
j .

In complete analogy to the 11th lecture, we have the following:

Lemma

By choosing

λ =

{
p

2−p when p ∈ (2/3, 1)
1

2−2δ for arbitrary δ ∈ (0, 1/2) when p ∈ (0, 2/3],

there exists a constant C (γ, λ) <∞ independently of s
s.t. C (s,γ, λ) ≤ C (γ, λ) <∞.
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Using randomly shifted rank-1 lattice rules to estimate the integral∫
[−1/2,1/2]

F (y) dy , F (y) :=
1

1 +
∑s

j=1 βjyj
,

we can conclude the following:

For arbitrary δ ∈ (0, 1/2), we can choose the POD weights

γu :=

(
|u|!

∏
j∈u

bj√
2ζ(2λ)
(2π2)λ

)2/(1+λ)

, λ :=

{
p

2−p if p ∈ (2/3, 1),
1

2−2δ if p ∈ (0, 2/3],

as inputs to the CBC algorithm to obtain a generating vector. If the
number of QMC nodes n is prime or a prime power, then the resulting
randomly shifted rank-1 lattice rule satisfies the root-mean-square error
bound √

E∆|IsF − Q∆
n,sF |2 ≲ nmax{−1/p+1/2,−1+δ}, (3)

where the implied coefficient is independent of the dimension s.
Note that this rate is always better than Monte Carlo, but cannot exceed
linear convergence O(n−1) (i.e., double the Monte Carlo rate).
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Uniform and affine model
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Uniform and affine model: let D ⊂ Rd , d ∈ {2, 3}, be a bounded Lipschitz
domain, let f ∈ L2(D), and let
U := [−1/2, 1/2]N := {(aj)j≥1 : −1/2 ≤ aj ≤ 1/2} be a set of parameters.
Consider the problem of finding, for all y ∈ U, u(·, y) ∈ H1

0 (D) such that∫
D
a(x , y)∇u(x , y) · ∇v(x) dx =

∫
D
f (x)v(x)dx for all v ∈ H1

0 (D),

where the diffusion coefficient has the parameterization

a(x , y) := a0(x) +
∞∑
j=1

yjψj(x), x ∈ D, y ∈ U,

where a0 ∈ L∞(D), there exist amin, amax > 0
s.t. 0 < amin ≤ a(x , y) ≤ amax <∞ for all x ∈ D and y ∈ U, and the
stochastic fluctuations ψj : D → R are functions of the spatial variable
such that

ψj ∈ L∞(D) for all j ∈ N,∑∞
j=1 ∥ψj∥L∞(D) <∞,∑∞
j=1 ∥ψj∥pL∞(D) <∞ for some p ∈ (0, 1).
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Proposition (Parametric regularity for the uniform and affine model)

For all y ∈ [−1/2, 1/2]N and ν ∈ F , there holds

∥∂νu(·, y)∥H1
0 (D) ≤

CP∥f ∥L2(D)

amin
bν |ν|!,

where CP is the Poincaré constant satisfying ∥v∥L2(D) ≤ CP∥v∥H1
0 (D) for all v ∈ H1

0 (D).

This parametric regularity bound is valid also for the dimensionally-truncated finite
element solution us,h. If G : H1

0 (D) → R is a bounded linear functional and we define
F (y) := G(us,h(·, y − 1

2 )) for y ∈ [0, 1]s , then

∥F∥2s,γ ≲
∑

u⊆{1:s}

1

γu
(|u|!)2

∏
j∈u

b2
j ,

and using the POD weights (3) as inputs to the CBC algorithm yields a randomly
shifted rank-1 lattice rule satisfying the R.M.S. error√

E∆|IsF − Q∆
n,sF |2 ≲ nmax{−1/p+1/2,−1+δ},

where the constant is independent of the dimension.
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Of course, the truncation of the input random series and the finite element
discretization incur additional errors.

If ∥ψ1∥L∞(D) ≥ ∥ψ2∥L∞(D) · · · , then the error resulting from the

dimension truncation has order O(s−2/p+1), where the constant is
independent of s.

If D ⊂ Rd is a bounded, convex polyhedron, a0 and ψj are Lipschitz
for all j ≥ 1 with

∑∞
j=1 ∥ψj∥W 1,∞(D) <∞, and G : L2(D) → R is a

bounded linear functional, then—if the FE mesh has been obtained
from an initial, regular triangulation of D by recursive, uniform
bisection of simplices—the L2 finite element error has order O(h2),
where h > 0 is the mesh size and the implied constant is independent
of y , s, and h.
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Lognormal model

365



Lognormal model: let D ⊂ Rd , d ∈ {2, 3}, be a bounded Lipschitz
domain, and let f ∈ H−1(D). Let ψj ∈ L∞(D) and bj := ∥ψj∥L∞ for
j ∈ N such that

∑∞
j=1 bj <∞, and set

Ub :=

{
y ∈ RN :

∞∑
j=1

bj |yj | <∞
}
.

Consider the problem of finding, for all y ∈ U, u(·, y) ∈ H1
0 (D) such that∫

D
a(x , y)∇u(x , y) · ∇v(x) dx = ⟨f , v⟩H−1(D),H1

0 (D) for all v ∈ H1
0 (D),

where the diffusion coefficient is assumed to have the parameterization

a(x , y) := a0(x) exp
( ∞∑

j=1

yjψj(x)
)
, x ∈ D, y ∈ Ub,

where a0 ∈ L∞(D) is such that a0(x) > 0, x ∈ D.
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Standing assumptions for the lognormal model

(B1) We have a0 ∈ L∞(D) and
∑∞

j=1 bj <∞.

(B2) For every y ∈ Ub, the expressions amax(y) := maxx∈D a(x , y) and
amin(y) := minx∈D a(x , y) are well-defined and satisfy
0 < amin(y) ≤ a(x , y) ≤ amax(y) <∞.

(B3)
∑∞

j=1 b
p
j <∞ for some p ∈ (0, 1).

Remark: Note that in the lognormal case, a(x , y) can take values which
are arbitrarily close to 0 or arbitrarily large. Thus, the best we can do is to
find y -dependent lower and upper bounds amin(y) and amax(y). This will
lead to a y -dependent a priori bound and, consequently, y -dependent
parametric regularity bounds. This will make the QMC analysis more
involved, leading one to consider “special” weighted, unanchored Sobolev
spaces.
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In this setting, we have

Is(F ) :=

∫
Rs

F (y)
s∏

j=1

ϕ(yj)dy =

∫
(0,1)s

F (Φ−1(w))dw .

where ϕ(y) := 1√
2π
e−

1
2
y2

is the probability density function of N (0, 1) and

Φ−1(w) = [Φ−1(w1), . . . ,Φ
−1(ws)]

T denotes the corresponding
(componentwise) inverse cumulative distribution function. We use the
randomly shifted QMC rules

Q∆r
n,s (F ) =

1

n

n∑
k=1

F (Φ−1({tk +∆r})),

Qn,R(F ) :=
1

R

R∑
r=1

Q∆r
n,s (F ),

where we have R independent random shifts ∆1, . . . ,∆R drawn from
U([0, 1]s), tk := {kz

n }, with generating vector z ∈ Ns .
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The appropriate function space for unbounded integrands is a “special”
weighted, unanchored Sobolev space equipped with the norm

∥F∥s,γ =

[ ∑
u⊆{1:s}

1

γu

∫
R|u|

(∫
Rs−|u|

∂|u|

∂yu

F (y)
( ∏

j∈{1:s}\u

ϕ(yj)

)
dy−u

)2

×
(∏

j∈u
ϖ2

j (yj)

)
dyu

]1/2
where we have the weights

ϖ2
j (y) := exp(−2αj |yj |), αj > 0.
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Theorem (Graham, Kuo, Nichols, Scheichl, Schwab, Sloan (2015))

Let F belong to the special weighted space over Rs with weights γ, with ϕ
being the standard normal density, and the weight functions ϖj defined as
above. A randomly shifted lattice rule in s dimensions with n being a
prime power can be constructed by a CBC algorithm such that√

E∆|IsF − Q∆
n,sF |2 ≤

(
2

n

∑
∅̸=u⊆{1:s}

γλu
∏
j∈u

ϱj(λ)

)1/(2λ)

∥F∥s,γ ,

where λ ∈ (1/2, 1] and

ϱj(λ) = 2

( √
2π exp(α2

j /η∗)

π2−2η∗(1− η∗)η∗

)λ
ζ(λ+ 1

2) and η∗ =
2λ− 1

4λ
,

with ζ(x) :=
∑∞

k=1 k
−x denoting the Riemann zeta function for x > 1.

The steps for QMC analysis are the same as in the uniform case: (1)
estimate ∥ · ∥s,γ for a given integrand (2) find weights γ which minimize
the upper bound (3) plug the weights into the new error bound and
estimate the constant (which ideally can be bounded independently of s). 370



Proposition (Parametric regularity bound for the lognormal model)

For all y ∈ Ub and ν ∈ F , there holds

∥∂νu(·, y)∥H1
0 (D) ≤

CP∥f ∥L2(D)

minx∈D a0(x)
|ν|!

(log 2)|ν| b
ν
∏
j≥1

exp(bj |yj |).

This parametric regularity bound is valid also for the dimensionally-truncated finite
element solution us,h. If G : H1

0 (D) → R is a bounded linear functional and
F (y) := G(us,h(·, y)) for y ∈ Rs , then

∥F∥2s,γ ≤
∑

u⊆{1:s}

(|u|!)2

γu

( s∏
j=1

2 exp(2b2
j )Φ(2bj)

)(∏
j∈u

b2
j

2(log 2)2 exp(2b2
j )Φ(2bj)(αj − bj)

)
.

By choosing αj =
1
2
(bj +

√
b2 + 1− 1

2λ
) and using the POD weights

γu =

(
|u|!

∏
j∈u

bj√
2(log 2) exp(b2

j )
√

Φ(2bj)(αj − bj)ϱj(λ)

) 2
1+λ

, λ :=

{
p

2−p
if p ∈ (2/3, 1),

1
2−2δ

if p ∈ (0, 2/3],

as inputs to the CBC algorithm yields a randomly shifted rank-1 lattice rule satisfying
the R.M.S. error √

E∆|IsF − Q∆
n,sF |2 ≲ nmax{−1/p+1/2,−1+δ},

where the constant is independent of the dimension.
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Similarly to the uniform and affine setting, the truncation of the input
random series and the finite element discretization incur a dimension
truncation error and a finite element discretization error, respectively.
However, the analysis is more complicated in the lognormal case and has
been omitted.
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Computational implementation

Consider the task of approximating
∫
[0,1]s f (y)dy using a randomly shifted

rank-1 lattice rule with R random shifts.

Once a generating vector z ∈ Ns has been obtained for a given number n
of QMC nodes and dimension s (using, e.g., the CBC algorithm), then:

for r = 1, . . . ,R, do
draw ∆(r) ∼ U([0, 1]s);
initialize Qr = 0;

for i = 1, . . . , n, do

set t i = mod
(
iz
n
+∆(r), 1

)
;

set Qr = Qr + f (t i );
end for

set Qr = Qr/n;

end for

return Q = Q1+···+QR
R ;

(This is the QMC estimator
with R random shifts.)

Remarks:

If integrating∫
Rs f (y)

∏s
j=1

e
− 1

2 y
2
j√

2π
dy

then use t i = Φ−1(mod( izn +∆(r), 1)),
where Φ−1 is the (componentwise)
inverse cumulative distribution function
of N (0, 1).

The R.M.S. error can be estimated by

R.M.S. error

≈
√

1
R(R−1)

∑R
r=1(Q − Qr )

2.
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The end!
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