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Random variables
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Random variables

Let (©2,P) be a probability space and let E be a set.
Definition
A random variable (RV) X with values in E is a function X: Q — E.

Remark. The set E is called the outcome or target space.
@ When E C R, we say that X is a real-valued random variable.
@ When E C R", n > 2, we call X a vector-valued random variable.
@ When E is countable, we call X a discrete random variable.

In practice, w is usually not observed directly and analysis is based on the
observed random variable X(w). Physically, one can think of a realization
X(w) of a random variable for some w € € as some measurement, or
observation performed on a system.

Statistical analysis is based on the pushforward measure B — P(X~1(B)),
also called the probability distribution or law of X, not on P. Note that
here X~1(B) := {w € Q| X(w) € B} is the preimage of B under the
mapping X.
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Example, two dice

As an example of a random variable, consider the sum:
X:{(1,1),(1,2),....(6,6)} = {2....,12}, X(w) = w1 +w2.

The identity function Y (w1,w2) = (w1,w?) also defines a random variable.
Since Y: Q — R2, this random variable is vector-valued.
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Let (Q2,P) be a probability space and E a set. A random variable
X:Q — E induces a probability measure Px on E, defined by

Px(B) :=P(X7Y(B)) =P({w € Q | X(w) € B}) for B C E,
which is called the probability distribution (or law) of X.

In other words, a random variable X connects an event B C E with a
corresponding event X~1(B) C Q and assigns the probability of
X~Y(B) to B.

Often, we shall simply denote
{XeB} ={weQ|X(w)e B},
and write
Px(B) =P(X € B).
Two random variables X and Y with the same target space E are said to
be equal in law if they have the same probability function, i.e.,

P(X € B)=P(Y € B) for all subsets B C E.

Usually, we are ultimately interested in the laws of random variables,

rather than the random variables per se.
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Example

Two players play Heads and Tails on a fair coin. The coin is thrown 10
times, the gain of player 1 is the total number of Heads, while the gain of
player 2 is the total number of Tails. This situation is modeled by
introducing Q = {H, T} endowed with the uniform distribution, and
defining random variables X and Y by

Xw)=#{i=1,...,10|wj=H}, Y(w)=#{i=1,...,10|w; =T}

for all w € {H, T}!°. Then X + Y = 10. Clearly X and Y are not equal,
however they have equal distribution: for all k,

P(X:k):2ic)<1£> :210<1013k> = P(X =10 — k) = P(Y = k).

This implies that X and Y are equal in distribution.
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Probability mass function

Let (©2,P) be a probability space. Let X: Q2 — E be a discrete random
variable (recall that this means that E is countable). Then, for all B C E,

we can write
P(X € B) = ) px(x (1)
xEB

where px(x) :=P(X = x), x € E. We call px the probability mass
function (PMF) of X.
Properties. The PMF px of a discrete random variable X is
@ non-negative px(x) > 0 for all x € E;
@ normalized ) - px(x) = 1.
In consequence, 0 < px(x) <1 for all x € E.
@ The law of a discrete random variable X with countable target space

E is uniquely determined by its PMF. This is a consequence of the
fact that, by (1),

Px(B) :=P(X € B) = > px(x
xeB
meaning that the PMF determines the law of X completely.



Probability density function

Definition
A function f: R — R is called a probability density function (PDF) if the
following conditions hold:

e f(x) >0 forall x€R;

o [* f(x)dx=1.
A real-valued random variable X is said to be a continuous random variable
if there exists a PDF fx: R — R such that, for all a2 < b, there holds

P(a< X < b) = /b fic(x) dx. (2)

Then we call fx the probability density function (PDF) of X.

Equation (2) implies for any (measurable) subset A C R that
Px(A) = B(X € A) = / f(x) dx.
A

meaning that the PDF fx determines the law of X completely.

33



Remark. One may think of the PDF as a “continuous” version of the PMF.
However, the PMF and PDF are two quite different types of functions.

@ The PMF of a discrete random variable X can take values between
[0,1], i.e.,
P(X = x) = px(x) € [0,1].

@ For a continuous random variable X, there always holds

P(X =x) = /X fx(y)dy = 0.
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Examples of discrete random variables

Example

Let p € (0,1). Let X be a random variable with values in E = {0,1} and
with PMF given by

(x) 1—p ifx=0,
X) =
PX p if x=1.

Then we say that X is a Bernoulli random variable with parameter p, and
we write

X ~ Ber(p).

A Bernoulli random variable with parameter p represents the result of
throwing a coin that falls on Heads with probability p and Tails with
probability 1 — p (p = 1/2 if the coin is fair).



Example

Let p € (0,1) and n > 1 an integer. Let X be a random variable with
values in {0, ..., n} and with PMF given by

n
X

px(x) = ( )px(l —-p)", xe{0,...,n}.
Then we say that X is a binomial random variable with parameters n and
p, and we write

X ~ Bin(n, p).

This corresponds to the probability of the number of times a coin lands on
Heads in n tosses of a coin, with p denoting the probability of a coin
landing on Heads.
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Example
Let p € (0,1). Let X be a random variable with values in N and with
PMF given by

px(x) =(1—p)tp, x>1.
Then we say that X is a geometric random variable with parameter p, and
we write

X ~ Geo(p).

This corresponds with the probability of hitting Heads for the first time,
when the probability of hitting Heads is equal to p.

That is,
P(X = k) = px(k) = (1 - p)**p

denotes the probability of hitting Tails for the first k — 1 rounds and
hitting heads on the k* round.
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Example
Let A > 0. Let X be a random variable with values in Ny and with PMF

given by
AX
= eiA

7|, x > 0.
X

px(x)

We then say that X is a Poisson random variable with parameter A, and
we write

X ~ Poisson(\).

Poisson random variables can be used to model the count of rare events
such as nuclei decaying in a radioactive sample.
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Examples of continuous real-valued random variables

Definition

Let a < b. Let X be a real-valued continuous random variable with PDF

A if b
fe(x)= s TISXSD R
0 otherwise,

We then say that X is a uniform random variable in [a, b], and we write

X ~U(a,b).
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Definition
Let A > 0. Let X be a real-valued continuous random variable with PDF

Ae ™ ifx>0
fi(x) = -7 xeR.
x(x) {0 if x <0,

We then say that X is an exponential random variable with parameter A,

and we write
X ~ Exp()).
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Example
Let © € R and 0 > 0. Let X be a real-valued continuous random variable
with PDF given by

1 (x—1)?

fx(x) = We_ 222 xeR.
o

We then say that X is a Gaussian random variable with parameters p and
o2, and we write

X ~ N(p,0?).

The parameter p is called the mean and o is called the standard deviation
of X.
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Cumulative distribution function

The cumulative distribution function (CDF) of a real-valued random
variable X is the function Fx: R — [0, 1] given by

Fx(x) =P({w € Q| X(w) < x}) . (or shortly = P(X < x))
Note that the CDF is defined for any random variable taking values in R,
whether discrete or continuous.
Proposition
Let Fx: R — [0,1] be the CDF of a real-valued random variable X. Then
o Fx is non-decreasing: if a < b, then Fx(a) < Fx(b).
o Fx is right-continuous: for all a € R,

Fx(a) = lim Fx(x).

X—a+

@ Fx(—00) :=limy__o Fx(x) =0 and Fx(c0) := limy_,o Fx(x) = 1.
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One can read off relevant information on the distribution of X from its
CDF.

Lemma
Let Fx: R — [0,1] be the CDF of a real-valued random variable X. Then

e For any real numbers a < b,
P(a < X < b) = Fx(b) — Fx(a).

@ forany a € R,
P(X > a) =1— Fx(a).

@ Forany x € R,

P(X = x) = Fx(x) — lim Fx(y).

y—rx—

Remark. In particular, if X is a continuous random variable, we have
Fx(x) = limy_x— Fx(y) for all x € R; no jumps occur. For a discrete
random variable, the situation is different: Fx is then a pure-jump
function, meaning that it increases purely through jumps.
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Relationship between the CDF and PMF (discrete case)

Proposition

Let X be a discrete random variable taking values in a countable subset E
of R. Denoting the PMF of X by px and its CDF by Fx, we have

Fx(a) = Z px(x) foralla € R,
x€E
x<a

px(X) = Fx(X) — Iim Fx(y).

y—x—

Proof. By the definition of the PMF, there holds

P(X € B) = pr(x) for all subsets B C E.

xeB

Setting B = {x € E | x < a} yields the first relation.
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For the second relation, we note that

{X:X}:ﬂEm

n>1

where the sets E, := {X € (x — 1,x]} form a decreasing sequence of
events E,1 C E, for n > 1. In this case, there holds

IP< N E,,) = lim P(E,)
n>1
= Jim (Fx(x) = Fx(x = 3))

— Fx(x) ~ lim_Fx(y).

as desired.
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Relationship between the CDF and PDF (continuous case)

Proposition

Let X be a continuous real-valued random variable. Denoting the PDF of
X by fx, and its CDF by Fx, we have

a
Fx(a) = / fx(y)dy forall a € R.
In addition, if Fx is differentiable at x € E, we have
fx(x) = Fx(x).
Proof. For the first statement, note that for all u < a there holds
Fi(a) = Fx(u) = B(X  (ual) = P(X € [.a]) = [ () dy.

where we used the fact that P(X = u) = 0 since X is a continuous

random variable. Letting u — —oo and recalling Fx(—o0) = 0, we obtain
Fx(a) = [°_ fx(y)dy. The second statement follows from the

fundamental theorem of calculus (Fx is the antiderivative of fx). O 4




Proposition
The probability distribution of a real-valued random variable is uniquely
determined by its CDF.

Proof. We give a proof in the discrete case. Let X and Y be two
real-valued random variables with the same CDF:

Fx(x) = Fy(x) forall x € R.
Then by the previous discussion,

px(x) = Fx(x) — lim Fx(y) = Fy(x) — lim Fy(y) = py(x).

y—rx— y—rx—

Thus X and Y have the same PMF, meaning that X and Y are equal in
law. O
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Quantile function

Definition
Let X be a real-valued random variable with CDF F. The generalized
inverse F~1: (0,1) — R,

F(q)=inf{xeR|F(x)>q}, qe(0,1),

is called the quantile function of X.

o If F is strictly increasing, then the quantile function is the inverse

function of F.
@ For example, the CDF and inverse CDF of a Bernoulli random

variable X ~ Ber(2) are

if x <0
f0<x<1 and Fl(q):{
ifx>1

0 ifo<g<i

F(x) =
() 1 if3<g<l

= = O
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Q
.

, :inf{.?? | F(z) > q}

q F~'(q)

“Find the smallest value of x such that F(x) > gq.

id
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Proposition
Let X be a real-valued random variable with CDF Fx. Then
@ Forall g (0,1), Fx(Fx'(q)) > q.
@ If X is a continuous random variable, then Fx(Fy'(q)) = q for all
g€ (0,1).

Proof. (1) Let g € (0,1). Since Fi*(g) = inf{x € R | F(x) > g} by
definition, we can find a sequence (a,)n>1 of real numbers such that
Fx(an) > g and a, \ F)?l(q). By the right-continuity of Fx, there holds

Fx(Fx (@) = lim Fx(an) = q.

(2) It suffices to prove the inequality Fx(Fx'(q)) < g by (1). Assume to
the contrary that FX(F)?l(q)) > q. Since Fx is the CDF of a continuous
random variable, it is continuous. By continuity of Fx, there exists

a € (—o0, Fx'(q)) such that Fx(a) > g, which contradicts the definition
of F)?l. O
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CDF of a normal random variable

Example
The CDF of a normal random variable X ~ A(0, 1) is often denoted by ®,

1 x 2
O(x)=P(X <x)=— e 2dt, xeR
Typical values to remember:

®(1.645) = P(X < 1.645) ~ 0.95,
®(1.960) = P(X < 1.960) ~ 0.975.

In this case the CDF & is injective and the quantile function, denoted by
®~!, coincides with its inverse. The above equalities can be recast as

®71(0.95) ~ 1.645,
®~1(0.975) ~ 1.960.
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