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Inequalities and limits
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Random sample / i.i.d. random variables

Let X1, . . . ,Xn be random variables. We call X1, . . . ,Xn a random sample
if the random variables are independent and identically distributed (i.i.d.).

Independent means that X1, . . . ,Xn are mutually independent random
variables.
Identically distributed means that X1, . . . ,Xn all have the same law.

Often, we specify the law (probability distribution) of a random variable X
and say that X1, . . . ,Xn are i.i.d. copies of X .

Example

Let X ∼ N (0, 1). Suppose that X1, . . . ,Xn are i.i.d. copies of X . This
means that

Xi ∼ N (0, 1) for all i = 1, . . . , n (“identically distributed”).

Xi are mutually independent:

pX1,...,Xn(x1, . . . , xn) = pX (x1) · · · pX (xn), where pX (x) =
1√
2π
e−

1
2
x2 is

the PDF of X ∼ N (0, 1) (“independence”).

In practice, the terms “random sample” and “i.i.d.” are interchangeable.
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We begin by deriving bounds on the probabilities that a random
variable X stays away from its mean by a certain distance t > 0:

P(|X − E[X ]| > t).

Then we discuss two results, which lie at the heart of statistical
inference: the Law of Large Numbers (LLN) and the Central Limit
Theorem (CLT). The LLN states that, if X1,X2, . . . are i.i.d. random
variables with finite mean, then

1

n

n∑
i=1

Xi
n→∞−−−→ E[X1]

where the convergence happens in a sense to be specified. The CLT
states that, if the i.i.d. random variables X1,X2, . . . have finite
variance, then this convergence happens at rate O(n−1/2).
Together, these two results can be used to obtain approximate bounds
on the probability that the empirical sum remains away from its mean:

P(|X n − E[X ]| > t√
n
)

for fixed t > 0 and n large.
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Inequalities for expected values

Theorem (Cauchy–Schwarz inequality)

Let X and Y be two square-integrable, real-valued random variables.†

Then

E[XY ] ≤
√

E[X 2]
√

E[Y 2].

Proof. If X = 0 or Y = 0 almost surely, then the claim is trivial. Suppose
that X ̸= 0 and Y ̸= 0 almost surely. Let t ∈ R and note that

0 ≤ E[(X + tY )2] = E[X 2] + 2tE[XY ] + t2E[Y 2]

is a second degree polynomial with respect to t which has at most one real
root. Therefore its discriminant must be nonpositive:

discriminant ≤ 0 ⇔ (2E[XY ])2 − 4E[X 2]E[Y 2] ≤ 0

⇔ E[XY ]2 ≤ E[X 2]E[Y 2].

†Recall that square-integrability implies that E[X 2] and E[Y 2] are well-defined and
finite.
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Let X be a real-valued random variable. A fundamental problem in
statistics is to be able to bound from above the probability P(X > t) for
fixed t > 0. Bounds of the following kind are known as “tail bounds”.

Theorem (Markov’s inequality)

If X is an integrable†, non-negative real-valued random variable and t > 0,
then

P(X > t) ≤ E[X ]

t
.

Proof. Let us consider the case of X being a continuous RV (the discrete
case is similar). There holds

P(X > t) =

∫ ∞

t
fX (x)dx

(∗)
≤ 1

t

∫ ∞

t
xfX (x) dx ≤ 1

t

∫ ∞

0
xfX (x) dx ,

where (∗) follows from x ≥ t ⇔ 1 ≤ x
t . Since we assumed that X is

non-negative, fX (x) = 0 for x < 0, and thus

P(X > t) ≤ 1

t

∫ ∞

0
xfX (x)dx =

1

t

∫ ∞

−∞
xfX (x) dx =

E[X ]

t
.

†Recall that this means E[|X |] < ∞.
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If X is a square-integrable random variable, then we can bound the
probability that X is at least distance t > 0 away from the average.

Theorem (Chebyshev’s inequality)

Let X be a square-integrable random variable. For all t > 0,

P(|X − E[X ]| > t) ≤ Var(X )

t2
.

Proof. By Markov’s inequality,

P(|X − E[X ]| > t) = P(|X − E[X ]|2 > t2) ≤ E[|X − E[X ]|2]
t2

=
Var(X )

t2
,

where we applied Markov’s inequality P(Y > t ′) ≤ E[Y ]
t′ to the

non-negative random variable Y = |X − E[X ]|2 and t ′ = t2.
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Let σ =
√
Var(X ). It is sometimes useful to rewrite the Chebyshev

inequality in the form (set t = kσ)

P(|X − E[X ]| > kσ) ≤ 1

k2
.

If k = 2, then 1− 1
k2 = 75%.

If k = 3, then 1− 1
k3 ≈ 88.9%.

In practice, expected value and variance must be estimated. Chebyshev’s
inequality can be used to evaluate the rareness of a single observation.
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The Chebyshev inequality can be useful in situations where we only know
the mean and variance of X . On the other hand, it is quite a rough bound.
If we know the distribution of X , the probability P(|X − E[X ]| > t) can be
computed more precisely, typically leading to much better bounds.

Example

Let X be a random variable with mean E[X ] = 0 and variance
Var(X ) = 1. Suppose that we wish to estimate P(|X | > 2).

If the mean and variance is all we know about the random variable, then
Chebyshev’s inequality gives a very rough bound:

P(|X | > 2) ≤ 1

22
=

1

4
= 0.25.

If X is a Gaussian random variable, i.e., in this case we would have
X ∼ N (0, 1), then we know precisely

P(|X | > 2) = 2Φ(−2) = 0.04550 . . .
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If X is a Gaussian random variable, then the probabilities P(|X | > t),
t > 0, can be computed numerically using the CDF. Unfortunately, the
CDF does not have a closed form expression. Sometimes the following
bound is useful.

Theorem (Mill’s inequality)

Let X ∼ N (0, 1). Then for all t > 0,

P(|X | > t) ≤
√

2

π

exp(−1
2 t

2)

t
.

Proof. Let X ∼ N (0, 1) and t > 0. Then

P(|X | > t) =

∫ −t

−∞

1√
2π

e−
s2

2 ds +

∫ ∞

t

1√
2π

e−
s2

2 ds

= 2

∫ ∞

t

1√
2π

e−
s2

2 ds.

It is enough to bound this last integral.
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Arguing similarly as in the proof of Markov’s inequality,∫ ∞

t

1√
2π

e−
s2

2 ds ≤
∫ ∞

t

s

t

1√
2π

e−
s2

2 ds =
1

t
√
2π

∫ ∞

t
s e−

s2

2 ds.

For this integral, we have∫ ∞

t
s e−

s2

2 ds = −
[
e−

s2

2

]∣∣∣∣s=∞

s=t

= e−
t2

2 ,

which yields the assertion.
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The previous result can be generalized to Gaussian random variables with
arbitrary variance via the whitening transform.

Theorem

Let µ ∈ R, σ > 0, and let X ∼ N (µ, σ2). Then for all t > 0,

P(|X − E[X ]| > t) ≤
√

2σ2

π

e−
t2

2σ2

t
.

Proof. By the whitening transform, the random variable
Y = 1

σ (X − µ) ∼ N (0, 1), so

P(|X − µ| > t) = P(|Y | > σ−1t),

and the result follows from Mill’s inequality with t replaced by σ−1t.
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Limit theorems

We will state two fundamental limit theorems for sums of i.i.d. random
variables. To do so, we will first need to define what we mean by
convergence of a sequence of random variables.

Definition (Convergence in probability)

Let X be a real-valued random variable and let (Xn)n≥0 be a sequence of
real-valued random variables. We say that Xn converges to X in

probability, and write Xn
P→ X , if for any ε > 0, there holds

lim
n→∞

P(|Xn − X | > ε) = 0.

In other words, Xn converges to X in probability if the probability that
Xn is separated from X by any (even very small) non-zero distance
vanishes as n grows.
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Another, weaker form of convergence involves the CDFs FXn and FX of the
RVs Xn and X , respectively.

Definition

Let X be a real-valued random variable and let (Xn)n≥0 be a sequence of
real-valued random variables. We say that Xn converges to X in

distribution (or in law), and write Xn
d→ X , if for any x ∈ R where FX is

continuous, there holds

lim
n→∞

FXn(x) = FX (x).

If X is a continuous random variable, then FX is everywhere continuous, and the
above condition simply means that FXn converges pointwise to FX .

If X is discrete, then FX will be discontinuous at every point x such that
P(X = x) > 0. The above definition says that, when checking whether
Xn converges in distribution to X , we do not need to look at these points of
discontinuities.

That Xn converges in distribution to X means that P(Xn ≤ x)
n→∞−−−→ P(X ≤ x) for

all points x where FX does not jump. It is only a statement about the probability
distributions of Xn and X . In particular, it does not say at all that Xn is close to X
when n is large.
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Proposition

1 If Xn and X are square-integrable and

E[|Xn − X |2] n→∞−−−→ 0, (1)

then Xn
P→ X . The converse is false in general.

2 If Xn converges to X in probability, then Xn also converges to X in
law. The converse is false in general.

3 If X is constant, i.e., there exists a ∈ R such that X = a almost
surely, then

Xn
P→ X ⇔ Xn

d→ X .

The convergence (1) is called “convergence in quadratic mean”, and

written Xn
q.m.→ X . By the above proposition, convergence in quadratic

mean is strictly stronger than convergence in probability, and convergence
in probability is strictly stronger than convergence in distribution.
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.Proof. We only prove the first claim. Assume that Xn
q.m.→ X . Then for all

ε > 0,

P(|Xn − X | > ε) = P(|Xn − X |2 > ε2) ≤ E[|Xn − X |2]
ε2

,

where the last inequality is a consequence of Markov’s inequality. By
assumption, E[|Xn − X |2] n→∞−−−→ 0. Hence, by the above inequality, we get

P(|Xn − X | > ε)
n→∞−−−→ 0. This proves that Xn

P→ X . That the converse
implication is false in general can be shown by counterexample (left as an
exercise).
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The Law of Large Numbers (LLN)

Before stating the LLN, we need a technical, but intuitive, lemma.

Lemma

Let X and Y be real-valued random variables which are equal in law.
Then, for any real-valued map such that f (X ) is integrable, we have
E[f (X )] = E[f (Y )].

Proof. Let us prove the claim for discrete RVs (the continuous case is
similar just by replacing PMFs with PDFs and sums by integrals). Let X
and Y be discrete. Then pX = pY , so for all integrable functions f , by the
law of the unconscious statistician, there holds

E[f (X )] =
∑
x∈E

pX (x)f (x) =
∑
y∈E

pY (y)f (y) = E[f (Y )].

The above result implies also that if X and Y are equal in law, then

E[X ] = E[Y ], E[X 2] = E[Y 2], Var(X ) = Var(Y ),

provided that these quantities are well-defined.
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Let (Xn)n≥1 be a sequence of i.i.d. copies of a real-valued random variable
X . By this we mean that (Xn)n≥1 is a sequence of i.i.d. real-valued
random variables having the same law as X . For all n ≥ 1, let X n denote
the sample mean of X1, . . . ,Xn:

X n =
1

n

n∑
i=1

Xi .

If Xi are integrable, then by linearity of the expected value, there holds

E[X n] =
1

n

n∑
i=1

E[Xi ] = E[X ].

Heuristically, we expect X n to converge to E[X ] when n → ∞. This is
made precise by the following theorem.

Theorem (Weak Law of Large Numbers)

Let (Xi )i≥1 be a sequence of i.i.d. copies of a real-valued random variable
X . If Xi are integrable, then

X n =
1

n

n∑
i=1

Xi
P→ E[X ].
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.Proof. For simplicity, we provide a proof in the special case where the Xn

are also square-integrable. Then

E[(X n − E[X ])2] = E[(X n − E[X n])
2] = Var(X n).

Now

Var(X n) = Var

(
1

n

n∑
i=1

Xi

)
=

n∑
i=1

1

n2
Var(Xi ),

where the second equality holds since the Xi are independent. Now, by the
technical lemma we proved prior to this result, Var(Xi ) = Var(X ) for all i ,
so we get

Var(X n) =
Var(X )

n
n→∞−−−→ 0.

Hence E[(X n − E[X ])2]
n→∞−−−→ 0, therefore X n converges to E[X ] in

quadratic mean, and hence also in probability.
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A stronger statement holds with the same assumptions.

Theorem (Strong Law of Large Numbers)

Let (Xi )i≥1 be a sequence of i.i.d. copies of a real-valued random variable
X . If Xi are integrable, then

P
(
{ω ∈ Ω | X n(ω)

n→∞−−−→ E[X ]}) = 1.

That is, X n → E[X ] almost surely.

Remark. The significance of the LLN is that it provides a concrete way of
approximating the value of E[X ] by sampling values of X a large number
of times and taking the sample average.
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Example

Let X1, . . . ,Xn ∼ Ber(p) be independent for some p ∈ (0, 1). Then

X n =
1

n

n∑
i=1

Xi
P→ E[X1] = p.

In other words, if we keep throwing a coin with parameter p a large number
of times, the rate of success will converge in probability to p. If the coin is
fair, i.e., p = 1/2, then the rate of success approaches 1/2 for n large.

Example

Let X1, . . . ,Xn ∼ N (µ, σ2) be independent for some µ ∈ R and σ > 0.
Then

X n =
1

n

n∑
i=1

Xi
P→ E[X1] = µ.

The LLN implies that X n = E[X1] + εn, where εn is some remainder

satisfying εn
P→ 0. The obvious question to consider is to ask, how fast

does εn converge to 0?
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The Central Limit Theorem

Let X1,X2, . . . be a sequence i.i.d. real-valued random variables. We
assume that the Xi are square-integrable and denote by µ and σ2 their
mean and variance, respectively. Thus, for all i ,

E[Xi ] = µ, Var(Xi ) = σ2.

As we saw in the previous section,

E[X n] = µ, Var(X n) =
σ2

n
.

We can perform an affine transformation on Xn in order to set its
expectation and variance to 0 and 1, respectively. This can be achieved as
follows:

1 We center it by subtracting its mean E[X n],

2 We normalize it by dividing it by its standard deviation
√

Var(X n).
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In other words, we set

Yn =
1√

Var(X n)
(X n − E[X n]) =

√
n

σ2
(X n − µ).

With this procedure, we obtain a random variable Yn which is centered
and normalized, i.e., which satisfies

E[Yn] = 0, Var(Yn) = 1.

The following theorem shows that, for n large, the distribution of Yn is
actually close to N (0, 1).

Theorem (Central Limit Theorem)

Let X1,X2, . . . be a sequence of i.i.d. real-valued, square-integrable random
variables with mean µ and variance σ2. Then√

n

σ2
(X n − µ)

d→ N (0, 1).
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.Remark. The CLT implies that, for all a ∈ R,

P
(√

n

σ2
(X n − µ) ≤ a

)
n→∞−−−→

∫ a

−∞

1√
2π

e−
1
2
x2 dx .

Remark. One may loosely formulate the CLT as saying that√
n

σ2
(X n − µ)

d
≈ N (0, 1)

for n large. In other words,

X n
d
≈ µ+

√
σ2

n
Z ,

where Z ∼ N (0, 1). Thus, by the coloring transform,

X n
d
≈ N

(
µ,

σ2

n

)
.
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Example
Let X1, . . . ,Xn ∼ Ber(p) be independent for some p ∈ (0, 1). We know
from the LLN that

X n =
1

n

n∑
i=1

Xi
P→ E[X ] = p.

Since Var(X ) = p(1− p), the CLT further implies that√
n

p(1− p)
(X n − p)

d→ N (0, 1),

or, loosely speaking,

X n
d
≈ N

(
p,

p(1− p)

n

)
for n large.
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Example (Continued)
By approximating X n using the Gaussian distribution, we can make
inferences about the spread of X n. For example, if p = 1

2 and n = 104, we
can use the Gaussian approximation to derive a confidence interval I such
that P(X n ∈ I) ≈ 0.95. Since n is large, we can use the Gaussian
approximation

X n ≈ µ+ σnZ , Z ∼ N (0, 1),

where µ = p and σn =
√

p(1−p)
n . We wish to find a > 0 such that∫ µ+a

µ−a

1√
2πσ2

n

e
− 1

2σ2
n
(x−µ)2

dx = 0.95.

Using the change of variables z = x−µ
σn

, where dx = σn dz , we obtain∫ a/σn

−a/σn

1√
2π

e−
1
2
z2 dz = 0.95 ⇔ 2

∫ a/σn

0

1√
2π

e−
1
2
z2 dz = 0.95

⇔
∫ a/σn

−∞

1√
2π

e−
1
2
z2 dz =

1

2
+

0.95

2
.
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Example (Continued)

Using the CDF Φ(t) =
∫ t
−∞

1√
2π
e−

1
2
z2 dz , we obtain

Φ

(
a

σn

)
=

1

2
+

0.95

2
⇔ a = σn Φ

−1

(
1

2
+

0.95

2

)
.

Plugging in the values µ = p = 1
2 and σn =

√
p(1−p)

n = 1
200 yields the

interval
I = (µ− a, µ+ a) = (0.4902, 0.5098).
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