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Joint distributions
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Often, instead of dealing with one random variable only, we are interested
in several random variables Xi, ..., X,.

Let (Q2,P) be a probability space and let X;: Q2 — E; be random variables
with target spaces E;, j = 1,...,n. One can view the map

X=(X1,....%): Q= E1 x - xE;, we (Xi(w),. .., Xp(w))
as a single, multivariate random variable.

In analogy to the univariate case, the joint probability distribution of
Xl, NN ,Xn is

:Dx1 77777 Xn(C):P((Xl,...,Xn)EC) forCCE1><~--><E,,.

Informally speaking, the marginal distribution of X is obtained by
“integrating out” (continuous RVs) / “summation over” (discrete RVs) all
variables except the /™" one. The precise definition is
PX,-(A) = PXI,,..,X,,(El X oo X E,'_]_ X A X Ef+1 X X En)

=PXi € Eq,...,Xi-1 € Ei1, X € A, Xi11 € Eij1,..., Xn € Ep)

for all events A C E;.



Joint PMF (discrete RVs)

Assume that X;: Q — E; are discrete random variables (recall that this
means each E; is countable). This means that E; x --- x E, is also
countable. The joint PMF px, . x,: E1 x --- x E; — [0, 1] is defined as
Pxi,..., X,,(Xla-” ,X,,) = P(Xl = X1,...,Xn = X,,), (Xl,... 7X,,) € E1><--~XE,,.

The probability distribution can be expressed as follows in the discrete
case.

Proposition

For all events C C E; x --- x E,, there holds

Pxioxa(C) = D Pxixe (X155 Xn)-
(X15e--xn)EC

Proof. The claim is an immediate consequence of o-additivity of disjoint
events

{(X, ... X eCt= | {Xa=x,... Xa=x} O
(X1,-.-s%n)EC
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The marginal PMF of a discrete RV Xj can be obtained from the joint
PMF by summation over all the other RVs:

pX,'(X) = Z pX1,...,Xn(X17"'7Xi—17X7Xi+17"'7Xn)-
x1€E1,...,
xi—1€Ej_1,
Xi+1€Ei11,..-
xn€Ep

More generally, for any subset of indices T C {1,...,n}, we can recover
the joint PMF of the random variables (X;)ijcz from the joint PMF of
Xi,..., Xy by summing up px;... x, over all possible values in the

coordinates j & 1.

For example, if n = 4, we can recover the joint PMF of (X3, X3) via

PX;,X3 (X’ y) = E PX17X2,X3,X4(X17 Xy Y, X4)'
x1€E1, x4€Ey
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Example (Bivariate case n = 2)
If (X, Y) is a bivariate discrete RV with PMF px vy, then the PMFs of X and Y are
respectively given by

px(x) = pxv(xy) and py(y) =D pxv(x,y).

yeEE x€Ey

Example
Let (X, Y) be a bivariate RV taking values in {1,2} x {1,2,3} and with joint PMF p
given as below

plxy) |y=1 y=2 y=3
x=1] 01 03 02
x=2 | 02 02 0

The values of the marginal PMF px(x), x = 1,2, are obtained by summing up the
probabilities in each of the corresponding rows

px(1) =0.14+0.3+0.2 =06
px(2) = 0.2+ 0.2+ 0 = 0.4.

Similarly, the values of the marginal PMF py(y), y = 1,2, 3, are obtained by summing
up the probabilities in each of the corresponding columns:

py(1) =01+402=03, py(2)=03+02=05, py(3)=02+0=02.
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Joint PDF (continuous RVs)

Definition
A function f: R" — R is called a probability density function (PDF) if the
following conditions hold:
o f(x1,...,xp) >0 forall (x1,...,x,) € R
o [p- Jof(xt,. . xa)dxy - dx, = 1.
The real-valued random variables Xi, ..., X, admit a continuous joint

distribution (resp. admit a joint density) if there exists a PDF
fx,..x,: R" — R such that, for all subsets A C R", there holds

]P)((Xl, - ,Xn) S A) = / le,...,Xn(Xla . 7Xn) dX1 s an.
A

Then we call fx,  x, the probability density function (PDF) of X.
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Lemma
If X1,...,X, admit a joint density fx, . x,, then Xq,...,X, are
continuous RVs with PDF given by

in(X):/R le1,...,X,,(X1a ey Xim1y Xy X1y - - 5 Xp) dXy - dXi_1dXigr - dxg
o

for x € R. We call fx, the marginal PDF of X;.

More generally, for any subset of indices Z C {1,...,n} we can recover
the joint PDF of the random variables (X;);ez from the joint PDF of
X1, ..., X, by integrating over all possible values in the coordinates j ¢ 7.

For example, if n = 4, we can recover the joint PDF of (X3, X3) via

oo o0
sz,X3 (Xv y) = / / fX1,X2,X3,X4 (X17 X5 Y, X4) dxy dxg.
—o00 J —00
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Example

Let a, b, c,d € R be such that a < b and ¢ < d. Then the function
f:R? — R defined by

1

f(z) = ml[a,b]x[c,d](z)a

z € R,

is a PDF. It corresponds to the uniform distribution on the rectangle
[a, b] X [c,d]. The marginal distributions are univariate distributions on
the [a, b] and [c, d], respectively:

X ~U(a,b), Y ~U(c,d).
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Example (Bivariate Gaussian distribution)
Let x € R? and let C € R?*? be a symmetric, positive definite 2 x 2 matrix. The
function f: R? — R given by

(2) (z— )" C Yz m), ze R,

1 1
27y det C P ( 2

is a PDF. A random vector Z = (X, Y') with PDF f is said to have Gaussian distribution
with mean p and covariance matrix C. Denoting

2
_ 1204 C = Ox oxy
w= () = (5% %)

then the marginal PDFs are given by

1 (x = ux)?

f = -
<) = e (-&542).

1 _ 2
iexp(_i(y 1) )
V2mo?, 20y
Thus X ~ N (ux,0%) and Y ~ N (py,o%).
In the special case p =0and C = b, i.e., ux = puy =0, oxy =0, and o = 0% =1

fr(y) =

1 1
2) = o o ( - 5||z|\2>, zeR,

where ||z|| = v/x2 + y? denotes the Euclidean norm of z = (x, y).
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Independence of random variables

Definition
The random variables Xi, ..., X, are said to be independent if, for any
subsets A; C E1,...,A, C E,, there holds

P(Xy € A1, ..., Xp € Ap) = P(X1 € A1)+ P(X, € Ap).

Theorem (Independence of discrete RVs)

Assume that Xi,..., X, are discrete random variables with joint PMF
Px.,..x, and marginal PMFs px,,...,px,. Then Xy,...,X, are
independent if and only if

pX1,...,X,7(X17 s 7Xn) = PX1(X1) o 'pX,,(Xn)a (Xla s 7Xn) € El X X En~

v

Theorem (Independence of continuous RVs)
Assume that X1, ..., X, are continuous random variables with joint PDF

fx.,...x, and marginal PDFs fx,, ... fx,. Then Xq,...,X, are independent
if and only if

fX1,...,X,,(X1a e ,Xn) = le (Xl) cee fX"(X,,), (X1, ... ,Xn) e R".
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Example, independence

Let X and Y have the joint PDF
x+y if0<x<1, 0<y<I,
f(x,y) = .
0 otherwise.
Are the variables X and Y independent?
Now
! 1
f(x):/(x+y)dy—x+ 0<x<1
0
and

1
1
f(Y)Z/(X+Y)dX—y+ 0<y<l.
0

If the random variables are independent, then f(x,y) = f(x) - f(y). Let
x=1/3 and y =1/3. Now

Thus X and Y are not independent.
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Example, independence

Let X and Y have the joint PMF

L ifxe{1,2}, ye{1,2},
plx,y) =12 1,2}, y € {1,2}
0 otherwise.

Now
p(x)= > ply)=5+3=3 xe{1,2},
ye{1,2}
and otherwise p(x) =0,
and

and otherwise p(y) = 0.

Therefore p(x,y) = p(x)p(y) for all x and y, meaning that X and Y are
independent.
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Conditional distribution

Definition
Let (X, Y) be a discrete random variable in E; x E; with joint PMF px y

and marginal PMFs px and py. The conditional PMF pxy of X given Y
is defined by

pX,Y(X7y)
py(¥)
for all x € E; and y € E; such that py(y) > 0.

pxy(xly) =

)

Definition

Let (X, Y) be a continuous random variable in R” x R¥ with joint PDF
fx,y and marginal PMFs fx and fy. The conditional PDF fx|y of X given
Y is defined by

fx,v(x,y)
fr(y) ~

for all x € R” and y € R¥ such that fy(y) > 0.

fxy (xly) =
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Transformations of random variables
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When we perform arithmetic with random variables, it is natural to ask
o if X and Y are random variables, what is the distribution of
Z=X+Y?

e if X is an R¥-valued random variable with known distribution and
g: R¥ — R¥ is a function, what is the distribution of the transformed
random variable Y = g(X)?
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Theorem

Let X be a continuous real-valued random variable with CDF Fx and
quantile function Fy 1

© The random variable U = Fx(X) ~ U(0,1).

@ IfU~U(0,1), then F)?l(U) has the same distribution as X (they are
equal in law).

Proof. (1) Note that P(Fx(X) < t) = P(X < Fy(t)).! We observe that
for all t € (0,1),

P(U < t) = P(Fx(X) < t) = P(X < F'(t)) = Fx(Fx (1)) = t.

Therefore P(U < t) = t, meaning that U ~ 1/(0, 1).
(2) P(Fx'(U) < t) = P(U < Fx(t)) = Fx(t). O

fIf Fx(X) < t, then X < F'(t), which implies (since X is a continuous RV) that
P(Fx(X) < t) =P(Fx(X) < t) <P(X < Fx'(t)) = P(X < F(t)).
On the other hand, X < Fy () implies Fx(X) < Fx(Fx'(t)) = t, so
P(X < Fx'(t)) < P(Fx(X) < t). Therefore P(Fx(X) < t) = P(X < F'(t)).
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The previous theorem is very useful for simulations: if we have a uniform
random number generator, we can generate samples from any distribution
provided that we have access to its quantile function.
Algorithm (Inverse transform sampling)
1. Draw U ~ U(0,1).
-1
2. Calculate X = Fy (V).

If a closed form expression for the inverse CDF is not available, then a
computationally attractive formula for approximating the value F;l(U) is
given by the generalized inverse:

F;l(q) =inf{x € R| Fx(x) > q}.
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Example (Exponential distribution)
Let X ~ Exp()), A > 0, with the PDF fx(x) = e 1 o)(x). In this

case, Fx(a) = 1 c)(a)(1 - e™*?) and F)?l(q) = —% log(1 —q), g €(0,1)

We implement inverse transform sampling to draw a sample X ~ Exp(1).

import numpy as np
import matplotlib.pyplot as plt
n = int(1le5) # sample size
X = np.linspace(0,12,1000)
lam = 1 # lambda parameter of Exp distribution
p = lambda x: lam * np.exp(-lam#*x) # PDF
invF = lambda q: -1/lam * np.log(l-q) # quantile function
u = np.random.uniform(size=n) # i.i.d. sample from U(0,1)
sample = invF(u) # inverse transform
plt.hist(sample,bins=’auto’,

density=True,label=’sample’) # draw histogram
plt.plot(x,p(x),linewidth=2,label="PDF’) # plot the PDF
plt.legend()
plt.show()
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Example

Let the random variable X have the PDF fx(x) = (6x — 6x?)1jg 1)(x). In
this case, the quantile function is difficult to write down, but we can still
implement inverse transform sampling numerically.

import numpy as np
import matplotlib.pyplot as plt
n = int(le6) # sample size

X = np.linspace(0,1,10000)
p = lambda x: 6*x-6*x**2 # PDF
P = np.cumsum(p(x)); P = P/P[-1] # "empirical" CDF of p

sample = []
for _ in range(n):
u = np.random.uniform() # realization of U(0,1)
ind = np.where(u<=P) [0] [0] # inverse transform
sample.append(x[ind]) # store sample
plt.hist(sample,bins=’auto’,
density=True,label=’sample’) # draw histogram
plt.plot(x,p(x),linewidth=2,label="PDF’) # plot the PDF
plt.legend(); plt.show()
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Change of variables formula (discrete RVs)

Proposition
Let X:Q — E and Y : Q — F be discrete random variables such that
Y = g(X), where g: E — F. Then the PMF of Y is given by

()= D px(x)= D px(x)

xeg 1 ({y}) GSE

In other words, the PMF of Y at point y is obtained by summing up the
PMF of X over the preimage g~ *({y}).

Proof. Recall that g=1({y}) = {x € E| g(x) = y}. Thus
py(y) =P(Y = y) =P(g(X) = y) = P(X = g~ '({y}))
—r( U x=x)= ¥ Hx=0- ¥ )
xeg~({y}) xeg ' ({y}) xeg~({y})

where we used the o-additivity of the disjoint sets ({X = x})ccg-1(,)- [
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Change of variables formula (continuous, univariate case)

Let X and Y be real-valued random variables such that Y = g(X), where
g: R — R. By noting that the CDF of Y satisfies

Fy(y) =PB(Y <y) =P(g(X) <),

one can use the following method to obtain the PDF of Y given the PDF
of X:

o Compute the CDF of Y using

Fy(y) =P(g(X) <y) foryeR.

o If Fy is differentiable, then Y has the PDF fy = FJ,.
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Example

Let X ~ U(0,1), g(x) = x2, and define Y = g(X). We wish to find fy(y).

We begin by noting that

Frly) = B(g(X) < y) = B(X? < y) = {

Here, P(@) = 0 and

VY y if y €]0,1],
Py <x <= [ 1[0,1](x)dx={1f tyelo]
. ify > 1.
Hence
0 if y <0 a
. dy 10.41(y)
Fr) = {7 Ty el = flb) =305 yeR

1 ify>1
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In the special case where g: R — R is a strictly monotonic, continuously
differentiable function, one has the following formula.

Theorem

Let g: R — R be a continuously differentiable and strictly monotonic
function. Let X and Y be continuous, real-valued random variables
satisfying Y = g(X). Then we have the following:

fx(x) = fr(g(x))lg’ ()|, x€R,

and
S S
g’ (g )’

Proof. For each (measurable) subset B C R, there holds
P(X € B) =P(Y € g(B)) :/ fy(y)dy = /B fr(g(x))lg’(x)| dx.

&(B)
Since B is arbitrary, we conclude that fx(x) = fy(g(x))|g’(x)].

fr(y) = (e Ie ) = fx(g ' (y)) yeR

The second claim follows from the first one by writing X = g~1(Y). O
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Change of variables formula (continuous, multivariate case)

The change of variables formulae can be generalized to higher dimensions.
For example, let Xi,..., Xk be real-valued random variables and let

g: R¥ — R. We wish to derive the PDF of the real-valued random
variable Z = g(Xi, ..., X).

One can proceed as follows:
@ Compute the CDF F7 of Z by

Fz(Z) = IP’(g(Xl, e ,Xk) S Z).

@ If F7 is differentiable, then its PDF is given by fz = FJ.
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Example

Let X, Y ~ U(0,1) be independent random variables and define
Z = max(X, Y). Nowf

Fz(z) =P(max(X,Y) <z)=P(X <z Y < 2z2).

Since X and Y were assumed to be independent, and both X and Y are
uniformly distributed in [0, 1], we get

0 ifz<0,
Fz(Z) = ]P(X < ) Y < Z </ 1[0 1] dt) =<z ifze [0, 1],
1 ifz>1

Differentiating the above yields

fz(Z) =2z 1[071](2), zeR.

tNote that max(X,Y) <z< X <zand Y < z. Recall also the notation
PX<z,Y<z)=P(X<zand Y <2z).
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The following change of variable formula works in the case where X, Y are
R"-valued random variables and g: R” — R" is C!-diffeomorphism (i.e., g
is a bijection and both g and its inverse g~! are continuously
differentiable). The Jacobian matrix of a vector field

F(x) = [Fi(x),..., Fa(x)]T, where Fj: R" = R for j=1,...,n,is

axlFl() @XnFl()

DF(x) = : . :
aixan(X) a%,,Fn(X)
Theorem

Let g: R" — R" be a C'-diffeomorphism and let X and Y be R"-valued
random variables such that Y = g(X). Then

fx(x) = fy(g(x))| det Dg(x)|, x € R”,

and
fr(y) = fx(g *(y))|det Dg~*(y)|, y €R"

Proof. The argument is exactly the same as the univariate version (use the
multivariate change of variables formula for integration). O
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Example
Assume that g is an affine transformation

g(x)=Ax+b, xeR"

for some fixed vector b € R"” and invertible matrix A € R"*". Suppose
that X has the PDF fx and Y = g(X). We wish to find the PDF fy of Y.

The Jacobian matrix of g is given by
Dg(x) =A, xeR"

and we have
g (y)=Ay - b).

Therefore the change of variables formula yields

fy(y) = fx(A" (y — b)) det A™!| = £ (A~ (y — b))
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Sums of independent random variables

Theorem
Let X and Y be independent, real-valued discrete random variables with
PMFs px and py, respectively. Then the random variable Z = X + Y has
the PMF

pz(z) = px(x)py(z — x).

x€E

Example
Let X ~ Poisson()\) and Y ~ Poisson(u) be two independent Poisson ran-
dom variables with parameters A\, u > 0. Then X + Y ~ Poisson(\ + p).

Theorem

Let X and Y be independent, real-valued continuous random variables
with PDFs fx and fy, respectively. Then the random variable Z = X + Y
has the PDF

fz(z) = /oo fx(x)fy(z — x)dx, z€R.

—00

This is the convolution of fx and fy and denoted fz(z) = (fx * fy)(z). L




Positive definite matrices
Definition
Let A € R¥*9 be a symmetric matrix. We call A a positive definite matrix
if
xTAx >0 forall x e R?\ {0}.

This implies that A is invertible and that A~! is positive definite if A is.
Characterization
Let A € R¥*9 be a symmetric matrix. Then the following are equivalent:
@ The matrix A is positive definite.
@ The eigenvalues of A are positive.

@ The matrix A has a Cholesky decomposition: there exists an upper
triangular matrix R € R9*? such that

A=R"R.
@ The matrix A has a matrix square root, denoted by Al/z, which
satisfies
A= A2AL2

Note that the matrix square root AY/2 s also positive definite.
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Multivariate Gaussian random variables
Definition
Let 1 € RY and let C € RY*9 be a positive definite matrix. We call a

random variable X on R? a multivariate Gaussian random variable with
mean g and covariance C if it has the PDF

fe(x) = (W)m exp < _ %(x — )T (x— M)), x € R

In this case, we denote X ~ N (u, C).

Remark. There exists a concept of Gaussian random variable even in the
case where the matrix C is positive semi-definite, i.e., at least one of its
eigenvalues is 0, but such a random variable does not have a well-defined
PDF (it is a “degenerate” random variable). The definition uses the
so-called characteristic function. We omit the details.

The inverse of the covariance matrix is sometimes called a precision
matrix. An often used notation is ||x||c = VxTC~1x for x € RY.
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Transformations of Gaussian random variables

Gaussian random variables behave predictably under affine
transformations:

e Multiplying a Gaussian RV with a (deterministic) scalar number yields
another Gaussian RV with an updated mean and variance.

@ Translating a Gaussian RV yields another Gaussian RV with an
updated mean, but the same variance.

@ An affine transformation of a Gaussian RV yields another Gaussian
RVs with an updated mean and variance.

@ Nonlinear transformations of Gaussian RVs are typically no longer
Gaussian RVs!

— For example, the Euclidean norm Y = || X|| of a Gaussian RV is not
Gaussian (it follows a so-called “folded normal distribution™).

— The sum of squares of independent Gaussian RVs Z = X7 + - - + X2,
where X; are assumed to be independent Gaussian RVs, has the x?(k)
distribution.

89



Proposition (ZCA transform, univariate version)
Let 4 € R and o > 0. The univariate Gaussian distribution satisfies the

following properties:
Q@ If X ~N(0,1), then Y := i+ o X ~ N(u,0?).
@ IfY ~ N(u,0?), then X := L(Y — p) ~ N(0,1).

Proposition (ZCA transform, multivariate version)
Let p € RY and let C € RY*9 be a symmetric positive definite covariance
matrix. The multivariate Gaussian distribution satisfies the following
properties:

Q@ If X ~N(0,ly), then Y := pu+ CY2X ~ N(u, C).

Q@ IfY ~ N(p, C), then X := CY2(Y — 1) ~ N(0, I).
(Here, C=1/2 .= (CY/2)~1 is the inverse of the matrix square root of C.)

v

Remark. (1) is called a Mahalanobis or ZCA' coloring transform: it turns
a standard Gaussian RV into a Gaussian RV with specified mean and
covariance. (2) is called a Mahalanobis or ZCAT whitening transform: it
turns a Gaussian RV with a specified mean and covariance into a standard
Gaussian RV.

tZero-phase component analysis




Proof. Let us prove claim (1) of the multivariate version. Let X ~ A(0, ;)
and define Y =y + CY/2x. By defining g(x) = p + CY/?x, we can write

Y=g(X) = fly)="fx(g ' (y))|detDg  (y).

In this case, we have

1
—1 _ 120 -1 _ -1/2) _
=C and |det D, = |det C = .
g (v) (y —p) and | g () =| \ Toc
Therefore
1 1 1
f =~ _exp| = Z|lICV3(y — 2)

(aae) "o (o),

which implies that Y ~ N (u, C).

The proof for (2) follows by writing X = g~ (YY) and using the change of
variables formula fx(x) = fy(g(x))| det Dg(x)|. O
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Linear transformation of a Gaussian random variable

Proposition

Let 1 € RY and let C € R¥*9 be a symmetric, positive definite matrix.
Let X ~ N(u,C). Ifk < d and L € R**9 s a matrix with full rank, then

Y = LX ~ N(Lu, LCLT).
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Different coloring transforms

Let p € RY, let C € R9%9 be a symmetric positive covariance matrix, and
let X ~ N(0, /).
@ The Mahalanobis or ZCA coloring transform uses the matrix square
root factorization C = C/2CY/2 to write a standard Gaussian RV as

Y = pu+ CY2X ~ N(y, C).

@ One could alternatively use the Cholesky decomposition C = RTR to
obtain the Cholesky coloring transform

Y =p+RYX ~ N(u, C).

@ Finally, one could use the eigendecomposition
C = UNUT = (UNY2)(UNYA)T | where UUT = | = UTU and A'is a
diagonal matrix containing the eigenvalues of C, to obtain the PCAT
coloring transform

Y = 4 UN2X ~ N(u, C).

tPrincipal component analysis
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X ~N(0, 1)
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Different whitening transforms

Let p € RY, let C € R9%9 be a symmetric positive covariance matrix, and
let Y ~ N (u, C).

@ The Mahalanobis or ZCA whitening transform uses the matrix square

root factorization C = C/2C1/2 to write a standard Gaussian RV as

X = C7YV2(Y — p) ~ N(O, Iy).

@ One could alternatively use the Cholesky decomposition C = RTR to
obtain the Cholesky whitening transform

X =R (Y — u) ~N(0, Iy).

o Finally, one could use the eigendecomposition
C = UNUT = (UNY2)(UNYA)T | where UUT = | = UTU and A is a
diagonal matrix containing the eigenvalues of C, to obtain the PCA
whitening transform

X = AY2UT(Y = 1) ~ N(0, Iy).
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By inductive reasoning, one can deduce that any finite linear combination
of Gaussian RVs is a Gaussian RV.

Proposition (Univariate version)

Let X; ~ N (ui,0?) be independent Gaussian random variables with
i€ Rando;j >0 fori=1,...,n. Then

X Z:;X;NN(;M,',ZJIZ>.

i=1

Proposition (Multivariate version)

Let X; ~ N (pi, Gj) be independent Gaussian random variables with
pi € R and symmetric, positive definite C; € R9*9 fori =1,...,n. Then

X:=)"X NN(ZM,Z c,-).
i=1 i=1 i=1
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