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Proportion test
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Proportion test

Proportion tests can be used for example when testing proportions of
faulty products in a production process.

Let x1, . . . , xn be the observed values of a random variable x . Assume that
the observed values are i.i.d. and come from the Bernoulli distribution with
parameter p.†

The null hypothesis: H0 : p = p0.

Possible alternative hypotheses:

H1 : p > p0 (one tailed),

H1 : p < p0 (one tailed),

H1 : p ̸= p0 (two tailed).

†Now P(x = 1) = p, P(x = 0) = 1− p, E[p] = p, and Var(x) = p(1− p).
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Proportion test

The test statistic C =
∑n

i=1 xi .

If the null hypothesis H0 is true, then the test statistic follows the
binomial distribution with parameters n and p = p0.

Under the null hypothesis H0, the expected value of the test statistic
is np0 (E[C ] = np0) and the variance of the test statistic is
np0(1− p0).

If the value of the test statistic is large or small compared to the
expected value np0, evidence against the null hypothesis is found.

The null hypothesis is rejected if the p-value is small enough.

Python:

C stat = sum(x) # x is a (0,1) vector of length n

# containing the outcomes of

# Bernoulli trials

p value = scipy.stats.binomtest(C stat,n,p=p0).pvalue
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Proportion test, p-value

The distribution of the test statistic C is tabulated and statistical software
can be used to calculate p-values of the test.

Let c denote the observed value of the test statistic C . Then the p-value
of the test is given as follows:

If the alternative hypothesis is H1 : p > p0, then the p-value is
p = P(C ≥ c).

If the alternative hypothesis is H1 : p < p0, then the p-value is
p = P(C ≤ c).

If the alternative hypothesis is H1 : p ̸= p0, then the p-value is
usually† defined as p =

∑
k:pC (k)≤pC (c)

pC (k), where pC denotes the
PMF of Bin(n, p0).

The probabilities P(C ≥ c) and P(C ≤ c) are calculated under H0.

†Especially, statistical software such as R or the Scipy library use this formula.
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Asymptotic proportion test

If the sample size is large, then under the null hypothesis H0, the
standardized test statistic

Z =
p̂ − p0√

p0(1− p0)/n
,

where p̂ = 1
n

∑n
i=1 xi is the unbiased estimator of the parameter p,

approximately follows the standard normal distribution.

The approximation is usually good enough if np̂ > 10 and n(1− p̂) > 10.
For smaller samples, the test relies on the exact distribution of the test
statistic.
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Numerical example

In anticipation of an upcoming election, an opinion poll was conducted. In
the poll, the sample size was 1000 and 420 out of the 1000 eligible voters
reported that they support the mayor. We want to test on significance
level 5% whether the true support is less than 50% of the population.

Null hypothesis: H0 : p = 0.5.

Alternative hypothesis: H1 : p < 0.5.

Since n = 1000 and p̂ = 420
1000 = 0.42 satisfy np̂ > 10 and n(1− p̂) > 10,

we can use normal approximation. The observed value of the Z-statistic is

z =
p̂ − p0√

p0(1− p0)/1000
=

0.42− 0.50√
0.52/1000

≈ −5.06.

The p-value is p = P(Z ≤ z) = Φ(−5.06) ≈ 2.10 · 10−7. H0 is rejected.
Python:
>>>scipy.stats.binomtest(420,1000,p=0.5,alternative=’less’)

2.348554631632085e-07 # exact binomial test

>>>scipy.stats.norm.cdf((0.42-0.50)/numpy.sqrt(0.5*0.5/1000))

2.1001969880109918e-07 # normal approximation 278



Two sample proportion test

In the two sample proportion test, parameters of two different Bernoulli
distributed samples are compared.

Let x1, . . . , xn be the observed values of a random variable x and let
y1, . . . , ym be the observed values of a random variable y . Assume that
the observed values x1, . . . , xn are i.i.d. and come from the Bernoulli
distribution with parameter px , and assume that the observed values
y1, . . . , ym are i.i.d. and come from the Bernoulli distribution with
parameter py . Furthermore, assume that xi and yj are independent for all
i , j .

The null hypothesis: H0 : px = py .

Possible alternative hypotheses:

H1 : px > py (one tailed),

H1 : px < py (one tailed),

H1 : px ̸= py (two tailed),
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Two sample proportion test

Calculate the sample proportions p̂x = 1
n

∑n
i=1 xi and

p̂y = 1
m

∑m
i=1 yi , and p̂ =

np̂x+mp̂y
n+m .

Calculate the test statistic

Z =
p̂x − p̂y√

p̂(1− p̂)( 1n + 1
m )

.

If the sample size is large, then under the null hypothesis H0, the test
statistic Z approximately follows the standard normal distribution.
The approximation is usually good enough if np̂x > 5, n(1− p̂x) > 5,
mp̂y > 5, and m(1− p̂y ) > 5.

If the value of the test statistic has large absolute value, then
evidence against the null hypothesis H0 is found.

The null hypothesis H0 is rejected if the p-value is small enough.
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Testing general statistical assumptions
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In statistics, we very often make assumptions about the underlying
distribution. Most statistical methods become ineffective or give false
results if these assumptions do not hold. Hence it is very important to test
the distributional assumptions separately.
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Testing normality

283



Normality assumption

The normal distribution has a central role in statistics. Multiple methods
for testing the normality of observations have been developed. Here, we
take a look at a couple of them.

In what follows, let x1, . . . , xn be i.i.d. observations of a random variable x .

The null hypothesis is H0 :“the random variable x is normally distributed.”

The alternative hypothesis is H1 :“the random variable x is not normally
distributed.”
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The Bowman and Shenton normality test

The Bowman and Shenton normality test is a function of skewness and
kurtosis:

BS = n

(
v2

6
+

k2

24

)
,

where v is the sample skewness coefficient and k is the sample kurtosis
coefficient.

If the skewness or kurtosis differ a lot from the skewness and/or kurtosis of
the normal distribution, the test statistic gets large values.
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Bowman and Shenton normality test

If n is large, then under the null hypothesis H0, the test statistic BS
follows approximately the χ2(2) distribution.
The expected value of the test statistic under the null hypothesis H0

is E[BS ] = 2.
Large values of the test statistic compared to the expected value
suggest that the null hypothesis H0 is false.
The null hypothesis H0 is rejected if the p-value is small enough.
If one uses the formulae v̂ = m3

ŝ3
and k̂ = m4

ŝ4
− 3, where

ŝ =
√

1
n

∑n
i=1(xi − x)2 is the biased sample standard deviation, then

one obtains the closely related Jarque–Bera test statistic

JB = n

(
v̂2

6
+

k̂2

24

)
,

also used to assess normality. This test statistic is implemented in the
Python Scipy library as scipy.stats.jarque bera

Note that the Bowman and Shenton (resp. Jarque–Bera) normality
test is suitable for large samples only!
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Implementation using Python

import numpy as np

from scipy.stats import chi2

def BowmanShentonTest(x):

n = len(x)

xbar = np.mean(x)

std = np.std(x,ddof=1)

v = (1/n)*sum((x-xbar)**3)/std**3

k = (1/n)*sum((x-xbar)**4)/std**4-3

BS = n*(v**2/6+k**2/24)

q = chi2.cdf(BS,2)

return BS,1-q

# Note: if the distribution has 0 skewness and 0 kurtosis

# (ideal case for the normal distribution), then the test

# statistic BS == 0. Thus we choose a one sided alternative

# hypothesis of type ’greater’ since only large values of BS

# would be evidence of non-normality.
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Rank plot

Let x1, . . . , xn be i.i.d. observations from some distribution Fx . Let
z1 ≤ · · · ≤ zn be the observations x1, . . . , xn ordered from the smallest to
the largest one. Let y1 ≤ · · · ≤ yn be the ordered values of n
i.i.d. observations from the standard normal distribution N (0, 1) and let
E[yi ] be the expected value of yi .

Plot the pairs (E[yi ], zi ), i = 1, . . . , n. If the xi come from a normal
distribution, then the points (E[yi ], zi ) should approximately lie on a line.
If the points do not lie on a line, the sample differs from the normal
distribution. The plot can be used in detecting skewness of the
distribution and in finding outliers.

Rank plots are useful for quick visual assessment of the distribution of the
data: cf., e.g., the excellent StackExchange post
https://stats.stackexchange.com/a/101290
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Shapiro–Wilk normality test

The Shapiro–Wilk normality test statistic is the squared value of the
Pearson sample correlation coefficient calculated from the rank plot
points (E[yi ], zi ), i = 1, . . . , n.

Small values of the test statistic suggest that the assumption of
normality does not hold. Large values of the test statistic are in line
with the null hypothesis.

The null hypothesis is rejected if the p-value is small enough. The
test requires a large sample.

Statistical software can be used to calculate the p-value of the test.
Python: scipy.stats.shapiro(x)
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Numerical example

During the previous lecture, we considered an example where we compared
Brand X and Brand Y cookies. In the example, the price differences were
assumed to be symmetrically distributed. The data consisted of the cookie
prices in 10 randomly selected stores. We now wish to test the normality
of the price differences. The price differences are given below.

Difference: 0.04 0.19 -0.23 0.27 0.19 -0.13 0.03 -0.06 -0.24 0.01

Table: The differences of Brand X and Brand Y cookie prices.
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The Bowman and Shenton test: In order to calculate the test statistic, the
sample skewness and kurtosis coefficients v and k are needed. The sample
standard deviation is s ≈ 0.176 and the sample mean is x ≈ 0.07. Now

v =
m3

s3
=

1
n

∑n
i=1(xi − x)3

s3
≈ −0.0139

k =
m4

s4
− 3 =

( 1
n

∑n
i=1(xi − x)4

s4

)
− 3 ≈ −1.506.

The value of the test statistic is

BS = n

(
v2

6
+

k2

24

)
≈ 0.945.

Under the null hypothesis, the test statistic follows the χ2(2) distribution.
We decide to use the significance level 0.05. The critical values are then
0.051 and 7.378. Since 0.051 < 0.945 < 7.378, evidence of non-normality
was not found.
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Rank plot (Q-Q plot):
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Figure: Rank plot of the price differences.
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Shapiro–Wilk test: calculated in Python using the function
scipy.stats.shapiro

data: differences

W = 0.9439, p-value = 0.5966

The p-value is large and thus evidence of non-normality was not found.
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Can these results be trusted? Were all the required assumptions fulfilled?
What was the type 2 error?
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χ2 tests
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Multinomial distribution

Consider a situation, where a random experiment has k mutually exclusive
outcomes and consider n independent runs of that experiment. The
multinomial distribution models the frequency distribution of the outcome
of these n independent random experiments.

The random variables x1, . . . , xk follow the multinomial distribution with
parameters n, p1, . . . , pk , if the probability mass function is

p(x1, . . . , xk) =
n!

x1! · · · xk !
px11 · · · pxkk ,

where
k∑

i=1

xi = n and
k∑

i=1

pi = 1.
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Assume that x1, . . . , xk follow multinomial distribution with parameters
n, p1, . . . , pk . If n is large, then

k∑
i=1

(xi − npi )
2

npi

approximately follows the χ2(k − 1) distribution.
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χ2 goodness-of-fit test

The χ2 goodness-of-fit test examines the discrepancy between observed
values and the values expected under some particular distribution of a
random variable x .

The null hypothesis H0 : “The random variable x follows distribution Fx
(with or without unknown parameters).”

The alternative hypothesis H1 : “The random variable x does not follow
distribution Fx (with or without unknown parameters).”
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χ2 goodness-of-fit test

Let x1, . . . , xn be i.i.d. observations of a random variable x .

Categorize the n observations into k categories.

Calculate the frequencies Oi , i = 1, . . . , k, where Oi is the observed
frequency of the category i . Note that

∑k
i=1Oi = n.

Let pi be the probability that, under the null hypothesis, the random
variable x belongs to the category i . Calculate the expected
frequencies Ei = npi of the observations in category i . Note that∑k

i=1 pi = 1.

Now, under the null hypothesis, the random variables O1, . . . ,Ok

follow the multinomial distribution with parameters n, p1, . . . , pk .
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χ2 goodness-of-fit test

Calculate the test statistic

χ2
g =

k∑
i=1

(Oi − Ei )
2

Ei
.

If n is large, then under the null hypothesis, the test statistic χ2
g

approximately follows χ2(k − 1− e) distribution, where e is the
number of estimated parameters.
The expected value of the test statistic, under the null hypothesis, is
E[χ2

g ] = k − 1− e.
Large values of the test statistic (compared to the expected value)
suggest that the null hypothesis H0 does not hold.
If the p-value is small enough, then the null hypothesis H0 is rejected.
If the value of the test statistic is large, the sample frequencies differ
greatly from the expected value and it is clear that the null hypothesis
should be rejected. However, if the value is very small, then the
sample frequencies differ less than expected. This is called overfitting
– usually, we are not concerned about this, so typically a one tailed
alternative hypothesis (of type alternative=’greater’) is used. 300



Goodness-of-fit test, Example 1

Let us examine the quality of giant mugs made in a ceramics factory. The
null hypothesis is that:

an error in the shape of the mug occurs with probability 2/14,

a color error occurs with probability 2/14,

both errors occur simultaneously with probability 1/14,

the probability of an error-free product is 9/14.

Consider a sample of 200 randomly selected mugs such that

40 mugs have an error in the shape,

44 have a color error,

26 mugs have both errors,

90 mugs are error-free.

Now O1 = 40, O2 = 44, O3 = 26, O4 = 90
E1 = 200 · 2

14 , E2 = 200 · 2
14 , E3 = 200 · 1

14 , E4 = 200 · 9
14

∴ χ2
g =

∑4
i=1

(Oi−Ei )
2

Ei
= 34.08. Under the null hypothesis, the test

statistic approximately follows the χ2(4− 1) = χ2(3) distribution. Since
P(χ2(3) ≥ 34.08) < 0.00001, the null hypothesis is rejected.
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Goodness-of-fit test, Example 1

The χ2 goodness-of-fit test is implemented in the Python Scipy library as
scipy.stats.chisquare

For example, we can solve the previous example numerically as follows:

from scipy.stats import chisquare

O = [40,44,26,90]

E = [200*2/14,200*2/14,200*1/14,200*9/14]

chisquare(O,E)

The output is

Power_divergenceResult(statistic=34.08,

pvalue=1.905621048402571e-07)
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Goodness-of-fit test, Example 2

Consider testing whether the monthly salary of Germans follows the
normal distribution. Select randomly n Germans and document the
salaries. The null hypothesis is that the observations come from a normal
distribution with an unknown expected value and an unknown variance.

Estimate the unknown parameters (µ and σ2) from the sample.
Discretize the continuous salary variable.
Calculate the observed category frequencies O1, . . . ,Ok , i.e., calculate
the number of observations in each category.
Calculate the category probabilities from the normal distribution. For
example,

. . . ,P(1900 < X ≤ 2000), P(2000 < X ≤ 2100), . . .

Calculate the expected category frequencies E1, . . . ,Ek .
Calculate the test statistic. Under the null hypothesis, the test
statistic approximately follows the χ2(k − 1− 2) = χ2(k − 3), where
k is the number of the used categories and we estimated
e = 2 parameters (µ and σ2). Calculate the p-value and based on
that, either reject or do not reject the null hypothesis. 303



χ2 homogeneity test

In the χ2 homogeneity test, several (r) samples are examined.

The null hypothesis H0 : “The samples come from (some) same
distribution.”

The alternative hypothesis H1 : “The samples do not come from the same
distribution.”
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χ2 homogeneity test

Consider several (r) independent samples. Assume that the observations
of each sample are i.i.d. Assume that the sample i , i ∈ {1, . . . , r}, has ni
observations.

Categorize all the observations into c categories of size Cj .
Calculate the frequencies Oij , i = 1, . . . , r , j = 1, . . . , c , where Oij is
the observed frequency of the observations of the sample i in category j

1 2 · · · c sum

1 O11 O12 · · · O1c n1
2 O21 O22 · · · O2c n2
· · · · · · · · · · · · · · · · · ·
r Or1 Or2 · · · Orc nr

sum C1 C2 · · · Cc n

Table: The observed frequencies.

Let pj = Cj/n. Under the null hypothesis, for each sample i , the
probability of the category j is the same pj .
Calculate the expected frequencies Eij = nipj .
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χ2 homogeneity test

1 2 · · · c sum

1 E11 E12 · · · E1c n1
2 E21 E22 · · · E2c n2
· · · · · · · · · · · · · · · · · ·
r Er1 Er2 · · · Erc nr

sum C1 C2 · · · Cc n

Table: The expected frequencies.
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χ2 homogeneity test

Calculate the value of the test statistic

χ2
h =

r∑
i=1

c∑
j=1

(Oij − Eij)
2

Eij
.

If n is large, then under the null hypothesis, the test statistic χ2
h

approximately follows the χ2((r − 1)(c − 1)) distribution.

Under the null hypothesis, the expected value of the test statistic is
(r − 1)(c − 1). (That is, E[χ2

h] = (r − 1)(c − 1).)

Large values of the test statistic compared to the expected value
suggest that the null hypothesis H0 is false. Small values of the test
statistic compared to the expected value are indicative of overfitting –
the data fits the model “too well”. Usually, we are not too concerned
about this, so typically a one tailed alternative hypothesis (of type
alternative=’greater’) is used.

The null hypothesis H0 is rejected if the p-value is small enough.
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Homogeneity test, Example

A city council is about to make decisions about building a new library.
There was a preliminary plan and 250 randomly selected men and 300
randomly selected women were asked to comment the plan. 169 men and
125 women thought that the plan was good, 52 men and 144 women did
not like the plan, and 29 men and 31 women did not have an opinion
about the plan.

good plan bad plan no opinion Total

Men 169 52 29 250
Women 125 144 31 300

Total 294 196 60 550

Table: Observed frequencies

good plan bad plan no opinion Total

Men 133.6 89.1 27.3 250
Women 160.4 106.9 32.7 300

Total 294 196 60 550

Table: Expected frequencies 308



Homogeneity test, Example

The value of the test statistic:

χ2
h =

r∑
i=1

c∑
j=1

(Oij − Eij)
2

Eij
= 45.7105.

Under the null hypothesis, the test statistic approximately follows the
χ2((2− 1)(3− 1)) = χ2(2) distribution. Since
P(χ2(2) ≥ 45.7105) < 0.00001, it can be concluded that the opinions
about the preliminary plan do differ between men and women.

Solution using Python:

import pandas as pd

from scipy.stats import chisquare

O = pd.DataFrame({’good plan’:[169,125],’bad plan’:

[52,144],’no opinion’:[29,31]},index=[’Men’,’Women’])

tmp = O.values # create expected frequency table

E = pd.DataFrame((tmp.sum(0)*tmp.sum(1)[:,None])/tmp.sum(),

columns=O.columns,index=O.index)

chisquare(O,E,ddof=(O.shape[0]-1)*(O.shape[1]-1),axis=None) 309



χ2 test of independence

The χ2 test of independence is applied to study whether two random
variables (factors) are stochastically independent.

Null hypothesis H0 :“the variables are independent.”

Alternative hypothesis: H1 :“the variables are not independent.”
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χ2 test of independence

Consider a simple random sample of size n. Divide the observations to r
classes with respect to a factor A and to c classes with respect to a factor
B. Let Ri be the frequency of the observations in class i with respect to
the factor A. Let Cj be the frequency of the observations in class j with
respect to the factor B. Let Oij be the observed frequency of the
observations in class i with respect to the factor A and class j with respect
to the factor B.

1 2 · · · c sum

1 O11 O12 · · · O1c R1

2 O21 O22 · · · O2c R2

· · · · · · · · · · · · · · · · · ·
r Or1 Or2 · · · Orc Rr

sum C1 C2 · · · Cc n

Table: The observed frequencies.

Let Pj = Cj/n. Under the null hypothesis, for each category i of the
factor A, the probability of category j of the factor B has the same
probability Pj .
Calculate the expected frequencies Eij = RiPj . 311



1 2 · · · c sum

1 E11 E12 · · · E1c R1

2 E21 E22 · · · E2c R2

· · · · · · · · · · · · · · · · · ·
r Er1 Er2 · · · Erc Rr

sum C1 C2 · · · Ec n

Table: The expected frequencies.
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χ2 test of independence

Calculate the value of the test statistic

χ2
l =

r∑
i=1

c∑
j=1

(Oij − Eij)
2

Eij
.

If n is large, then under the null hypothesis, the test statistic
approximately follows the χ2((r − 1)(c − 1)) distribution.

The expected value of the test statistic is (r − 1)(c − 1). That is,
E[χ2

l ] = (r − 1)(c − 1).

Large values (compared to the expected values) of the test statistic
suggest that the null hypothesis is false. Small values of the test
statistic compared to the expected value are indicative of overfitting –
the data fits the model “too well”. Usually, we are not too concerned
about this, so typically a one tailed alternative hypothesis (of type
alternative=’greater’) is used.

The null hypothesis is rejected if the p-value is small enough.
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Test of independence, Example

There was an interesting presidential election and we wish to examine the
independence of the voting behavior of married men (M) and women (W).
The sample consists of 120 married couples and the presidential candidates
were A, B, C. In total, there are nine categories: AA, AB, AC, BA, BB,
BC, CA, CB, CC.

A, man B, man C, man Total

A, woman 15 7 8 30
B, woman 20 25 5 50
C, woman 10 10 20 40

Total 45 42 33 120

Table: Observed frequencies

A, man B, man C, man Total

A, woman 11.25 10.50 8.25 30
B, woman 18.75 17.50 13.75 50
C, woman 15.00 14.00 11.00 40

Total 45 42 33 120

Table: Expected frequencies 314



The value of the test statistic

χ2
r =

r∑
i=1

c∑
j=1

(Oij − Eij)
2

Eij
= 21.46.

Under the null hypothesis, the test statistic approximately follows the
χ2((3− 1)(3− 1)) = χ2(4) distribution. Since
P(χ2(4) ≥ 21.46) = 0.000257, we conclude that the voting behavior of
married men and women is not independent.

Solution using Python:

import pandas as pd

from scipy.stats import chisquare

O = pd.DataFrame({’A, man’: [15,20,10],’B, man’: [7,25,10],

’C, man’: [8,5,20]},index=[’A, woman’,’B, woman’,’C, woman’])

tmp = O.values # create expected frequency table

E = pd.DataFrame((tmp.sum(0)*tmp.sum(1)[:,None])/tmp.sum(),

columns=O.columns,index=O.index)

chisquare(O,E,ddof=(O.shape[0]-1)*(O.shape[1]-1),axis=None)
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Remark. The χ2 test of independence and the χ2 homogeneity test are
very similar. The test statistics and the degrees of freedom are calculated
identically. However, the tests measure very different phenomena.
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