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Frequentist methods

The statistical methods that we have discussed so far are known as
frequentist (or classical) methods. The frequentist point of view is based
on the following postulates:

F1 Probability refers to limiting relative frequencies. Probabilities are
objective properties of the real world.

F2 Parameters are fixed, unknown constants. Because they are not
fluctuating, no useful probability statements can be made about
parameters.

F3 Statistical procedures should be designed to have well-defined long
run frequency properties. For example, a 95 percent confidence
interval should contain the true value of the parameter with limiting
frequency at least 95 percent.
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Bayesian methods

There is another approach to inference called Bayesian inference. The
Bayesian approach is based on the following postulates:

B1 Probability describes degree of belief, not limiting frequency. As such,
we can make probability statements about lots of things, not just
data which are subject to random variation. For example, “the
probability that Albert Einstein drank a cup of tea on August 1,
1948” is 0.35. This does not refer to any limiting frequency; it
reflects a subjective strength of belief that the proposition is true.

B2 The parameters are modeled as random variables, not as fixed,
unknown constants. We can make probability statements about the
parameters.

B3 We can make inferences about a parameter x by producing a
probability distribution for x . Inferences, such as point estimates and
interval estimates, may then be extracted from this distribution.

Bayesian inference embraces a subjective notion of probability. In general,
Bayesian methods provide no guarantees on long run performance.
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Notation / recap on conditional and marginal PDFs

Let x and y be random variables with values in Rd and Rk , respectively. If
the random variable (x , y) has a probability density fx ,y , i.e., if

P(x ∈ A, y ∈ B) = P((x , y) ∈ A× B) =

∫
A×B

fx ,y (u, v) du dv

for all events A ⊂ Rd and B ⊂ Rk , then fx ,y is called the joint probability
density of x and y . Here, P(x ∈ A, y ∈ B) := P(x ∈ A and y ∈ B). To
simplify notation, we also write f (x , y) = fx ,y (x , y).

Now, the marginal probability density fx of x is defined by

fx(u) =

∫
Rk

fx ,y (u, v) dv for all u ∈ Rd .

Analogously, the marginal density of y is

fy (v) =

∫
Rd

fx ,y (u, v)du for all v ∈ Rk .
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The marginal density of x is indeed the probability density for x in the
situation where we have no information about the random variable y ,
because

P(x ∈ A) = P(x ∈ A, y ∈ Rk) =

∫
A×Rk

fx ,y (u, v) du dv

=

∫
A

(∫
Rk

fx ,y (u, v) dv

)
du =

∫
A
fx(u) du

for every event A ⊂ Rd .

The random variables x and y are independent (denoted by x ⊥ y) if

P(x ∈ A, y ∈ B) = P(x ∈ A)P(y ∈ B)

for all events A ⊂ Rd and B ⊂ Rk or, equivalently, if

fx ,y (u, v) = fx(u)fy (v) for all u ∈ Rd , v ∈ Rk .

To simplify notation, we will also write f (x) := fx(x) and f (y) := fy (y).
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Next, we consider the random variable x in the opposite situation where
we know everything about the random variable y : we have observed it and
know what value it has taken.

We say we consider the random variable x , given that we know the value
y0 taken by y , and denote this by x |y = y0. For y0 ∈ Rk with fy (y0) > 0,
the conditional probability density of x |y = y0, fx |y=y0 , is then defined by

fx |y=y0(u) =
fx ,y (u, y0)

fy (y0)
.

If x and y are independent and fy (y0) > 0, then

fx |y=y0(u) = fx(u).

To simplify notation, we will also write f (x |y) := fx |y (x) := fx |y=y (x).
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Bayesian inference

Bayesian inference is usually carried out in the following way.

1 We choose a probability density f (x) – called the prior distribution –
that expresses our beliefs about a parameter x before we see any data.

2 We choose a statistical model f (y |x) that reflects our beliefs about y
given x .

3 After observing data y1, . . . , yn, we update our beliefs and calculate
the posterior distribution f (x |y1, . . . , yn).

In what follows, we will consider continuous Rd -valued random variables.
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Bayes’ formula

Let (x , y) be a random variable with joint density f (x , y) on Rd × Rk . If
f (y) > 0, then the conditional probability density of x , given y , equals

f (x |y) = f (x , y)∫
Rd f (x , y) dx

.

On the other hand, the conditional probability density of y in case we
know the value of the unknown x , is the likelihood function

f (y |x) = f (x , y)

f (x)
, if f (x) > 0.

Since f (x , y) = f (y |x)f (x), this leads to Bayes’ formula

f (x |y) = f (y |x)f (x)
Z (y)

, Z (y) :=

∫
Rd

f (y |x)f (x)dx .

If we have n i.i.d. observations y1, . . . , yn, then we replace f (y |x) with

f (y1, . . . , yn|x) =
n∏

i=1

f (yi |x) = Ln(x).

Bayes’ formula presents a way to express the conditional probability
density of x , given y , assuming that the conditional density of y , given x ,
and the marginal density of x are known. 495



Example

Consider the problem of estimating an unknown parameter x ∈ Rd from
data y ∈ Rk that is connected to x via the model

y = F (x) + ε. (1)

If

A1 The noise ε has the probability density ν on Rk ;

A2 The parameter x has the probability density f on Rd ;

A3 The random variables x and ε are independent;

then the likelihood is
f (y |x) = ν(y − F (x)).

This is because

f (y |x) = fy |x(y) = fF (x)+ε|x(y) = fε|x(y − F (x)) = fε(y − F (x))

= ν(y − F (x))

due to the assumptions ε ⊥ x and ε ∼ ν.
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Example

If assumptions A1–A3 hold and

Z (y) =

∫
Rd

ν(y − F (x))f (x) dx > 0,

then the posterior density corresponding to (1) is

f (x |y) = ν(y − F (x))f (x)

Z (y)
.

Remarks.

The condition that the marginal density f (y) of the observed data y
is positive means that the observed data is assumed to be consistent
with the probabilistic assumptions A1–A3.

An event cannot have positive probability under the posterior
distribution if it does not have positive probability under the prior
distribution.
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Case study: source localization

Suppose that a particle with unit charge is located at some (unknown)
point x∗ ∈ (0, 1) and our goal is to locate it based on measurements of
voltage at the interval end points x = 0 and x = 1. The mathematical
model for the voltage at any point x ∈ [0, 1] is given by

y(x) =
1

|x∗ − x |
.

Our noisy measurements are modeled by y1 =
1

|x∗−0| + ε1 and

y2 =
1

|x∗−1| + ε2, where ε1 and ε2 are i.i.d. realizations of N (0, σ2). We

take x∗ = 1/π (ground truth) and σ = 0.2 in the numerical experiments.

The likelihood is given by f (y |x) ∝ exp(− 1
2σ2

∑1
j=0(yj+1 − 1

|x−j |)
2).

We consider the prior f (x) = 1(0,1)(x) =

{
1 if x ∈ (0, 1),

0 otherwise.

Then the posterior density is given by Bayes’ formula

f (x |y) ∝ 1(0,1)(x) exp

(
− 1

2σ2

1∑
j=0

(
yj+1 −

1

|x − j |

)2)
.
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Let us visualize the posterior density against the ground truth solution.
(See also the file source.py on the course website!)

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25

posterior density

ground truth

We see that the posterior is localized around the true parameter value
(“ground truth”). Note that in this case, the prior hardly plays any role.

We could take, e.g., the mean or mode of the posterior density as a point
estimate for the unknown location of the point charge.
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What if we modify the problem so that we have access to only one
boundary measurement at x = 1?
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The resulting posterior distribution carries substantially more uncertainty
since we now have less measurement data!

Note that the posterior will generally be high-dimensional, meaning that it
is usually not possible to visually inspect the posterior density.
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Let x ∈ Rd , y ∈ Rk be random variables (the unknown parameter and the
measurement, respectively). Bayes’ formula:

f (x |y) = f (y |x)f (x)
Z (y)

, Z (y) :=

∫
Rd

f (y |x)f (x)dx > 0.

The prior model f (x) describes a priori information. It should assign
high probability to objects x which are typical in light of a priori
information, and low probability to unexpected x .
The likelihood model f (y |x) processes measurement information. It
gives low probability to objects that produce simulated data which is
very different from the measured data.
The number Z (y) can be treated as a normalization constant. It is
often not of significant interest. If needed, we can recover it by
computing the value of the integral Z (y) =

∫
Rd f (y |x)f (x) dx .

The posterior distribution f (x |y) represents the updated knowledge
about the parameter of interest x , given the evidence y .

Since the normalization constant Z (y) is often not of interest, we write

f (x |y) ∝ f (y |x)f (x),
where ∝ means equality up to a constant factor (not depending on x).
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Bayesian estimators

The posterior distribution can be used to define estimators for the
conditional random variable x |y ∼ f (x , y), where y = (y1, . . . , yn). In
general, an estimator x̂ is any function of the data y . The estimate
x̂ = x̂(y) is itself an Rd -valued random variable whose properties give
information about the usefulness and quality of the estimator.

Bayesian estimators are those defined via the posterior distribution f (x |y).
We present the two most prominent ones. The conditional mean (CM)
estimator is defined as the mean of the posterior distribution

x̂CM = E[x |y ] =
∫
Rd

x f (x |y) dx

This is a high-dimensional integration problem.

The maximum a posteriori (MAP) estimator is defined as the mode

x̂MAP = argmax
x∈Rd

f (x |y)

of the posterior distribution (if a unique mode exists). This is a
high-dimensional optimization problem.
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One way to estimate spread are Bayesian credible sets. A level 1− α
credible set Cα with α ∈ (0, 1) satisfies

P(x ∈ Cα|y) =
∫
Cα

f (x |y) dx = 1− α.

For small α, it is a region that contains a large fraction of the posterior
mass.
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Example. Assume that x ∈ R and that the posterior density is given by

f (x |y) = c

σ1
ϕ

(
x

σ1

)
+

1− c

σ2
ϕ

(
x − 1

σ2

)
,

where c ∈ (0, 1), σ1, σ2 > 0, and ϕ is the density of the standard normal

distribution, ϕ(x) = 1√
2π

exp
(
− x2

2

)
. In this case,

x̂CM = 1− c and x̂MAP =

{
0 if c/σ1 > (1− c)/σ2,

1 if c/σ1 < (1− c)/σ2.

If c = 1
2 and σ1, σ2 are small, the probability that x takes values near x̂CM

is small. On the other hand, if σ1 = cσ2, then c/σ1 = 1/σ2 > (1− c)/σ2,
so that x̂MAP = 0. If c is small, this is, however, a bad estimate for x ,
since the probability for x to take values near 0 is small. Last of all, we
notice that when the conditional mean gives a poor estimate, this is
reflected in a larger posterior variance

σ2 =

∫ ∞

−∞
(x − x̂CM)2f (x |y)dx .
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We cannot say that one estimator is better than the other in all
applications.

Left: the density with σ1 = 0.08, σ = 0.04, and c = 1
2
. The CM estimate represents the

distribution poorly. Notice that when the CM gives a poor estimate, this is reflected in wider
variance (1 standard deviation is depicted as a red line). Right: the density with σ1 = 0.001,
σ2 = 0.1, and c = 0.01. The MAP gives a poor estimate since it is in an unlikely part of the
computational domain. 505



The maximum likelihood estimate

x̂ML = argmax
x∈Rd

f (y |x)

answers the question: “which value of the unknown is the most likely to
produce the measured data?”

The ML estimate is a non-Bayesian estimate, and if the sample size is not
large, it is not considered very useful by Bayesian statisticians.
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Prior modeling

The prior density should reflect our beliefs on the unknown variable of
interest before taking the measurements into account.

Often, the prior knowledge is qualitative in nature, and transferring the
information into quantitative form expressed through a prior density can
be challenging.

The prior probability distribution should be concentrated on those values
of x we expect to see and assign a clearly higher probability to them than
to the unexpected ones.
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Gaussian priors

Gaussian densities

f (x) =
1

(2π)d/2
√
detC

exp

(
−1

2
(x −m)C−1(x −m)

)
are easy to construct and form a versatile class of distributions. They also
often lead to explicit estimators.

Random samples from a standard normal distribution N (0, I ) can be
generated directly, for example via numpy.random.normal in Python.
Samples from a general normal distribution N (m,C ) and from a wide
class of other distributions can then be derived from those, so that it is
often not necessary to employ the inverse transform method.
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Case study: signal recovery

Suppose that we want to estimate a one-dimensional signal
g : [0, 1] → R from indirect observations. We discretize the interval [0, 1]
by points tj = j/d , j ∈ {1, . . . , d}, and write xj = g(tj). In what follows,
we consider some priors we could place for the unknown signal x ∈ Rd .
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Gaussian priors with covariance C = α2I , α > 0, are often called
(Gaussian) white noise priors. The variance α2 controls the magnitude of
the realizations, but the values at t1, . . . , td are independent.
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Figure: Top: 5 realizations of the Gaussian white noise prior with α = 0.1.
Bottom: 5 realizations of the Gaussian white noise prior with α = 2.
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Gaussian priors with covariance C = α2(LTL)−1, where α > 0 and
L = tridiag(−1, 2,−1) (we will discuss the construction of this prior next
week), are often called (Gaussian) smoothness priors. The parameter
α2 controls the variability of the realizations. Note that this prior enforces
the Dirichlet boundary condition g(0) = g(1) = 0.
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Figure: Top: 5 realizations of the Gaussian smoothness prior with α = 0.001.
Bottom: 5 realizations of the Gaussian smoothness prior with α = 0.02. 511



Impulse priors

Assume that our prior information is that the signal contains small and
well localized features in an almost constant background.

In such a case we could assume an impulse prior density, which means that
it gives a low average amplitude but allows outliers. The tail of such a
prior distribution is long, although the expected value is small.

Let x ∈ Rd represent the signal, where the component xj = f (tj) is the
values at the j th coordinate. In what follows, xi and xj are assumed to be
independent for i ̸= j .

One example of an impulse prior is the ℓ1 prior. It has the density

f (x) =
(α
2

)d
exp(−α∥x∥1)

with α > 0, where the ℓ1-norm is defined as

∥x∥1 =
d∑

j=1

|xj |.
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The impulse effect can be enhanced by choosing an even smaller power
p ∈ (0, 1) of the components of x , that is, using

∑d
j=1 |xj |p instead of the

ℓ1-norm.

Another choice that produces images with few distinctly different function
values and a low-amplitude background is the Cauchy density

f (x) =
(α
π

)d
d∏

j=1

1

1 + α2x2j

with α > 0.

Since we assumed that each component is independent of the others,
random draws can be performed componentwise using, e.g., inverse
transform sampling.
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Figure: Top: 5 realizations of the ℓ1 prior with α = 1. Bottom: 5 realizations of
the Cauchy prior with α = 1.
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Discontinuities

Assume still that we want to estimate a one-dimensional signal
g : [0, 1] → R with g(0) = 0 from indirect observations. Our prior
knowledge is that the signal is usually relatively stable but can have large
jumps every now and then. We may also have information on the size of
the jumps or the rate of their occurrence.

We obtain one possible prior by taking the finite difference approximation
of the derivative of g and assigning an impulsive noise distribution to it.
Let us discretize the interval [0, 1] by points tj = j/d and write xj = g(tj).
Consider the density

f (x) =
(α
π

)d
d∏

j=1

1

1 + α2(xj − xj−1)2
. (2)

To draw samples from the above distribution we define new random
variables for the jumps

uj = xj − xj−1, j = 1, . . . , d .
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These each have the density

f (u) =
(α
π

)d
d∏

j=1

1

1 + α2u2j
.

In particular, the uj are independent from each other, so that they can be
drawn from a one-dimensional Cauchy density. Also note that
x = (x1, . . . , xd)

T ∈ Rd satisfies x = Lu, where L ∈ Rd×d is a lower
triangular matrix with Lij = 1 for i ≥ j .† Generalizing the idea behind the
above prior leads, e.g., to total variation priors.

†Note that in Python, it is more efficient to implement this as x = numpy.cumsum(u).
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Example: drawing realizations from the prior (2)

import numpy as np

import matplotlib.pyplot as plt

d = 1200

t = np.arange(1,d+1)/d

alpha = 1

quantile = lambda t: 1/alpha * np.tan(np.pi * (t-1/2))

unif = np.random.uniform(size=d)

draw = quantile(unif)

y = np.cumsum(draw)

plt.plot(t,y)

plt.xlabel(’$t$’,fontsize=14)

plt.ylabel(’$g(t)$’,fontsize=14)

plt.show()
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Example: drawing realizations from the prior (2)

Figure: Four realizations drawn from the prior (2)
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Hierarchical models

The prior density may depend on some parameter, such as variance or
mean. So far we have assumed that these parameters are known.
However, we often do not know how to choose them. If a parameter is not
known, it can be estimated as a part of the statistical inference problem on
the data. This leads to hierarchical models that include hypermodels for
the parameters defining the prior density.

Assume that the prior distribution depends on a parameter α, which is
assumed to be unknown. We then write the prior as a conditional density

f (x |α).

We model the unknown α with a hyperprior fh(α) and write the joint
distribution of x and α as

f (x , α) = f (x |α)fh(α).
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Assuming we have a likelihood model f (y |x) for the measurement y , we
get the posterior density for x and α, given y , using Bayes’ formula

f (x , α|y) ∝ f (y |x , α)f (x , α) = f (y |x , α)f (x |α)fh(α).

The hyperprior density fh may again depend on some hyperparameter α0.
The main reason for the use of a hyperprior model is that the construction
of the posterior is considered to be more robust with respect to fixing a
value for the hyperparameter α0 than fixing a value for α.
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Case study: parallel-beam X-ray tomography
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Case study: parallel-beam X-ray tomography
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An object (left) is illuminated using a beam front of X-rays and the
intensities of the X-rays are recorded after passing through the object. The
measurements can be represented as a sinogram (right). In this case, the
beam front consists of 2 240 parallel X-rays (arranged as rows) taken at
180 equally spaced angles at 1◦ increments (arranged as columns).

The goal is to reconstruct the interior density of the object based on the
sinogram measurements.
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Formation of a CT sinogram (by Samuli Siltanen):
https://www.youtube.com/watch?v=q7Rt_OY_7tU
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Let us consider the inference problem of recovering the attenuation
coefficient (density) of an object given a set of X-ray measurements. The
mathematical model can be expressed as

y = Ax ,

where y ∈ RQ denotes the (noisy) measurements for Q X-rays, A ∈ RQ×n2

is the projection matrix subject to an n × n pixel discretization of the
computational domain, and x ∈ Rn2 denotes the (piecewise constant)
discretization of the unknown attenuation inside the object of interest.

The data y can be reshaped into an n × n array, which is a graphical
representation of the X-ray measurements (sinogram). The unknown can
be reshaped into an n × n image of the density of the imaged object.
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We use the FIPS open dataset of carved cheese available at
https://doi.org/10.5281/zenodo.1254210

The files DataFull 128x15.mat and DataLimited 128x15.mat contain
sparse angle and limited angle tomography measurements, respectively.
The data has been collected using 15 projections spanning either the full
360◦ circle in the first dataset, and 15 projections spanning a limited 90◦

angle of view in the second dataset. The computational domain is a
128× 128 pixel grid in both cases. Each file contains a projection matrix A

and a sinogram measurement matrix m.

By defining y = m.reshape((m.size,1)), our näıve maximum likelihood
(ML) reconstruction of the unknown x is precisely the least squares
solution of the problem

y = Ax.

The reconstruction is the image x.reshape((128,128)).

In addition, we also consider the MAP estimators of the unknown x

corresponding to a Gaussian white noise prior and a total variation prior
(which gives a high probability to piecewise constant signals).
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Maximum likelihood (ML) estimator

Sparse angle tomography data:
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Left: the actual object. Middle: sinogram data for sparse angle tomography. Right: ML
estimator of the unknown density.

Limited angle tomography data:
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Left: the actual object. Middle: sinogram data for limited angle tomography. Right: ML
estimator of the unknown density.
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MAP estimator (Gaussian prior)

Sparse angle tomography data:
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Left: the actual object. Middle: sinogram data for sparse angle tomography. Right: MAP
estimator with a Gaussian prior.

Limited angle tomography data:
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Left: the actual object. Middle: sinogram data for limited angle tomography. Right: MAP
estimator with a Gaussian prior.
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MAP estimator (total variation prior)

Sparse angle tomography data:
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Left: the actual object. Middle: sinogram data for sparse angle tomography. Right: MAP
estimator with a total variation prior.

Limited angle tomography data:
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Left: the actual object. Middle: sinogram data for limited angle tomography. Right: MAP
estimator with a total variation prior.
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In the previous example, using sparse or limited angle measurements
means that the matrix system y = Ax is underdetermined. Since we
have very little data in the sparse or limited angle measurement
settings, the ML estimator is useless in practice.

In the Bayesian approach even a fairly weak Gaussian prior can
produce a reconstruction. Using a more sophisticated prior such as a
total variation prior improves the reconstruction quality even further
(in this case, the density of the object can be well approximated using
piecewise constant functions).

The prior essentially compensates for the lack of data in the Bayesian
approach to parameter recovery problems
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Solution strategies

Bayes’ formula produces an expression for the (in general high-dimensional)
posterior distribution of the unknown parameter x ∈ Rd , given the
available data y ∈ Rk . The main Bayesian estimators of the unknown
parameter x are the MAP estimate x̂MAP (high-dimensional optimization
problem) and the CM estimate x̂CM (high-dimensional integration
problem). One may also be interested in quantifying the uncertainty in
these estimates by computing the (co)variance of the posterior distribution
or Bayesian credible sets (high-dimensional numerical integration problems).
Typical solution strategies include the following.

Conjugate inference: for a given likelihood, the prior is chosen such
that the posterior is in the same probability distribution family as the
prior (for example, if the likelihood and prior are both Gaussian, then
the posterior is also Gaussian with known mean and covariance). In
these cases, the MAP, CM, and (co)variance of the posterior have
closed form solutions. This is an algebraic convenience, which avoids
numerical difficulties otherwise associated with the computation of
the MAP, CM, or other statistics of the posterior distribution.
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Numerical methods:
– The computation of the MAP estimate is a high-dimensional

optimization problem. It is often convenient to work with the negative
log-posterior

x̂MAP = argmin
x∈Rd

(− log f (x |y)).

In some cases, the MAP estimator can be expressed as the solution to
a Tikhonov functional. For example, consider the problem

y = F (x) + ε, ε ∼ N (0, σ2I ),

where x ∈ Rd is the unknown parameter, y ∈ Rk is the data, and
σ > 0 is the noise level. If we endow x with a Gaussian prior, e.g.,
x ∼ N (x0, γ

2I ), γ > 0, then the MAP estimator can be found as the
minimizer of the Tikhonov functional

x̂MAP = argmin
x∈Rd

(
∥y − F (x)∥2 + λ2∥x − x0∥2

)
,

where λ = σ
γ . If F : Rd → Rk is linear, i.e., F (x) = Ax for some matrix

A ∈ Rk×d , then we can solve x̂MAP from the (invertible) linear system

(ATA+ λ2I )x̂MAP = ATy + λ2x0. (exercise)
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Numerical methods:
– The computation of the CM estimate is a high-dimensional numerical

integration problem:

x̂CM =

∫
Rd

x f (x |y)dx . (3)

Typical solution strategies involve using high-dimensional cubatures or
sampling-based methods. We will discuss the latter. Namely, if we are
able to draw an i.i.d. sample x1, . . . , xn from the posterior f (x |y), then
we can in principle use the Monte Carlo method to approximate (3) as

x̂CM ≈ 1

n

n∑
i=1

xi = xn

and likewise for the posterior variance Var(x |y) ≈ 1
n

∑n
i=1(xi − xn)

2.

The difficulty with this approach lies in drawing a sample from a
high-dimensional posterior distribution. To this end, we will discuss
Markov Chain Monte Carlo (MCMC), which is an algorithm that can
be used to draw a sample from a high-dimensional distribution with a
known (unnormalized) density function.

Another approach is to use, e.g., importance sampling to obtain a
(biased) estimate of the integral (3).
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Appendix: Remark on Bayesian hypothesis testing
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Remark on Bayesian hypothesis testing

It is possible to perform statistical hypothesis testing from a Bayesian
point of view. We will only give a brief sketch of the main idea here.

The Bayesian approach to testing involves putting a prior on H0 and on
the parameter x and then computing P(H0|y). Consider the case where
x is a vector and we are testing

H0 : x = x0 versus H1 : x ̸= x0.

It is usually reasonable to use the prior P(H0) = P(H1) = 1/2 (although
this is not essential in what follows). Under H1, we need a prior for x ; let
us denote this prior density by f (x). From Bayes’ theorem,

P(H0|y) =
f (y |H0)P(H0)

f (y |H0)P(H0) + f (y |H1)P(H1)
=

1
2 f (y |x0)

1
2 f (y |x0) +

1
2 f (y |H1)

=
f (y |x0)

f (y |x0) +
∫
Rd f (y |x)f (x) dx

=
L(x0)

L(x0) +
∫
Rd L(x)f (x)dx

.
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