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Practical matters

Lectures on Mondays at 10:15-11:45 in A6/032 by Vesa Kaarnioja.
Exercises on Tuesdays at 10:15-11:45 in A7/031 by Vesa Kaarnioja
starting October 29.

There will be 13 exercise sheets in total. The first exercise sheet will be
published October 21.
You are allowed to submit your solutions in groups of 3–4 members.

Weekly exercises will be published on Mondays. Please complete the
tasks before the exercise session of the following week.

The conditions for completing this course are
(1) successfully completing at least 60% of the course’s exercises
(active participation + regular attendance), and
(2) successfully passing the course exam.

The course exam will be held February 10, 2025, starting at 10:00
in room A6/032.

The make-up exam will be held February 24, 2025, starting at 10:00
in room A6/032.

Grading: pass/fail for the exercises, pass/fail for the exam.
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Exercise guidelines

You can hand in your solutions at the beginning of the corresponding exercise
session or submit your solutions online. Late submissions will not be considered.

Please present your calculations clearly and neatly, providing explanation for all
steps.

Ensure that your arguments are coherent and presented in an orderly fashion.
Organize your solutions logically, starting from the problem statement and
proceeding step-by-step to the solution.

Typeset or write your solutions in clear handwriting for easy readability.

Avoid ambiguity in your solutions: consider the perspective or the reader and
ensure that your solutions are understandable from their point of view (i.e., the
reader should not have to guess what you have written).

Use appropriate mathematical notation and terminology.

Double-check your solutions for errors and correctness before submission. Aim for
precision and accuracy in your mathematical expressions and calculations.

In programming tasks, ensure that your program executes successfully. Include the
source code as well as the output of the program as part of your submission.
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Course contents

This course will consist of three main parts:

Probability foundations

– probability spaces, random variables, distribution of a random variable,
expectation and covariance, main limit theorems and inequalities

Frequentist inference

– point estimators, confidence intervals, hypothesis testing

Bayesian inference

– conjugate inference, numerical models, data assimilation
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Introduction
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Statistics have been used to organize and interpret data for centuries. In
modern statistics, we use various statistical methods to make predictions,
provide classifications, derive estimations, etc. The problem set-up for
these different problems is usually the same: assume that there is some
process generating data. Given the observed data, what can we infer
about the process that generated the data? How can we control the
uncertainty in our results?

Several theorems of probability (the Law of Large Numbers, the Central
Limit Theorem, Hoeffding’s inequality, . . . ) play a key role in statistics.
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In frequentist inference, probability is interpreted as an approximate
empirical mean observed when running some random experiment a large
number N of times. Assume that we are measuring a random quantity X ,
and let xi , 1 ≤ i ≤ N be the observed results. Then the probability
P(X ∈ E ) of an outcome E for this experiment is approximately the value,
when N is very large, of the ratio of the number of experiments with
outcome E with the total number N of experiments.

Using probabilistic notations,

P(X ∈ E ) = lim
N→∞

1

N

N∑
i=1

1E (xi ).

The above equality is justified by the Law of Large Numbers (LLN), one of
the cornerstones of the theory of probability.
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In some cases, the frequentist interpretation of probability is not
meaningful. One example is in weather forecast: the probability of the
event “it will rain tomorrow” cannot be thought of as the limit of the
empirical mean of some experiment repeated several times.

An alternative way to interpret probability is in terms of a (subjective)
degree of belief: the higher the probability of an event, the more likely this
event is to happen. This interpretation is the basis of Bayesian inference.
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Probability foundations
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We will need to introduce some terminology to talk about outcomes and
their probabilities in order to carry out probability calculations consistently.
A probability space (Ω,F ,P) is a structured framework that allows us to
consistently measure uncertainty. The probability space is comprised of the
following components:

Sample space Ω: the set of all possible outcomes of an experiment.
For example, the possible space of outcomes for a die toss is
Ω = {1, 2, 3, 4, 5, 6}.
σ-algebra F : a collection of events (subsets) of Ω. These are the
things we care about when it comes to outcomes – like whether the
die shows an even number or a number less than 4. An intuitive way
of thinking about σ-algebras is that they contain information: the
subsets contained in a σ-algebra represent events for which we can
decide, after observation, whether they happened or not. Hence, F
represents all the information we can get from an experiment.
Probability measure P: the probability measure assigns probabilities to
each event. For example, like saying that there is a 1

6 chance of each
specific die face showing up, or a 1

2 chance of an even number
appearing.
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Sample space

The fundamental object in probability theory is a nonempty sample
space Ω. This set encodes all possible outcomes of an experiment. For
example, when throwing a dice, a natural choice is Ω = {1, . . . , 6}.

An event is a subset A ⊂ Ω. An event represents a collection of outcomes
of the experiment we are interested in.

Example

We throw a dice. To model this experiment, we choose Ω = {1, . . . , 6} as
our sample space. An event is any subset A of {1, . . . , 6}. For instance,
A = {1, 3, 5} represents the event that the result of the throw is an odd
number.
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Given two events A ⊂ Ω and B ⊂ Ω, we may consider their union A ∪ B
which represents the event that A or B (or both) occur.

Likewise, the intersection A ∩ B represents the event that both A and
B occur simultaneously.

If A ∩ B = ∅, then we say that A and B are incompatible (or mutually
exclusive).

Example

We throw a coin three times. To model this experiment, we consider Ω = {H,T}3, i.e.,
the set of all vectors with 3 entries, with each entry taking value H or T . Here, H
stands for “Heads” and T for “Tails” (choosing, e.g., Ω = {0, 1}3, with 0 and 1
representing Heads and Tails, respectively, would be equally valid). An event is any
subset of {H,T}3. For instance, we may consider the events

A = {(H,H,T ), (H,T ,H), (T ,H,H)} (get Heads exactly twice)

B = {(H,H,H), (T ,T ,T )}. (get 3 times the same result)

Note that A ∩ B = ∅, so A and B are incompatible. Consider now the event

C = {ω ∈ Ω | ωi = H for some i = 1, 2, 3} (get Heads at least once)

Then the joint occurrence of B and C is

B ∩ C = {(H,H,H)}. (get Heads 3 times)
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Probability measure

Given a random experiment and a nonempty sample space Ω encoding all
possible outcomes, we wish to assign to each event of Ω a number known
as its probability. Let F ⊂ P(Ω) := {A | A ⊂ Ω} denote the collection of
all events of Ω. In what follows, we always assume that F is a σ-algebra:

∅ ∈ F ;
If A ∈ F , then Ω \ A ∈ F ;
If {An}n≥1 is a countable sequence with An ∈ F for all n ≥ 1, then⋃

n≥1 An ∈ F .

A mapping P : F → [0, 1] is a probability measure, if
1 0 ≤ P(A) ≤ 1 for all A ∈ F ;
2 P(Ω) = 1;
3 (σ-additivity) If {An}n≥1 is a countable collection of events that are

pairwise disjoint, i.e., Ai ∩ Aj = ∅ for all i ̸= j , then there holds

P
( ⋃

n≥1

An

)
=

∑
n≥1

P(An).

The tuple (Ω,P) = (Ω,F ,P) is called a probability space.
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Definition

If Ω is a finite, non-empty set, the uniform probability measure P on Ω is
the probability measure defined by

P(A) =
|A|
|Ω|

for all events A ⊂ Ω.

Here, | · | denotes the cardinality (i.e., the number of elements) of a set.

The uniform probability measure is often used to model random
experiments where the different possible outcomes happen equally often,
or are deemed equally likely to happen.

Example

We throw a fair die. As outcome space we set Ω = {1, . . . , 6}, and since the die is fair it
is reasonably to consider the uniform probability measure P on it. With this probability
space, for all i = 1, . . . , 6, the event “the outcome is i” is represented by the event {i}
and its probability is P({i}) = 1

6
. This probability does not depend on i . As an example

of an event, consider A = {1, 3, 5}, which represents the event that the result of the
throw is an odd number. This event has probability

P(A) = 3

6
=

1

2
.
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Example

Consider rolling two fair dice. The corresponding sample space is
Ω = {(1, 1), (1, 2), . . . , (6, 6)} endowed with the uniform probability
measure P.

The event “both dice > 2”, is

A = {ω = (ω1, ω2) ∈ Ω | ω1 > 2 and ω2 > 2}.

In this example, P({ω}) = 1
36 for all ω ∈ Ω and P(A) = 4

9 .
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Example

We throw a fair coin three consecutive times. As outcome space, we set
Ω = {H,T}3, interpreting H as heads and T as tails. For instance, the
element ω = (H,H,T ) represents the outcome “Heads, Heads, Tails”.
Since the coin is fair, it is reasonable to consider the uniform probability
measure P on Ω. Under this measure, the event
A = {(H,H,H), (T ,T ,T )}, which represents the event that three tosses
yield the same outcome, has probability

|A|
|Ω|

=
2

23
=

1

4
.
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Corollaries

Proposition

Let (Ω,P) be a probability space.

1 P(∅) = 0.

2 If A,B are two events and A ⊂ B, then P(B \ A) = P(B)− P(A).
3 If A,B are two events and A ⊂ B, then P(A) ≤ P(B).
4 For any event A, we have P(A∁) = 1− P(A), where A∁ := Ω \ A.
5 For any two events A and B (not necessarily disjoint), we have

P(A ∪ B) = P(A) + P(B)− P(A ∩ B).

6 For any countable sequence of events {An}n≥1, not necessarily
pairwise disjoint, we have

P
( ∞⋃

n=1

An

)
≤

∞∑
n=1

P(An).
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.Proof.
1. Let An = ∅, n ≥ 1. Clearly these sets satisfy Ai ∩ Aj = ∅ whenever
i ̸= j , and by σ-additivity

P
( ⋃

n≥1

∅
)

︸ ︷︷ ︸
=P(∅)

=
∑
n≥1

P(∅) ⇒
∑
n≥2

P(∅)︸ ︷︷ ︸
≥0

= 0 ⇒ P(∅) = 0.

2. Since A ⊂ B and B = A ∪ (B \ A), where A ∩ (B \ A) = ∅, we obtain
by σ-additivity

P(B) = P(A) + P(B \ A) ⇒ P(B \ A) = P(B)− P(A).

3. Since A ⊂ B, by part 2 we get P(A) = P(B)− P(B \ A)︸ ︷︷ ︸
≥0

≤ P(B).

4. Apply part 2 with B = Ω to get P(Ω \ A) = P(Ω)− P(A) = 1− P(A).
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5. Define E1 = A ∩ B∁, E2 = A ∩ B, and E3 = A∁ ∩ B. These are pairwise
disjoint with E1 ∪ E2 ∪ E3 = A ∪ B. Moreover, A = E1 ∪ E2 and
B = E2 ∪ E3. Hence

P(A ∪ B) = P(E1) + P(E2) + P(E3)

⇒ P(A ∪ B) + P(E2) =
(
P(E1) + P(E2)

)
+
(
P(E2) + P(E3)

)
= P(A) + P(B).

Recalling that P(E2) = P(A ∩ B) yields the assertion.
6. We define B1 = A1 and Bn = An \ (A1 ∪ · · · ∪ An−1) for n > 1. Then
the Bn are pairwise disjoint and

⋃
n Bn =

⋃
n An. Therefore

P
( ∞⋃

n=1

An

)
= P

( ∞⋃
n=1

Bn

)
=

∞∑
n=1

P(Bn).

Since Bn ⊂ An for all n, we have P(Bn) ≤ P(An) by part 3, and the claim
follows.
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Definition (Conditional probability)

Let A and B be two events. We assume that P(B) > 0. The conditional
probability of A given B is

P(A|B) = P(A ∩ B)

P(B)
.

The probability P(A|B) is the probability of A under the assumption that
B has already occurred.

Remarks.

Given an event B such that P(B) > 0, the map A 7→ P(A|B) defines
a probability measure on Ω. That probability measure is supported on
B, i.e., P(B|B) = 1.

The quantities P(A|B) and P(B|A) are not the same!
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Example

Consider again rolling two fair dice, where the corresponding sample space
is Ω = {(1, 1), (1, 2), . . . , (6, 6)} endowed with the uniform probability
measure P.

The probability of getting 3 (event A) when rolling the first dice, given
that the other dice gave 4 (event B):

P(A|B) = P(A ∩ B)

P(B)
=

1
36

6 · 1
36

=
1

6
.
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Independence of events

Let (Ω,P) be a probability space.
Definition

Two events A and B are said to be independent if

P(A ∩ B) = P(A)P(B).

This notion can be expressed in terms of conditional probability.
Lemma

Assume P(B) > 0. Then

1 P(A ∩ B) = P(A|B)P(B).
2 the events A and B are independent if and only if P(A|B) = P(A).

Proof. The first point follows from the definition of conditional probability
P(A|B) = P(A∩B)

P(B) . For the second point, note that

P(A ∩ B) = P(A)P(B) divide by P(B)⇔ P(A|B) = P(A).

Remark. The independence of A and B means that the a priori knowledge
that B occurs does not change the probability that A occurs. 22



Example

We throw a fair coin twice. To model this experiment, we consider the
probability space (Ω,P), where Ω = {H,T}2 and P is the uniform
probability measure on Ω. Let

A = {(H,H), (H,T )} (1st toss gives Heads)

B = {(H,H), (T ,H)}. (2nd toss gives Heads)

Then

P(A) = P(B) =
1

2
,

while

P(A ∩ B) = P({(H,H)}) = 1

4
.

Thus P(A ∩ B) = P(A)P(B) so A and B are independent.
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Theorem (Law of total probability)

Let A1, . . . ,Ak be events that form a partition of Ω, i.e., Ai ∩ Aj = ∅ if

i ̸= j and Ω =
⋃k

i=1 Ai . Then, for any event B, there holds

P(B) =
k∑

i=1

P(B|Ai )P(Ai ).

Proof. We have

B = B ∩ Ω = B ∩
( k⋃

i=1

Ai

)
=

k⋃
i=1

(B ∩ Ai ),

where we used the fact that Ω =
⋃k

i=1 Ai in the last equality. Since the
events Ai are pairwise disjoint, so are the events B ∩ Ai , and we obtain by
σ-additivity that

P(B) =
k∑

i=1

P(B ∩ Ai ).

The claim follows by noting that P(B ∩ Ai ) = P(B|Ai )P(Ai ).
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Theorem (Bayes’ theorem)

Let A and B be events and assume that P(B) > 0. Then

P(A|B) = P(B|A)P(A)
P(B)

.

Proof. By definition,

P(A|B) = P(A ∩ B)

P(B)
.

On the other hand,

P(A ∩ B) = P(B|A)P(A) if P(A) > 0,

which yields the assertion.
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