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Stochastic independence
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Independence

Two random variables are independent if the result of one does not in any
way help us predict the result of the other.

Formally, if P(x ∈ A, y ∈ B) = P(x ∈ A)P(y ∈ B) for all events A and B,
then the random variables x and y are independent.

If the above does not hold, then the random variables x and y are
dependent.

In statistics, the dependence of random variables is of great interest:

The dependence between the unemployment rate and the GDP
growth rate.

The dependence between alcohol consumption and the price of
alcohol.

The dependence between lung cancer incidences and smoking.
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Linear dependence

Let x and y be random variables. Let

y = ax + b, a, b ∈ R, a ̸= 0.

Then the random variable y is a linear combination of the variable x and
thus the variables x and y are (completely) linearly dependent. Linear
dependence between two variables can be measured, for example, using
the Pearson correlation coefficient.
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Linear dependence

Let (x1, y1), . . . , (xn, yn) be i.i.d. observations of a bivariate random
variable (x , y). Then the sample covariance

sxy =
1

n − 1

n∑
i=1

(xi − x)(yi − y)

estimates the population covariance

σxy = E[(x − E[x ])(y − E[y ])]

and

ρ̂(x , y) =
sxy
sxsy

=

∑n
i=1(xi − x)(yi − y)√∑n

i=1(xi − x)2
∑n

i=1(yi − y)2

estimates the Pearson correlation coefficient

ρ(x , y) =
σxy
σxσy

.

364



Linear dependence

Let (x1, y1), . . . , (xn, yn) be i.i.d. observations of a bivariate random
variable (x , y).

If the variables x and y are independent, then

E[(x − E[x ])(y − E[y ])] = E[x − E[x ]]E[y − E[y ]] = 0

and the Pearson correlation coefficient ρ(x , y) = 0.

If y = ax + b, a > 0 and b ∈ R, then ρ(x , y) = 1.

If y = ax + b, a < 0 and b ∈ R, then ρ(x , y) = −1.

In general, the Pearson correlation coefficient is a measure of the strength
of linear dependence between two random variables. The coefficient
ρ ∈ [−1, 1].
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Pearson correlation coefficient

Note that linear independence does not guarantee independence.

For example, if x ∼ U([−1, 1]) and y = x2, then the (linear) correlation
between the variables x and y is 0, even though they do depend on each
other.

Recall that normally distributed random variables are uncorrelated if and
only if they are independent.
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Example 1

1 0.8 0.4 0 -0.4 -0.8 -1
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Example 2

1 1 1 -1 -1 -1
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Example 3

Correlation coefficients

0 0 0 0 0 0 0
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Probability density function of a bivariate normal distribution:

f (x , y) =
1

2π
√

1− ρ2(x , y)σxσy

× exp

(
− 1

2(1− ρ2(x , y))

(
(x − µx)

2

σ2
x

− 2ρ(x , y)
(x − µx)

σx

(y − µy )

σy
+

(y − µy )
2

σ2
y

))
.
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Parametric confidence interval

Let (x1, y1), . . . , (xn, yn) be i.i.d. observations of a bivariate random
variable (x , y). Assume that (x , y) follows a bivariate normal distribution.
Let

I =
(1 + ρ̂(x , y))− (1− ρ̂(x , y)) exp(2zα/2/

√
n − 3)

(1 + ρ̂(x , y)) + (1− ρ̂(x , y)) exp(2zα/2/
√
n − 3)

and let

u =
(1 + ρ̂(x , y))− (1− ρ̂(x , y)) exp(−2zα/2/

√
n − 3)

(1 + ρ̂(x , y)) + (1− ρ̂(x , y)) exp(−2zα/2/
√
n − 3)

,

where zα/2 = Φ−1(1− α
2 ) is the (1− α/2) · 100 percentile of the standard

normal distribution.

If the sample size n is large, then (l , u) estimates a level (1− α)
confidence interval for the Pearson correlation coefficient. Note that this
confidence interval can only be used under the assumption of bivariate
normal distribution. Note also that the confidence intervals for the
Pearson correlation coefficient provided by different statistical softwares
are almost always based on normality assumption.
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Nonparametric confidence interval

Let (x1, y1), . . . , (xn, yn) be i.i.d. observations of a bivariate random
variable (x , y). One can use bootstrapping to obtain nonparametric
confidence intervals for the Pearson correlation coefficient:

1. Pick a new random sample of size n from the observed values
(x1, y1), . . . , (xn, yn) with replacement, such that the new values are
selected one-by-one and the selected observation is returned back to
the original sample. (Note that this means that the same observation
can be selected multiple times.)

2. Calculate the Pearson correlation coefficient for the new sample
formed in the previous step.

Continued on the next slide!
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3. Repeat the previous steps several times and order the obtained
estimates from the smallest to the largest. Include also the original
estimate of the Pearson correlation coefficient.

4. Calculate an estimate for a (1− α)% confidence interval by selecting
a lower bound l that is smaller than (or equal to) 1− α

2 of the
ordered estimates and an upper bound u that is larger than (or equal
to) 1− α

2 if the estimates. (Assume, for example, that there are 999
bootstrap estimates. Then, in total, there are 1000 estimates – the
original one and the 999 new ones. Now, an estimated 90%
confidence interval (l , u) is obtained by choosing the 50th ordered
estimate as l and the 951st estimate as u. An estimate for the 95%
confidence interval (l , u) is obtained by choosing the 25th estimate as
l and the 976th estimate as u.)
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One sample test for the Pearson correlation coefficient
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One sample test for the Pearson correlation coefficient

The one sample test for the Pearson correlation coefficient compares the
Pearson correlation coefficient to a given constant.

Let (x1, y1), . . . , (xn, yn) be i.i.d. observations of a bivariate random
variable (x , y). Assume that (x , y) follows a bivariate normal distribution.

The null hypothesis: H0 : ρ(x , y) = ρ0.

The possible alternative hypotheses:

H1 : ρ(x , y) > ρ0 (one tailed),

H1 : ρ(x , y) < ρ0 (one tailed),

H1 : ρ(x , y) ̸= ρ0 (two tailed).
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One sample test for the Pearson correlation coefficient

The test statistic

z =
ar tanh(ρ̂(x , y))− ar tanh(ρ0)√

1
n−3

=

1
2 log

(1+ρ̂(x ,y)
1−ρ̂(x ,y)

)
− 1

2 log
(1+ρ0
1−ρ0

)√
1

n−3

.

If the sample size n is large, then under the null hypothesis, the test
statistic z approximately follows the standard normal distribution.

The expected value of the test statistic is 0.

Large absolute values of the test statistic suggest that the null
hypothesis H0 is false.

The null hypothesis H0 is rejected if the p-value is small enough.
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Two sample test for Pearson correlation coefficients
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Two sample test for Pearson correlation coefficients

The two sample test (correlation comparison test) compares the Pearson
correlation coefficients of two independent samples.

Let (x1, y1), . . . , (xn, yn) be i.i.d. observations of a bivariate random
variable (x , y) and let (z1,w1), . . . , (zm,wm) be i.i.d. observations of a
bivariate random variable (z ,w). Assume that (x , y) follows a bivariate
normal distribution with Pearson correlation coefficient ρ(x , y) and that
(z ,w) follows a bivariate normal distribution with Pearson correlation
coefficient ρ(z ,w). Assume that (xi , yi ) and (zj ,wj) are independent for
all i , j .

The null hypothesis H0 : ρ(x , y) = ρ(z ,w).

The possible alternative hypotheses:

H1 : ρ(x , y) > ρ(z ,w) (one tailed),

H1 : ρ(x , y) < ρ(z ,w) (one tailed),

H1 : ρ(x , y) ̸= ρ(z ,w) (two tailed).
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Two sample test for Pearson correlation coefficients

The test statistic

z =

1
2 log

(1+ρ̂(x ,y)
1−ρ̂(x ,y)

)
− 1

2 log
(1+ρ̂(z,w)
1−ρ̂(z,w)

)√
1

n−3 + 1
m−3

.

If n and m are large, then under the null hypothesis, the test statistic
z approximately follows the standard normal distribution.

The expected value of the test statistic is 0.

Large absolute values of the test statistic suggest that the null
hypothesis H0 is false.

The null hypothesis H0 is rejected if the p-value is small enough.
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Parametric significance test
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Parametric significance test

Let (x1, y1), . . . , (xn, yn) be i.i.d. observations of a bivariate random
variable (x , y). Assume that (x , y) follows a bivariate normal distribution.

The null hypothesis H0 : ρ(x , y) = 0.

The possible alternative hypotheses:

H1 : ρ(x , y) > 0 (one tailed),

H1 : ρ(x , y) < 0 (one tailed),

H1 : ρ(x , y) ̸= 0 (two tailed).
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Parametric significance test

The test statistic

t = ρ̂(x , y)

√
n − 2

1− ρ̂(x , y)2
.

Under the null hypothesis, the test statistic follows Student’s
t-distribution with n − 2 degrees of freedom.

The expected value of the test statistic is 0.

Large absolute values of the test statistic suggest that the null
hypothesis H0 does not hold.

The null hypothesis H0 is rejected if the p-value is small enough.
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Nonparametric significance test
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Nonparametric significance test

Let (x1, y1), . . . , (xn, yn) be i.i.d. observations of a bivariate random
variable (x , y).

The null hypothesis H0 : ρ(x , y) = 0.

The possible alternative hypotheses:

H1 : ρ(x , y) > 0 (one tailed),

H1 : ρ(x , y) < 0 (one tailed),

H1 : ρ(x , y) ̸= 0 (two tailed).
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Nonparametric significance test

Let (x1, y1), . . . , (xn, yn) be i.i.d. observations of a bivariate random
variable (x , y). The significance of the observed Pearson sample
correlation coefficient under the null hypothesis can be assessed using a
Monte Carlo permutation test:

1. Form n new pairs (x1, y
∗
1 ), . . . , (xn, y

∗
n ) from the original observed

values (x1, y1), . . . , (xn, yn) such that each original yj is used exactly
once in the new sample.

2. Calculate the Pearson correlation coefficient ρ̂(x , y∗) for the sample
(x1, y

∗
1 ), . . . , (xn, y

∗
n ).

3. Repeat steps 1 and 2 several times and estimate the probability of the
estimate ρ̂(x , y) under the null hypothesis using the values from step
2. That is, calculate the percentage of the estimates in step 2 that

satisfy ρ̂(x , y∗) ≥ ρ̂(x , y) (one tailed H1 : ρ(x , y) > 0);
satisfy ρ̂(x , y∗) ≤ ρ̂(x , y) (one tailed H1 : ρ(x , y) < 0);
satisfy |ρ̂(x , y∗)| ≥ |ρ̂(x , y)| (two tailed H1 : ρ(x , y) ̸= 0).

Remark. A more accurate procedure can be obtained by using the permutation test
without simulations: instead of simulating new pairs, all the n! possible combinations
are used. The probability of ρ̂(x , y) under the null hypothesis is estimated using all n!
correlation coefficients. 385



Spearman (rank) correlation coefficient
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Monotonic dependence

Let x and y be random variables. Let y = g(x), where g is a monotonic
(increasing or decreasing) function. Then the variable y is a monotonic
function of the variable x and the variables x and y are (completely)
monotonically dependent.

The monotonic dependence between two random variables can be
measured using the Spearman rank correlation coefficient.
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Spearman correlation coefficient

Let (x1, y1), . . . , (xn, yn) be i.i.d. observations of a bivariate random
variable (x , y). Let R(xi ), i ∈ {1, . . . , n}, be the rank of the observation
xi in the sample x1, . . . , xn and let R(yi ), i ∈ {1, . . . , n}, be the rank of
the observation yi in the sample y1, . . . , yn.

The Spearman rank correlation coefficient ρS(x , y) is the Pearson
correlation coefficient calculated for the rank sample

(R(x1),R(y1)), . . . , (R(xn),R(yn)).

The Spearman correlation coefficient is a measure of the strength of
monotonic dependence between the two random variables. The coefficient
ρS ∈ [−1, 1].

Confidence intervals for the Spearman correlation coefficient can be
estimated using bootstrap.
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Significance test

Let (x1, y1), . . . , (xn, yn) be i.i.d. observations of a bivariate random
variable (x , y).

The null hypothesis H0 : ρS(x , y) = 0.

The possible alternative hypotheses:

H1 : ρS(x , y) > 0 (one tailed),

H1 : ρS(x , y) < 0 (one tailed),

H1 : ρS(x , y) ̸= 0 (two tailed).
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Significance test

The test statistic

t = ρ̂S(x , y)

√
n − 2

1− ρ̂S(x , y)2
.

If n is large, then under the null hypothesis the test statistic t
approximately follows Student’s t-distribution with n − 2 degrees of
freedom. If the sample size is small, statistical software can be used
to calculate exact p-values for the test statistic.

The expected value of the test statistic is 0.

Large absolute values of the test statistic suggest that the null
hypothesis H0 is not true.

The null hypothesis H0 is rejected if the p-value is small enough.

The significance of the Spearman rank correlation coefficient can
alternatively be tested using the permutation test.
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Spearman rank correlation coefficient

It is possible that some of the sample points have the same rank. In that
case, all those points are assigned to have the median of the corresponding
ranks. For example, if two observations have the same rank, corresponding
to ranks 7 and 8, then both are assigned to have rank 7.5. If three
observations have the same rank, corresponding to ranks 3, 4, and 5, then
each is assigned to have rank 4.
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Numerical example

Twin sisters were asked to rank different cookie brands according to the
taste. The goal was to test, on significance level 5%, whether the cookie
preferences were monotonically dependent. The null hypothesis is
ρ(x , y) = 0.

rank 10 9 8 7 6 5 4 3 2 1

X (twin 1) J G D H A C B I E F
Y (twin 2) G H D C A B J E I F

Table: Cookie preferences of the twins.

The tabulated values can be converted to rank pairs:
(6, 6), (4, 5), (5, 7), (8, 8), (2, 3), (1, 1), (9, 10), (7, 9), (3, 2), (10, 4).
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The sample standard deviations are sX = 3.02765 and sY = 3.02765 and
the sample covariance is sXY = 6.5. The Spearman rank correlation
coefficient is ρ̂S(X ,Y ) = 0.7090909. The test statistic has the value

t = ρ̂S(X ,Y )

√
n − 2

1− ρ̂S(X ,Y )2
=

0.7090909 ·
√
8

1− (0.7090909)2
= 2.844367.

Under the null hypothesis, the test statistic approximately follows
Student’s t-distribution with 10− 2 = 8 degrees of freedom. The critical
values on significance level 5% are −2.306 and 2.306. Since 2.844 > 2.306,
the null hypothesis is rejected and the alternative hypothesis is accepted.
The cookie preferences of the twins are monotonically dependent.

Q: What went wrong with the previous example?
A: The sample size in this example is quite small, so using asymptotic
p-values is questionable. It would be better to use the exact p-value
computed using statistical software or to use the permutation test.
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Words of warning

Dependence ̸= linear dependence!

Dependence does not imply causation! See Spurious Correlations:
https://www.tylervigen.com/spurious-correlations
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Regression analysis
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Regression analysis

The aim in regression analysis is to study how a dependent variable
changes when one or more explanatory variables are varied. It can be used
to study, e.g., if the number of violent crimes depends on alcohol
consumption and if it does, how strong is this dependence.

Does salary depend on the education level and if it does, how strong
is this dependence?
Does a parent’s smoking have an effect on the height of a child and if
it does, how strong is this dependence?
Do crime rates depend on the income inequality level and if yes, how
strong is this dependence?
...

Possible goals in regression analysis:

Description of the dependence between the explanatory and
dependent variables. What is the type of the relationship? How
strong is the dependence?
Predicting the values of the dependent variable.
Controlling the values of the dependent variable.
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Linear model

There are several different models that can be used in regression analysis.
Today, we focus on linear regression.

Consider n observations (pairs) (x1, y1), . . . , (xn, yn) of (x , y). Assume that
the values yi are observed values of a random variable y and assume that
the values xi are observed non-random values of x . Assume that the
values yi depend linearly on the value xi . A simple (one explanatory
variable) linear model can be represented in the following way:

yi = b0 + b1xi + εi , i ∈ {1, . . . , n},

where the regression coefficients b0 and b1 are unknown constants and the
expected value of the residuals εi is E[εi ] = 0.
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Simple linear model

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3

x

y

Linear regression

Figure: As the values of the variable x increase, the values of the variable y
decrease.
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Linear model, assumptions

The following assumptions are usually made when simple linear models are
considered.

The measurement of the values xi is error-free.

The residuals are independent of the values xi .

The residuals are independently and identically distributed (i.i.d.).

The expected value of the residuals is E[εi ] = 0, i ∈ {1, . . . , n}.
The residuals have the same variance E[ε2i ] = σ2, i ∈ {1, . . . , n}.
The residuals are uncorrelated, i.e., ρ(εi , εj) = 0, i ̸= j .

Under these assumptions, the variable y has the following properties:

The expected value E[yi ] = b0 + b1xi , i ∈ {1, . . . , n}.
The variance Var(yi ) = Var(εi ) = σ2, i ∈ {1, . . . , n}.
The correlation coefficient ρ(yi , yj) = 0, i ̸= j .
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Linear regression
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Linear regression

The linear model

yi = b0 + b1xi + εi , i ∈ {1, . . . , n},

has the following parameters: the regression coefficients b0 and b1, and
the variance of the residuals E[ε2i ] = σ2. These parameters are usually
unknown and must be estimated from the observations.

Under the assumption E[εi ] = 0 for all i ∈ {1, . . . , n}, the linear model can
be given as

yi = E[yi ] + εi , i ∈ {1, . . . , n},

where E[yi ] = b0 + b1xi is the so-called systematic part and εi is the
random part of the model.
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Regression line

The systematic part
E[yi ] = b0 + b1xi

of the linear model defines the regression line

y = b0 + b1x ,

where

b0 is the intersection of the regression line and the y -axis;

the slope b1 tells us how much the independent variable y changes
when the explanatory variable x grows by one unit;

the variance of the residuals E[ε2i ] = σ2 describes the deviation of the
observed values from the regression line.

The aim in linear regression analysis is to find estimates for the regression
coefficients b0 and b1. The estimates should be such that the estimated
regression line would explain the variation of the values of the dependent
variable with great accuracy.
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Least squares method

In the so-called l2 regression (least squares method), the least squares
estimates are

b̂1 =
sxy
s2x

= ρ̂(x , y)
sy
sx

and
b̂0 = y − b̂1x .

These estimates minimize the sum of squared differences

n∑
i=1

ε2i =
n∑

i=1

(yi − b0 − b1xi )
2.

The least squares estimates now give an estimated regression line

ŷ = b̂0 + b̂1x = y − b̂1x + ρ̂(x , y)
sy
sx
x

= y + ρ̂(x , y)
sy
sx
(x − x).
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Properties of the estimated regression line:

If ρ̂(x , y) > 0, then the line is increasing.

If ρ̂(x , y) < 0, then the line is decreasing.

If ρ̂(x , y) = 0, then the line is horizontal.
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Fitted values and residuals

The fitted value of the variable yi , i.e., the value given to the variable y by
the regression line at points xi , is

ŷi = b̂0 + b̂1xi , i ∈ {1, . . . , n}.

The residual ε̂i of the estimated model is the difference

ε̂i = yi − ŷi , i ∈ {1, . . . , n},

between the observed value yi (of the variable y) and the fitted value ŷi .

Note that yi = ŷi + ε̂i , i ∈ {1, . . . , n}.

The regression model explains the observed values of the dependent
variables the better, the closer the fitted values are to the observed ones.
In other words, the regression model explains the observed values of the
dependent variable the better, the smaller the residuals of the estimated
model are.
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Example
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Linear regression

Figure: The estimated regression line minimizes the squared sum of the residuals.
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Numerical example

We wish to model the dependence of the sales of Brand X cookies and
Brand Y cookies. We assume that the sales are linearly dependent, and try
to apply linear regression.

Brand X Brand Y

5673 5489
4892 5987
5735 5362
5382 5738
5982 4988
5487 5576
5764 5481
5933 4999
5298 5832
5561 5591
5721 5298
5386 5632

Table: Monthly sales of Brand X and Brand Y cookies. 407



The sample standard errors sX = 302.95 and sY = 302.85, the sample
covariance sXY = −86145.95, and the sample means X = 5567.833 and
Y = 5497.75. The estimated regression parameters

b̂1 =
sXY
s2X

=
−86145.95

302.952
= −0.938 . . .

and

b̂0 = Y − b̂1X = 5497.75− (−0.938 . . .) · 5567.833 = 10723.87.

An estimated regression model can now be given as

Ŷi = 10723.87− 0.938Xi .
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Fit Actual Residual

5399.040 5489 89.96
6132.108 5987 -145.11
5340.845 5362 21.15
5672.181 5738 65.82
5109.004 4988 -121.00
5573.625 5576 2.38
5313.625 5481 167.37
5154.997 4999 -156.00
5751.025 5832 80.97
5504.166 5591 86.83
5353.986 5298 -55.99
5668.426 5632 -36.43

Table: Fitted values and actual sales of Brand X cookies. The residuals
ϵ̂i = yi − ŷi have been tabulated as well.
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Figure: Brand Y cookies, sales and fit.
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Residual mean square estimation

If the assumptions of the linear model hold, then an unbiased estimate of
Var(εi ) = σ2 is

Var(ε̂) =
1

n − 2

n∑
i=1

(ε̂i − ε̂)2 =
1

n − 2

n∑
i=1

(ε̂i )
2 =

1

n − 2

n∑
i=1

(yi − ŷi )
2.

In the formula above, the number of the estimated parameters (b0 and b1)
is subtracted from the sample size n.
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Error sum of squares

Consider the total sum of squares (SST)

n∑
i=1

(yi − y)2,

and the error sum of squares (SSE)

n∑
i=1

(ε̂i )
2.

It can be shown that

SSE =
n∑

i=1

(ε̂i )
2 = (1− ρ̂(x , y)2)

n∑
i=1

(yi − y)2 = (1− ρ̂(x , y)2)SST .

Since ρ̂(x , y) ∈ [−1, 1], we have that SSE≤SST.
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Error sum of squares

The error sum of squares SSE is 0 if and only if all the observed values lie
on the same line. In this case, the linear regression model explains the
values of the dependent variable perfectly.

The error sum of squares SSE equals the total sum of squares if and only if
the sample correlation coefficient ρ̂(x , y) = 0. In this case, the linear
regression model fails to explain any part of the values of y .
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Model sum of squares

The model sum of squares SSM is defined as

SSM = SST − SSE .

The model sum of squares SSM describes the part of variation of the
observed values of y that is explained by the regression model.

There holds

SSM =
n∑

i=1

(ŷi − y)2,

and since y = ŷ , the equation can be given as

SSM =
n∑

i=1

(ŷi − ŷ)2.
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Coefficient of determination

The coefficient of determination is defined as

R2 = 1− SSE

SST
=

SSM

SST
.

The coefficient of determination R2 measures the proportion of SST
explained by the model.

There holds 0 ≤ R2 ≤ 1, and the coefficient of determination is usually
given as a percentage 100R2%.

The coefficient of determination R2 = (ρ̂(y , ŷ))2, where ρ̂(y , ŷ) is the
sample correlation coefficient of the observed values of the dependent
variable and the corresponding fitted values. In a simple linear regression
model with one explaining variable, R2 = (ρ̂(y , x))2.
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Properties of the coefficient of determination

The following conditions are equivalent:

The coefficient of determination R2 = 1.

All the residuals vanish: ε̂i = 0, i ∈ {1, . . . , n}.
All the observations (xi , yi ) lie on the same line.

The sample correlation coefficient ρ̂(x , y) = ±1.

The regression model completely explains the variation of the
observed values of the dependent variable y .
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Properties of the coefficient of determination

The following conditions are equivalent:

The coefficient of determination R2 = 0.

The regression coefficient b̂1 = 0.

The sample correlation coefficient ρ̂(x , y) = 0.

The regression model fails completely in explaining the variation of
the observed values of the dependent variable y .
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Numerical example

The numerical example from above continues. . .

Calculate the total sum of squares

SST =
n∑

i=1

(yi − y)2 =
12∑
i=1

(yi − 5497.75)2 = 1008932.25,

the error sum of squares

SSE =
n∑

i=1

(ε̂i )
2 = 119482.3

and the model sum of squares

SSM = SST − SSE = 1008932.25− 119482.3 = 889449.95.

Now, the coefficient is determination

R2 =
SSM

SST
=

889449.95

1008932.25
≈ 0.8816.

Is this a good model?
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About the assumptions: We assumed above that the values xi of the
explanatory variable x are non-random. In linear regression, the values xi
can very well also be assumed to be random.

Words of warning:

The regression model should not be used to predict any values of the
range of x . Tail behavior can differ from majority of the data.

If there is nonlinear dependence between x and y , then linear
regression is not a suitable approach.

The least squares method (l2 regression) is very sensitive to outliers
(i.e., it is non-robust).
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Example, linear regression
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Figure: Estimated regression line and residuals.
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Example, outlier
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Figure: Estimated regression line and residuals. Note the effect of an outlier.
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Example, heteroscedasticity
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Figure: Estimated regression line and residuals. Note that the variance of the
residuals increases.
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Example, non-linear dependence
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Figure: Estimated regression line and residuals. Note the clear non-linear
dependence.
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