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Practical matters

Lectures on Mondays at 10:15-11:45 in A6/032 by Vesa Kaarnioja.
Exercises on Tuesdays at 10:15-11:45 in A7/031 by Vesa Kaarnioja
starting October 29.

There will be 13 exercise sheets in total. The first exercise sheet will be
published October 21.
You are allowed to submit your solutions in groups of 3–4 members.

Weekly exercises will be published on Mondays. Please complete the
tasks before the exercise session of the following week.

The conditions for completing this course are
(1) successfully completing at least 60% of the course’s exercises
(active participation + regular attendance), and
(2) successfully passing the course exam.

The course exam will be held February 10, 2025, starting at 10:00
in room A6/032.

The make-up exam will be held February 24, 2025, starting at 10:00
in room A6/032.

Grading: pass/fail for the exercises, pass/fail for the exam.
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Exercise guidelines

You can hand in your solutions at the beginning of the corresponding exercise
session or submit your solutions online. Late submissions will not be considered.

Please present your calculations clearly and neatly, providing explanation for all
steps.

Ensure that your arguments are coherent and presented in an orderly fashion.
Organize your solutions logically, starting from the problem statement and
proceeding step-by-step to the solution.

Typeset or write your solutions in clear handwriting for easy readability.

Avoid ambiguity in your solutions: consider the perspective or the reader and
ensure that your solutions are understandable from their point of view (i.e., the
reader should not have to guess what you have written).

Use appropriate mathematical notation and terminology.

Double-check your solutions for errors and correctness before submission. Aim for
precision and accuracy in your mathematical expressions and calculations.

In programming tasks, ensure that your program executes successfully. Include the
source code as well as the output of the program as part of your submission.
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Course contents

This course will consist of three main parts:

Probability foundations

– probability spaces, random variables, distribution of a random variable,
expectation and covariance, main limit theorems and inequalities

Frequentist inference

– point estimators, confidence intervals, hypothesis testing

Bayesian inference

– conjugate inference, numerical models, data assimilation
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Introduction
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Statistics have been used to organize and interpret data for centuries. In
modern statistics, we use various statistical methods to make predictions,
provide classifications, derive estimations, etc. The problem set-up for
these different problems is usually the same: assume that there is some
process generating data. Given the observed data, what can we infer
about the process that generated the data? How can we control the
uncertainty in our results?

Several theorems of probability (the Law of Large Numbers, the Central
Limit Theorem, Hoeffding’s inequality, . . . ) play a key role in statistics.
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In frequentist inference, probability is interpreted as an approximate
empirical mean observed when running some random experiment a large
number N of times. Assume that we are measuring a random quantity X ,
and let xi , 1 ≤ i ≤ N be the observed results. Then the probability
P(X ∈ E ) of an outcome E for this experiment is approximately the value,
when N is very large, of the ratio of the number of experiments with
outcome E with the total number N of experiments.

Using probabilistic notations,

P(X ∈ E ) = lim
N→∞

1

N

N∑
i=1

1E (xi ).

The above equality is justified by the Law of Large Numbers (LLN), one of
the cornerstones of the theory of probability.
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In some cases, the frequentist interpretation of probability is not
meaningful. One example is in weather forecast: the probability of the
event “it will rain tomorrow” cannot be thought of as the limit of the
empirical mean of some experiment repeated several times.

An alternative way to interpret probability is in terms of a (subjective)
degree of belief: the higher the probability of an event, the more likely this
event is to happen. This interpretation is the basis of Bayesian inference.
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Probability foundations
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We will need to introduce some terminology to talk about outcomes and
their probabilities in order to carry out probability calculations consistently.
A probability space (Ω,F ,P) is a structured framework that allows us to
consistently measure uncertainty. The probability space is comprised of the
following components:

Sample space Ω: the set of all possible outcomes of an experiment.
For example, the possible space of outcomes for a die toss is
Ω = {1, 2, 3, 4, 5, 6}.
σ-algebra F : a collection of events (subsets) of Ω. These are the
things we care about when it comes to outcomes – like whether the
die shows an even number or a number less than 4. An intuitive way
of thinking about σ-algebras is that they contain information: the
subsets contained in a σ-algebra represent events for which we can
decide, after observation, whether they happened or not. Hence, F
represents all the information we can get from an experiment.
Probability measure P: the probability measure assigns probabilities to
each event. For example, like saying that there is a 1

6 chance of each
specific die face showing up, or a 1

2 chance of an even number
appearing.
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Sample space

The fundamental object in probability theory is a nonempty sample
space Ω. This set encodes all possible outcomes of an experiment. For
example, when throwing a dice, a natural choice is Ω = {1, . . . , 6}.

An event is a subset A ⊂ Ω. An event represents a collection of outcomes
of the experiment we are interested in.

Example

We throw a dice. To model this experiment, we choose Ω = {1, . . . , 6} as
our sample space. An event is any subset A of {1, . . . , 6}. For instance,
A = {1, 3, 5} represents the event that the result of the throw is an odd
number.
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Given two events A ⊂ Ω and B ⊂ Ω, we may consider their union A ∪ B
which represents the event that A or B (or both) occur.

Likewise, the intersection A ∩ B represents the event that both A and
B occur simultaneously.

If A ∩ B = ∅, then we say that A and B are incompatible (or mutually
exclusive).

Example

We throw a coin three times. To model this experiment, we consider Ω = {H,T}3, i.e.,
the set of all vectors with 3 entries, with each entry taking value H or T . Here, H
stands for “Heads” and T for “Tails” (choosing, e.g., Ω = {0, 1}3, with 0 and 1
representing Heads and Tails, respectively, would be equally valid). An event is any
subset of {H,T}3. For instance, we may consider the events

A = {(H,H,T ), (H,T ,H), (T ,H,H)} (get Heads exactly twice)

B = {(H,H,H), (T ,T ,T )}. (get 3 times the same result)

Note that A ∩ B = ∅, so A and B are incompatible. Consider now the event

C = {ω ∈ Ω | ωi = H for some i = 1, 2, 3} (get Heads at least once)

Then the joint occurrence of B and C is

B ∩ C = {(H,H,H)}. (get Heads 3 times)
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Probability measure

Given a random experiment and a nonempty sample space Ω encoding all
possible outcomes, we wish to assign to each event of Ω a number known
as its probability. Let F ⊂ P(Ω) := {A | A ⊂ Ω} denote the collection of
all events of Ω. In what follows, we always assume that F is a σ-algebra:

∅ ∈ F ;
If A ∈ F , then Ω \ A ∈ F ;
If {An}n≥1 is a countable sequence with An ∈ F for all n ≥ 1, then⋃

n≥1 An ∈ F .

A mapping P : F → [0, 1] is a probability measure, if
1 0 ≤ P(A) ≤ 1 for all A ∈ F ;
2 P(Ω) = 1;
3 (σ-additivity) If {An}n≥1 is a countable collection of events that are

pairwise disjoint, i.e., Ai ∩ Aj = ∅ for all i ̸= j , then there holds

P
( ⋃

n≥1

An

)
=

∑
n≥1

P(An).

The tuple (Ω,P) = (Ω,F ,P) is called a probability space.
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Definition

If Ω is a finite, non-empty set, the uniform probability measure P on Ω is
the probability measure defined by

P(A) =
|A|
|Ω|

for all events A ⊂ Ω.

Here, | · | denotes the cardinality (i.e., the number of elements) of a set.

The uniform probability measure is often used to model random
experiments where the different possible outcomes happen equally often,
or are deemed equally likely to happen.

Example

We throw a fair die. As outcome space we set Ω = {1, . . . , 6}, and since the die is fair it
is reasonably to consider the uniform probability measure P on it. With this probability
space, for all i = 1, . . . , 6, the event “the outcome is i” is represented by the event {i}
and its probability is P({i}) = 1

6
. This probability does not depend on i . As an example

of an event, consider A = {1, 3, 5}, which represents the event that the result of the
throw is an odd number. This event has probability

P(A) = 3

6
=

1

2
.
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Example

Consider rolling two fair dice. The corresponding sample space is
Ω = {(1, 1), (1, 2), . . . , (6, 6)} endowed with the uniform probability
measure P.

The event “both dice > 2”, is

A = {ω = (ω1, ω2) ∈ Ω | ω1 > 2 and ω2 > 2}.

In this example, P({ω}) = 1
36 for all ω ∈ Ω and P(A) = 4

9 .
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Example

We throw a fair coin three consecutive times. As outcome space, we set
Ω = {H,T}3, interpreting H as heads and T as tails. For instance, the
element ω = (H,H,T ) represents the outcome “Heads, Heads, Tails”.
Since the coin is fair, it is reasonable to consider the uniform probability
measure P on Ω. Under this measure, the event
A = {(H,H,H), (T ,T ,T )}, which represents the event that three tosses
yield the same outcome, has probability

|A|
|Ω|

=
2

23
=

1

4
.
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Corollaries

Proposition

Let (Ω,P) be a probability space.

1 P(∅) = 0.

2 If A,B are two events and A ⊂ B, then P(B \ A) = P(B)− P(A).
3 If A,B are two events and A ⊂ B, then P(A) ≤ P(B).
4 For any event A, we have P(A∁) = 1− P(A), where A∁ := Ω \ A.
5 For any two events A and B (not necessarily disjoint), we have

P(A ∪ B) = P(A) + P(B)− P(A ∩ B).

6 For any countable sequence of events {An}n≥1, not necessarily
pairwise disjoint, we have

P
( ∞⋃

n=1

An

)
≤

∞∑
n=1

P(An).
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.Proof.
1. Let An = ∅, n ≥ 1. Clearly these sets satisfy Ai ∩ Aj = ∅ whenever
i ̸= j , and by σ-additivity

P
( ⋃

n≥1

∅
)

︸ ︷︷ ︸
=P(∅)

=
∑
n≥1

P(∅) ⇒
∑
n≥2

P(∅)︸ ︷︷ ︸
≥0

= 0 ⇒ P(∅) = 0.

2. Since A ⊂ B and B = A ∪ (B \ A), where A ∩ (B \ A) = ∅, we obtain
by σ-additivity

P(B) = P(A) + P(B \ A) ⇒ P(B \ A) = P(B)− P(A).

3. Since A ⊂ B, by part 2 we get P(A) = P(B)− P(B \ A)︸ ︷︷ ︸
≥0

≤ P(B).

4. Apply part 2 with B = Ω to get P(Ω \ A) = P(Ω)− P(A) = 1− P(A).
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5. Define E1 = A ∩ B∁, E2 = A ∩ B, and E3 = A∁ ∩ B. These are pairwise
disjoint with E1 ∪ E2 ∪ E3 = A ∪ B. Moreover, A = E1 ∪ E2 and
B = E2 ∪ E3. Hence

P(A ∪ B) = P(E1) + P(E2) + P(E3)

⇒ P(A ∪ B) + P(E2) =
(
P(E1) + P(E2)

)
+
(
P(E2) + P(E3)

)
= P(A) + P(B).

Recalling that P(E2) = P(A ∩ B) yields the assertion.
6. We define B1 = A1 and Bn = An \ (A1 ∪ · · · ∪ An−1) for n > 1. Then
the Bn are pairwise disjoint and

⋃
n Bn =

⋃
n An. Therefore

P
( ∞⋃

n=1

An

)
= P

( ∞⋃
n=1

Bn

)
=

∞∑
n=1

P(Bn).

Since Bn ⊂ An for all n, we have P(Bn) ≤ P(An) by part 3, and the claim
follows.
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Definition (Conditional probability)

Let A and B be two events. We assume that P(B) > 0. The conditional
probability of A given B is

P(A|B) = P(A ∩ B)

P(B)
.

The probability P(A|B) is the probability of A under the assumption that
B has already occurred.

Remarks.

Given an event B such that P(B) > 0, the map A 7→ P(A|B) defines
a probability measure on Ω. That probability measure is supported on
B, i.e., P(B|B) = 1.

The quantities P(A|B) and P(B|A) are not the same!
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Example

Consider again rolling two fair dice, where the corresponding sample space
is Ω = {(1, 1), (1, 2), . . . , (6, 6)} endowed with the uniform probability
measure P.

The probability of getting 3 (event A) when rolling the first dice, given
that the other dice gave 4 (event B):

P(A|B) = P(A ∩ B)

P(B)
=

1
36

6 · 1
36

=
1

6
.
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Independence of events

Let (Ω,P) be a probability space.
Definition

Two events A and B are said to be independent if

P(A ∩ B) = P(A)P(B).

This notion can be expressed in terms of conditional probability.
Lemma

Assume P(B) > 0. Then

1 P(A ∩ B) = P(A|B)P(B).
2 the events A and B are independent if and only if P(A|B) = P(A).

Proof. The first point follows from the definition of conditional probability
P(A|B) = P(A∩B)

P(B) . For the second point, note that

P(A ∩ B) = P(A)P(B) divide by P(B)⇔ P(A|B) = P(A).

Remark. The independence of A and B means that the a priori knowledge
that B occurs does not change the probability that A occurs. 22



Example

We throw a fair coin twice. To model this experiment, we consider the
probability space (Ω,P), where Ω = {H,T}2 and P is the uniform
probability measure on Ω. Let

A = {(H,H), (H,T )} (1st toss gives Heads)

B = {(H,H), (T ,H)}. (2nd toss gives Heads)

Then

P(A) = P(B) =
1

2
,

while

P(A ∩ B) = P({(H,H)}) = 1

4
.

Thus P(A ∩ B) = P(A)P(B) so A and B are independent.
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Theorem (Law of total probability)

Let A1, . . . ,Ak be events that form a partition of Ω, i.e., Ai ∩ Aj = ∅ if

i ̸= j and Ω =
⋃k

i=1 Ai . Then, for any event B, there holds

P(B) =
k∑

i=1

P(B|Ai )P(Ai ).

Proof. We have

B = B ∩ Ω = B ∩
( k⋃

i=1

Ai

)
=

k⋃
i=1

(B ∩ Ai ),

where we used the fact that Ω =
⋃k

i=1 Ai in the last equality. Since the
events Ai are pairwise disjoint, so are the events B ∩ Ai , and we obtain by
σ-additivity that

P(B) =
k∑

i=1

P(B ∩ Ai ).

The claim follows by noting that P(B ∩ Ai ) = P(B|Ai )P(Ai ).
24



Theorem (Bayes’ theorem)

Let A and B be events and assume that P(B) > 0. Then

P(A|B) = P(B|A)P(A)
P(B)

.

Proof. By definition,

P(A|B) = P(A ∩ B)

P(B)
.

On the other hand,

P(A ∩ B) = P(B|A)P(A) if P(A) > 0,

which yields the assertion.
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Random variables
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Random variables

Let (Ω,P) be a probability space and let E be a set.

Definition

A random variable (RV) X with values in E is a function X : Ω → E .

Remark. The set E is called the outcome or target space.

When E ⊂ R, we say that X is a real-valued random variable.
When E ⊂ Rn, n ≥ 2, we call X a vector-valued random variable.
When E is countable, we call X a discrete random variable.

In practice, ω is usually not observed directly and analysis is based on the
observed random variable X (ω). Physically, one can think of a realization
X (ω) of a random variable for some ω ∈ Ω as some measurement, or
observation performed on a system.

Statistical analysis is based on the pushforward measure B 7→ P(X−1(B)),
also called the probability distribution or law of X , not on P. Note that
here X−1(B) := {ω ∈ Ω | X (ω) ∈ B} is the preimage of B under the
mapping X .
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Example, two dice

As an example of a random variable, consider the sum:

X : {(1, 1), (1, 2), . . . , (6, 6)} → {2, . . . , 12}, X (ω) = ω1 + ω2.

The identity function Y (ω1, ω2) = (ω1, ω2) also defines a random variable.
Since Y : Ω → R2, this random variable is vector-valued.
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Let (Ω,P) be a probability space and E a set. A random variable
X : Ω → E induces a probability measure PX on E , defined by

PX (B) := P(X−1(B)) = P({ω ∈ Ω | X (ω) ∈ B}) for B ⊂ E ,

which is called the probability distribution (or law) of X .

In other words, a random variable X connects an event B ⊂ E with a
corresponding event X−1(B) ⊂ Ω and assigns the probability of
X−1(B) to B.

Often, we shall simply denote

{X ∈ B} := {ω ∈ Ω | X (ω) ∈ B},

and write
PX (B) = P(X ∈ B).

Two random variables X and Y with the same target space E are said to
be equal in law if they have the same probability function, i.e.,

P(X ∈ B) = P(Y ∈ B) for all subsets B ⊂ E .

Usually, we are ultimately interested in the laws of random variables,
rather than the random variables per se.
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Example

Two players play Heads and Tails on a fair coin. The coin is thrown 10
times, the gain of player 1 is the total number of Heads, while the gain of
player 2 is the total number of Tails. This situation is modeled by
introducing Ω = {H,T}10 endowed with the uniform distribution, and
defining random variables X and Y by

X (ω) = #{i = 1, . . . , 10 | ωi = H}, Y (ω) = #{i = 1, . . . , 10 | ωi = T}

for all ω ∈ {H,T}10. Then X + Y = 10. Clearly X and Y are not equal,
however they have equal distribution: for all k,

P(X = k) =
1

210

(
10

k

)
=

1

210

(
10

10− k

)
= P(X = 10− k) = P(Y = k).

This implies that X and Y are equal in distribution.
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Probability mass function

Let (Ω,P) be a probability space. Let X : Ω → E be a discrete random
variable (recall that this means that E is countable). Then, for all B ⊂ E ,
we can write

P(X ∈ B) =
∑
x∈B

pX (x), (1)

where pX (x) := P(X = x), x ∈ E . We call pX the probability mass
function (PMF) of X .
Properties. The PMF pX of a discrete random variable X is

non-negative pX (x) ≥ 0 for all x ∈ E ;
normalized

∑
x∈E pX (x) = 1.

In consequence, 0 ≤ pX (x) ≤ 1 for all x ∈ E .

The law of a discrete random variable X with countable target space
E is uniquely determined by its PMF. This is a consequence of the
fact that, by (1),

PX (B) := P(X ∈ B) =
∑
x∈B

pX (x),

meaning that the PMF determines the law of X completely. 32



Probability density function

Definition

A function f : R → R is called a probability density function (PDF) if the
following conditions hold:

f (x) ≥ 0 for all x ∈ R;∫∞
−∞ f (x) dx = 1.

A real-valued random variable X is said to be a continuous random variable
if there exists a PDF fX : R → R such that, for all a ≤ b, there holds

P(a ≤ X ≤ b) =

∫ b

a
fX (x)dx . (2)

Then we call fX the probability density function (PDF) of X .

Equation (2) implies for any (measurable) subset A ⊂ R that

PX (A) := P(X ∈ A) =

∫
A
fX (x)dx ,

meaning that the PDF fX determines the law of X completely. 33



Remark. One may think of the PDF as a “continuous” version of the PMF.
However, the PMF and PDF are two quite different types of functions.

The PMF of a discrete random variable X can take values between
[0, 1], i.e.,

P(X = x) = pX (x) ∈ [0, 1].

For a continuous random variable X , there always holds

P(X = x) =

∫ x

x
fX (y) dy = 0.
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Examples of discrete random variables

Example

Let p ∈ (0, 1). Let X be a random variable with values in E = {0, 1} and
with PMF given by

pX (x) =

{
1− p if x = 0,

p if x = 1.

Then we say that X is a Bernoulli random variable with parameter p, and
we write

X ∼ Ber(p).

A Bernoulli random variable with parameter p represents the result of
throwing a coin that falls on Heads with probability p and Tails with
probability 1− p (p = 1/2 if the coin is fair).
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Example

Let p ∈ (0, 1) and n ≥ 1 an integer. Let X be a random variable with
values in {0, . . . , n} and with PMF given by

pX (x) =

(
n

x

)
px(1− p)n−x , x ∈ {0, . . . , n}.

Then we say that X is a binomial random variable with parameters n and
p, and we write

X ∼ Bin(n, p).

This corresponds to the probability of the number of times a coin lands on
Heads in n tosses of a coin, with p denoting the probability of a coin
landing on Heads.
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Example

Let p ∈ (0, 1). Let X be a random variable with values in N and with
PMF given by

pX (x) = (1− p)x−1p, x ≥ 1.

Then we say that X is a geometric random variable with parameter p, and
we write

X ∼ Geo(p).

This corresponds with the probability of hitting Heads for the first time,
when the probability of hitting Heads is equal to p.

That is,
P(X = k) = pX (k) = (1− p)k−1p

denotes the probability of hitting Tails for the first k − 1 rounds and
hitting heads on the kth round.

37



Example

Let λ > 0. Let X be a random variable with values in N0 and with PMF
given by

pX (x) = e−λλ
x

x!
, x ≥ 0.

We then say that X is a Poisson random variable with parameter λ, and
we write

X ∼ Poisson(λ).

Poisson random variables can be used to model the count of rare events
such as nuclei decaying in a radioactive sample.
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Examples of continuous real-valued random variables

Definition

Let a < b. Let X be a real-valued continuous random variable with PDF

fX (x) =

{
1

b−a if a < x < b,

0 otherwise,
x ∈ R.

We then say that X is a uniform random variable in [a, b], and we write

X ∼ U(a, b).

39



Definition

Let λ > 0. Let X be a real-valued continuous random variable with PDF

fX (x) =

{
λe−λx if x ≥ 0,

0 if x < 0,
x ∈ R.

We then say that X is an exponential random variable with parameter λ,
and we write

X ∼ Exp(λ).
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Example

Let µ ∈ R and σ > 0. Let X be a real-valued continuous random variable
with PDF given by

fX (x) =
1√
2πσ2

e−
(x−µ)2

2σ2 , x ∈ R.

We then say that X is a Gaussian random variable with parameters µ and
σ2, and we write

X ∼ N (µ, σ2).

The parameter µ is called the mean and σ is called the standard deviation
of X .
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Cumulative distribution function

The cumulative distribution function (CDF) of a real-valued random
variable X is the function FX : R → [0, 1] given by

FX (x) = P({ω ∈ Ω | X (ω) ≤ x}) . (or shortly = P(X ≤ x))

Note that the CDF is defined for any random variable taking values in R,
whether discrete or continuous.

Proposition

Let FX : R → [0, 1] be the CDF of a real-valued random variable X . Then

FX is non-decreasing: if a ≤ b, then FX (a) ≤ FX (b).

FX is right-continuous: for all a ∈ R,

FX (a) = lim
x→a+

FX (x).

FX (−∞) := limx→−∞ FX (x) = 0 and FX (∞) := limx→∞ FX (x) = 1.
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One can read off relevant information on the distribution of X from its
CDF.

Lemma

Let FX : R → [0, 1] be the CDF of a real-valued random variable X . Then

For any real numbers a < b,

P(a < X ≤ b) = FX (b)− FX (a).

For any a ∈ R,
P(X > a) = 1− FX (a).

For any x ∈ R,

P(X = x) = FX (x)− lim
y→x−

FX (y).

Remark. In particular, if X is a continuous random variable, we have
FX (x) = limy→x− FX (y) for all x ∈ R; no jumps occur. For a discrete
random variable, the situation is different: FX is then a pure-jump
function, meaning that it increases purely through jumps.
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Relationship between the CDF and PMF (discrete case)

Proposition

Let X be a discrete random variable taking values in a countable subset E
of R. Denoting the PMF of X by pX and its CDF by FX , we have

FX (a) =
∑
x∈E
x≤a

pX (x) for all a ∈ R,

pX (x) = FX (x)− lim
y→x−

FX (y).

Proof. By the definition of the PMF, there holds

P(X ∈ B) =
∑
x∈B

pX (x) for all subsets B ⊂ E .

Setting B = {x ∈ E | x ≤ a} yields the first relation.
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For the second relation, we note that

{X = x} =
⋂
n≥1

En,

where the sets En :=
{
X ∈

(
x − 1

n , x
]}

form a decreasing sequence of
events En+1 ⊂ En for n ≥ 1. In this case, there holds

P
( ⋂

n≥1

En

)
= lim

n→∞
P(En)

= lim
n→∞

(
FX (x)− FX

(
x − 1

n )
)

= FX (x)− lim
y→x−

FX (y),

as desired.
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Relationship between the CDF and PDF (continuous case)

Proposition

Let X be a continuous real-valued random variable. Denoting the PDF of
X by fX , and its CDF by FX , we have

FX (a) =

∫ a

−∞
fX (y)dy for all a ∈ R.

In addition, if FX is differentiable at x ∈ E , we have

fX (x) = F ′
X (x).

Proof. For the first statement, note that for all u < a there holds

FX (a)− FX (u) = P(X ∈ (u, a]) = P(X ∈ [u, a]) =

∫ a

u
fX (y) dy ,

where we used the fact that P(X = u) = 0 since X is a continuous
random variable. Letting u → −∞ and recalling FX (−∞) = 0, we obtain
FX (a) =

∫ a
−∞ fX (y)dy . The second statement follows from the

fundamental theorem of calculus (FX is the antiderivative of fX ). 46



Proposition

The probability distribution of a real-valued random variable is uniquely
determined by its CDF.

Proof. We give a proof in the discrete case. Let X and Y be two
real-valued random variables with the same CDF:

FX (x) = FY (x) for all x ∈ R.

Then by the previous discussion,

pX (x) = FX (x)− lim
y→x−

FX (y) = FY (x)− lim
y→x−

FY (y) = pY (x).

Thus X and Y have the same PMF, meaning that X and Y are equal in
law.
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Quantile function

Definition

Let X be a real-valued random variable with CDF F . The generalized
inverse F−1 : (0, 1) → R,

F−1(q) = inf{x ∈ R | F (x) ≥ q}, q ∈ (0, 1),

is called the quantile function of X .

If F is strictly increasing, then the quantile function is the inverse
function of F .

For example, the CDF and inverse CDF of a Bernoulli random
variable X ∼ Ber(12) are

F (x) =


0 if x < 0
1
2 if 0 ≤ x < 1

1 if x ≥ 1

and F−1(q) =

{
0 if 0 < q ≤ 1

2

1 if 1
2 < q < 1.

48



“Draw t ∼ U(0, 1). Then find smallest value of x such that Φ(x) ≥ t.”
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“Draw t ∼ U(0, 1). Then find smallest value of x such that Φ(x) ≥ t.”
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“Draw t ∼ U(0, 1). Then find smallest value of x such that Φ(x) ≥ t.”
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“Draw t ∼ U(0, 1). Then find smallest value of x such that Φ(x) ≥ t.”
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●●

“Find the smallest value of x such that F (x) ≥ q.”
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Proposition

Let X be a real-valued random variable with CDF FX . Then

1 For all q ∈ (0, 1), FX (F
−1
X (q)) ≥ q.

2 If X is a continuous random variable, then FX (F
−1
X (q)) = q for all

q ∈ (0, 1).

Proof. (1) Let q ∈ (0, 1). Since F−1
X (q) = inf{x ∈ R | F (x) ≥ q} by

definition, we can find a sequence (an)n≥1 of real numbers such that
FX (an) ≥ q and an ↘ F−1

X (q). By the right-continuity of FX , there holds

FX (F
−1
X (q)) = lim

n→∞
FX (an) ≥ q.

(2) It suffices to prove the inequality FX (F
−1
X (q)) ≤ q by (1). Assume to

the contrary that FX (F
−1
X (q)) > q. Since FX is the CDF of a continuous

random variable, it is continuous. By continuity of FX , there exists
a ∈ (−∞,F−1

X (q)) such that FX (a) > q, which contradicts the definition
of F−1

X .
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CDF of a normal random variable

Example

The CDF of a normal random variable X ∼ N (0, 1) is often denoted by Φ,

Φ(x) = P(X ≤ x) =
1√
2π

∫ x

−∞
e−

t2

2 dt, x ∈ R.

Typical values to remember:

Φ(1.645) = P(X ≤ 1.645) ≈ 0.95,

Φ(1.960) = P(X ≤ 1.960) ≈ 0.975.

In this case the CDF Φ is injective and the quantile function, denoted by
Φ−1, coincides with its inverse. The above equalities can be recast as

Φ−1(0.95) ≈ 1.645,

Φ−1(0.975) ≈ 1.960.
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Joint distributions
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Often, instead of dealing with one random variable only, we are interested
in several random variables X1, . . . ,Xn.

Let (Ω,P) be a probability space and let Xj : Ω → Ej be random variables
with target spaces Ej , j = 1, . . . , n. One can view the map

X := (X1, . . . ,Xn) : Ω → E1 × · · · × En, ω 7→ (X1(ω), . . . ,Xn(ω))

as a single, multivariate random variable.

In analogy to the univariate case, the joint probability distribution of
X1, . . . ,Xn is

PX1,...,Xn(C ) = P((X1, . . . ,Xn) ∈ C ) for C ⊂ E1 × · · · × En.

Informally speaking, the marginal distribution of Xi is obtained by
“integrating out” (continuous RVs) / “summation over” (discrete RVs) all
variables except the i th one. The precise definition is

PXi
(A) = PX1,...,Xn(E1 × · · · × Ei−1 × A× Ei+1 × · · · × En)

= P(X1 ∈ E1, . . . ,Xi−1 ∈ Ei−1,Xi ∈ A,Xi+1 ∈ Ei+1, . . . ,Xn ∈ En)

for all events A ⊂ Ei .
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Joint PMF (discrete RVs)

Assume that Xj : Ω → Ej are discrete random variables (recall that this
means each Ej is countable). This means that E1 × · · · × En is also
countable. The joint PMF pX1,...,Xn : E1 × · · · × En → [0, 1] is defined as

pX1,...,Xn(x1, . . . , xn) = P(X1 = x1, . . . ,Xn = xn), (x1, . . . , xn) ∈ E1×· · ·×En.

The probability distribution can be expressed as follows in the discrete
case.

Proposition

For all events C ⊂ E1 × · · · × En, there holds

PX1,...,Xn(C ) =
∑

(x1,...,xn)∈C

pX1,...,Xn(x1, . . . , xn).

Proof. The claim is an immediate consequence of σ-additivity of disjoint
events

{(X1, . . . ,Xn) ∈ C} =
⋃

(x1,...,xn)∈C

{X1 = x1, . . . ,Xn = xn}.
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The marginal PMF of a discrete RV Xi can be obtained from the joint
PMF by summation over all the other RVs:

pXi
(x) =

∑
x1∈E1,...,
xi−1∈Ei−1,
xi+1∈Ei+1,...

xn∈En

pX1,...,Xn(x1, . . . , xi−1, x , xi+1, . . . , xn).

More generally, for any subset of indices I ⊂ {1, . . . , n}, we can recover
the joint PMF of the random variables (Xi )i∈I from the joint PMF of
X1, . . . ,Xn by summing up pX1,...,Xn over all possible values in the
coordinates j ̸∈ I.

For example, if n = 4, we can recover the joint PMF of (X2,X3) via

pX2,X3(x , y) =
∑

x1∈E1, x4∈E4

pX1,X2,X3,X4(x1, x , y , x4).
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Example (Bivariate case n = 2)

If (X ,Y ) is a bivariate discrete RV with PMF pX ,Y , then the PMFs of X and Y are
respectively given by

pX (x) =
∑
y∈E2

pX ,Y (x , y) and pY (y) =
∑
x∈E1

pX ,Y (x , y).

Example

Let (X ,Y ) be a bivariate RV taking values in {1, 2} × {1, 2, 3} and with joint PMF p
given as below

p(x , y) y = 1 y = 2 y = 3

x = 1 0.1 0.3 0.2
x = 2 0.2 0.2 0

The values of the marginal PMF pX (x), x = 1, 2, are obtained by summing up the
probabilities in each of the corresponding rows

pX (1) = 0.1 + 0.3 + 0.2 = 0.6

pX (2) = 0.2 + 0.2 + 0 = 0.4.

Similarly, the values of the marginal PMF pY (y), y = 1, 2, 3, are obtained by summing
up the probabilities in each of the corresponding columns:

pY (1) = 0.1 + 0.2 = 0.3, pY (2) = 0.3 + 0.2 = 0.5, pY (3) = 0.2 + 0 = 0.2.
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Joint PDF (continuous RVs)

Definition

A function f : Rn → R is called a probability density function (PDF) if the
following conditions hold:

f (x1, . . . , xn) ≥ 0 for all (x1, . . . , xn) ∈ Rn;∫
R · · ·

∫
R f (x1, . . . , xn) dx1 · · · dxn = 1.

The real-valued random variables X1, . . . ,Xn admit a continuous joint
distribution (resp. admit a joint density) if there exists a PDF
fX1,...,Xn : Rn → R such that, for all subsets A ⊂ Rn, there holds

P((X1, . . . ,Xn) ∈ A) =

∫
A
fX1,...,Xn(x1, . . . , xn) dx1 · · · dxn.

Then we call fX1,...,Xn the probability density function (PDF) of X .
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Lemma

If X1, . . . ,Xn admit a joint density fX1,...,Xn , then X1, . . . ,Xn are
continuous RVs with PDF given by

fXi
(x)=

∫
Rn−1

fX1,...,Xn(x1, . . . , xi−1, x , xi+1, . . . , xn)dx1 · · · dxi−1dxi+1 · · · dxn

for x ∈ R. We call fXi
the marginal PDF of Xi .

More generally, for any subset of indices I ⊂ {1, . . . , n} we can recover
the joint PDF of the random variables (Xi )i∈I from the joint PDF of
X1, . . . ,Xn by integrating over all possible values in the coordinates j ̸∈ I.

For example, if n = 4, we can recover the joint PDF of (X2,X3) via

fX2,X3(x , y) =

∫ ∞

−∞

∫ ∞

−∞
fX1,X2,X3,X4(x1, x , y , x4) dx1 dx4.
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Example

Let a, b, c, d ∈ R be such that a < b and c < d . Then the function
f : R2 → R defined by

f (z) =
1

(b − a)(d − c)
1[a,b]×[c,d ](z), z ∈ R2,

is a PDF. It corresponds to the uniform distribution on the rectangle
[a, b]× [c, d ]. The marginal distributions are univariate distributions on
the [a, b] and [c , d ], respectively:

X ∼ U(a, b), Y ∼ U(c , d).
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Example (Bivariate Gaussian distribution)
Let µ ∈ R2 and let C ∈ R2×2 be a symmetric, positive definite 2× 2 matrix. The
function f : R2 → R given by

f (z) =
1

2π
√
detC

exp

(
− 1

2
(z − µ)TC−1(z − µ)

)
, z ∈ R2,

is a PDF. A random vector Z = (X ,Y ) with PDF f is said to have Gaussian distribution
with mean µ and covariance matrix C . Denoting

µ =

(
µX

µY

)
, C =

(
σ2
X σXY

σXY σ2
Y

)
,

then the marginal PDFs are given by

fX (x) =
1√
2πσ2

X

exp

(
− (x − µX )

2

2σ2
X

)
,

fY (y) =
1√
2πσ2

Y

exp

(
− (y − µY )

2

2σ2
Y

)
.

Thus X ∼ N (µX , σ
2
X ) and Y ∼ N (µY , σ

2
Y ).

In the special case µ = 0 and C = I2, i.e., µX = µY = 0, σXY = 0, and σ2
X = σ2

Y = 1:

f (z) =
1

2π
exp

(
− 1

2
∥z∥2

)
, z ∈ R2,

where ∥z∥ =
√

x2 + y 2 denotes the Euclidean norm of z = (x , y).
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Independence of random variables

Definition
The random variables X1, . . . ,Xn are said to be independent if, for any
subsets A1 ⊂ E1, . . . ,An ⊂ En, there holds

P(X1 ∈ A1, . . . ,Xn ∈ An) = P(X1 ∈ A1) · · ·P(Xn ∈ An).

Theorem (Independence of discrete RVs)
Assume that X1, . . . ,Xn are discrete random variables with joint PMF
pX1,...,Xn and marginal PMFs pX1 , . . . , pXn . Then X1, . . . ,Xn are
independent if and only if

pX1,...,Xn(x1, . . . , xn) = pX1(x1) · · · pXn(xn), (x1, . . . , xn) ∈ E1 × · · · × En.

Theorem (Independence of continuous RVs)
Assume that X1, . . . ,Xn are continuous random variables with joint PDF
fX1,...,Xn and marginal PDFs fX1 , . . . , fXn . Then X1, . . . ,Xn are independent
if and only if

fX1,...,Xn(x1, . . . , xn) = fX1(x1) · · · fXn(xn), (x1, . . . , xn) ∈ Rn.
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Example, independence

Let X and Y have the joint PDF

f (x , y) =

{
x + y if 0 ≤ x ≤ 1, 0 ≤ y ≤ 1,

0 otherwise.

Are the variables X and Y independent?

Now

f (x) =

∫ 1

0
(x + y)dy = x +

1

2
, 0 < x < 1

and

f (y) =

∫ 1

0
(x + y) dx = y +

1

2
, 0 < y < 1.

If the random variables are independent, then f (x , y) = f (x) · f (y). Let
x = 1/3 and y = 1/3. Now

f (x , y) = x + y = 1
3 + 1

3 = 2
3 ,

f (x) · f (y) = (x + 1
2)(y + 1

2) =
5
6 · 5

6 = 25
36 ̸= 2

3 .

Thus X and Y are not independent.
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Example, independence

Let X and Y have the joint PMF

p(x , y) =

{
1
4 if x ∈ {1, 2}, y ∈ {1, 2},
0 otherwise.

Now

p(x) =
∑

y∈{1,2}

p(x , y) = 1
4 + 1

4 = 1
2 , x ∈ {1, 2},

and otherwise p(x) = 0,

and

p(y) =
∑

x∈{1,2}

p(x , y) = 1
4 + 1

4 = 1
2 , y ∈ {1, 2},

and otherwise p(y) = 0.

Therefore p(x , y) = p(x)p(y) for all x and y , meaning that X and Y are
independent.
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Conditional distribution

Definition

Let (X ,Y ) be a discrete random variable in E1 × E2 with joint PMF pX ,Y

and marginal PMFs pX and pY . The conditional PMF pX |Y of X given Y
is defined by

pX |Y (x |y) =
pX ,Y (x , y)

pY (y)
,

for all x ∈ E1 and y ∈ E2 such that pY (y) > 0.

Definition

Let (X ,Y ) be a continuous random variable in Rn × Rk with joint PDF
fX ,Y and marginal PMFs fX and fY . The conditional PDF fX |Y of X given
Y is defined by

fX |Y (x |y) =
fX ,Y (x , y)

fY (y)
,

for all x ∈ Rn and y ∈ Rk such that fY (y) > 0.
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Transformations of random variables
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When we perform arithmetic with random variables, it is natural to ask

if X and Y are random variables, what is the distribution of
Z = X + Y ?

if X is an Rk -valued random variable with known distribution and
g : Rk → Rk is a function, what is the distribution of the transformed
random variable Y = g(X )?
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Theorem

Let X be a continuous real-valued random variable with CDF FX and
quantile function F−1

X .

1 The random variable U = FX (X ) ∼ U(0, 1).
2 If U ∼ U(0, 1), then F−1

X (U) has the same distribution as X (they are
equal in law).

Proof. (1) Note that P(FX (X ) ≤ t) = P(X ≤ F−1
X (t)).† We observe that

for all t ∈ (0, 1),

P(U ≤ t) = P(FX (X ) ≤ t) = P(X ≤ F−1
X (t)) = FX (F

−1
X (t)) = t.

Therefore P(U ≤ t) = t, meaning that U ∼ U(0, 1).

(2) P(F−1
X (U) ≤ t) = P(U ≤ FX (t)) = FX (t).

†If FX (X ) < t, then X < F−1
X (t), which implies (since X is a continuous RV) that

P(FX (X ) ≤ t) = P(FX (X ) < t) ≤ P(X < F−1
X (t)) = P(X ≤ F−1

X (t)).
On the other hand, X ≤ F−1

X (t) implies FX (X ) ≤ FX (F
−1
X (t)) = t, so

P(X ≤ F−1
X (t)) ≤ P(FX (X ) ≤ t). Therefore P(FX (X ) ≤ t) = P(X ≤ F−1

X (t)).
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The previous theorem is very useful for simulations: if we have a uniform
random number generator, we can generate samples from any distribution
provided that we have access to its quantile function.

Algorithm (Inverse transform sampling)

1. Draw U ∼ U(0, 1).
2. Calculate X = F−1

X (U).

If a closed form expression for the inverse CDF is not available, then a
computationally attractive formula for approximating the value F−1

X (U) is
given by the generalized inverse:

F−1
X (q) = inf{x ∈ R | FX (x) ≥ q}.
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Example (Exponential distribution)

Let X ∼ Exp(λ), λ > 0, with the PDF fX (x) = λe−λx1[0,∞)(x). In this

case, FX (a) = 1[0,∞)(a)(1− e−λa) and F−1
X (q) = − 1

λ log(1− q), q ∈ (0, 1).
We implement inverse transform sampling to draw a sample X ∼ Exp(1).

import numpy as np

import matplotlib.pyplot as plt

n = int(1e5) # sample size

x = np.linspace(0,12,1000)

lam = 1 # lambda parameter of Exp distribution

p = lambda x: lam * np.exp(-lam*x) # PDF

invF = lambda q: -1/lam * np.log(1-q) # quantile function

u = np.random.uniform(size=n) # i.i.d. sample from U(0,1)

sample = invF(u) # inverse transform

plt.hist(sample,bins=’auto’,

density=True,label=’sample’) # draw histogram

plt.plot(x,p(x),linewidth=2,label=’PDF’) # plot the PDF

plt.legend()

plt.show()
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Example

Let the random variable X have the PDF fX (x) = (6x − 6x2)1[0,1](x). In
this case, the quantile function is difficult to write down, but we can still
implement inverse transform sampling numerically.

import numpy as np

import matplotlib.pyplot as plt

n = int(1e6) # sample size

x = np.linspace(0,1,10000)

p = lambda x: 6*x-6*x**2 # PDF

P = np.cumsum(p(x)); P = P/P[-1] # "empirical" CDF of p

sample = []

for _ in range(n):

u = np.random.uniform() # realization of U(0,1)

ind = np.where(u<=P)[0][0] # inverse transform

sample.append(x[ind]) # store sample

plt.hist(sample,bins=’auto’,

density=True,label=’sample’) # draw histogram

plt.plot(x,p(x),linewidth=2,label=’PDF’) # plot the PDF

plt.legend(); plt.show() 76
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Change of variables formula (discrete RVs)

Proposition

Let X : Ω → E and Y : Ω → F be discrete random variables such that
Y = g(X ), where g : E → F . Then the PMF of Y is given by

pY (y) =
∑

x∈g−1({y})

pX (x) =
∑
x∈E

g(x)=y

pX (x).

In other words, the PMF of Y at point y is obtained by summing up the
PMF of X over the preimage g−1({y}).

Proof. Recall that g−1({y}) = {x ∈ E | g(x) = y}. Thus

pY (y) = P(Y = y) = P(g(X ) = y) = P(X = g−1({y}))

= P
( ⋃

x∈g−1({y})

{X = x}
)

=
∑

x∈g−1({y})

P(X = x) =
∑

x∈g−1({y})

pX (x),

where we used the σ-additivity of the disjoint sets ({X = x})x∈g−1(y).
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Change of variables formula (continuous, univariate case)

Let X and Y be real-valued random variables such that Y = g(X ), where
g : R → R. By noting that the CDF of Y satisfies

FY (y) = P(Y ≤ y) = P(g(X ) ≤ y),

one can use the following method to obtain the PDF of Y given the PDF
of X :

Compute the CDF of Y using

FY (y) = P(g(X ) ≤ y) for y ∈ R.

If FY is differentiable, then Y has the PDF fY = F ′
Y .
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Example

Let X ∼ U(0, 1), g(x) = x2, and define Y = g(X ). We wish to find fY (y).
We begin by noting that

FY (y) = P(g(X ) ≤ y) = P(X 2 ≤ y) =

{
P(∅) if y < 0,

P(−√
y ≤ X ≤ √

y) if y ≥ 0.

Here, P(∅) = 0 and

P(−√
y ≤ X ≤ √

y) =

∫ √
y

−√
y
1[0,1](x)dx =

{√
y if y ∈ [0, 1],

1 if y > 1.

Hence

FY (y) =


0 if y < 0
√
y if y ∈ [0, 1],

1 if y > 1

d
dy

⇒ fY (y) =
1[0,1](y)

2
√
y

, y ∈ R.
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In the special case where g : R → R is a strictly monotonic, continuously
differentiable function, one has the following formula.

Theorem

Let g : R → R be a continuously differentiable and strictly monotonic
function. Let X and Y be continuous, real-valued random variables
satisfying Y = g(X ). Then we have the following:

fX (x) = fY (g(x))|g ′(x)|, x ∈ R,

and

fY (y) = fX (g
−1(y))|(g−1)′(y)| = fX (g

−1(y))
1

|g ′(g−1(y))|
, y ∈ R.

Proof. For each (measurable) subset B ⊂ R, there holds

P(X ∈ B) = P(Y ∈ g(B)) =

∫
g(B)

fY (y)dy =

∫
B
fY (g(x))|g ′(x)|dx .

Since B is arbitrary, we conclude that fX (x) = fY (g(x))|g ′(x)|.
The second claim follows from the first one by writing X = g−1(Y ).
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Change of variables formula (continuous, multivariate case)

The change of variables formulae can be generalized to higher dimensions.
For example, let X1, . . . ,Xk be real-valued random variables and let
g : Rk → R. We wish to derive the PDF of the real-valued random
variable Z = g(X1, . . . ,Xk).

One can proceed as follows:

1 Compute the CDF FZ of Z by

FZ (z) = P(g(X1, . . . ,Xk) ≤ z).

2 If FZ is differentiable, then its PDF is given by fZ = F ′
Z .
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Example

Let X ,Y ∼ U(0, 1) be independent random variables and define
Z = max(X ,Y ). Now†

FZ (z) = P(max(X ,Y ) ≤ z) = P(X ≤ z ,Y ≤ z).

Since X and Y were assumed to be independent, and both X and Y are
uniformly distributed in [0, 1], we get

FZ (z) = P(X ≤ z)P(Y ≤ z) =

(∫ z

−∞
1[0,1](t)dt

)2

=


0 if z < 0,

z2 if z ∈ [0, 1],

1 if z > 1.

Differentiating the above yields

fZ (z) = 2z 1[0,1](z), z ∈ R.

†Note that max(X ,Y ) ≤ z ⇔ X ≤ z and Y ≤ z . Recall also the notation
P(X ≤ z ,Y ≤ z) = P(X ≤ z and Y ≤ z).
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The following change of variable formula works in the case where X ,Y are
Rn-valued random variables and g : Rn → Rn is C 1-diffeomorphism (i.e., g
is a bijection and both g and its inverse g−1 are continuously
differentiable). The Jacobian matrix of a vector field
F (x) = [F1(x), . . . ,Fn(x)]

T, where Fj : Rn → R for j = 1, . . . , n, is

DF (x) =


∂
∂x1

F1(x) · · · ∂
∂xn

F1(x)
...

. . .
...

∂
∂x1

Fn(x) · · · ∂
∂xn

Fn(x)

 .

Theorem

Let g : Rn → Rn be a C 1-diffeomorphism and let X and Y be Rn-valued
random variables such that Y = g(X ). Then

fX (x) = fY (g(x))| detDg(x)|, x ∈ Rn,

and
fY (y) = fX (g

−1(y))| detDg−1(y)|, y ∈ Rn.

Proof. The argument is exactly the same as the univariate version (use the
multivariate change of variables formula for integration).
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Example

Assume that g is an affine transformation

g(x) = Ax + b, x ∈ Rn,

for some fixed vector b ∈ Rn and invertible matrix A ∈ Rn×n. Suppose
that X has the PDF fX and Y = g(X ). We wish to find the PDF fY of Y .

The Jacobian matrix of g is given by

Dg(x) = A, x ∈ Rn,

and we have
g−1(y) = A−1(y − b).

Therefore the change of variables formula yields

fY (y) = fX (A
−1(y − b))| detA−1| = fX (A

−1(y − b))
1

| detA|
, y ∈ Rn.
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Sums of independent random variables

Theorem
Let X and Y be independent, real-valued discrete random variables with
PMFs pX and pY , respectively. Then the random variable Z = X + Y has
the PMF

pZ (z) =
∑
x∈E

pX (x)pY (z − x).

Example

Let X ∼ Poisson(λ) and Y ∼ Poisson(µ) be two independent Poisson ran-
dom variables with parameters λ, µ > 0. Then X + Y ∼ Poisson(λ+ µ).

Theorem
Let X and Y be independent, real-valued continuous random variables
with PDFs fX and fY , respectively. Then the random variable Z = X + Y
has the PDF

fZ (z) =

∫ ∞

−∞
fX (x)fY (z − x) dx , z ∈ R.

This is the convolution of fX and fY and denoted fZ (z) = (fX ∗ fY )(z).
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Positive definite matrices

Definition

Let A ∈ Rd×d be a symmetric matrix. We call A a positive definite matrix
if

xTAx > 0 for all x ∈ Rd \ {0}.

This implies that A is invertible and that A−1 is positive definite if A is.

Characterization

Let A ∈ Rd×d be a symmetric matrix. Then the following are equivalent:

The matrix A is positive definite.
The eigenvalues of A are positive.
The matrix A has a Cholesky decomposition: there exists an upper
triangular matrix R ∈ Rd×d such that

A = RTR.

The matrix A has a matrix square root, denoted by A1/2, which
satisfies

A = A1/2A1/2.

Note that the matrix square root A1/2 is also positive definite.
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Multivariate Gaussian random variables

Definition

Let µ ∈ Rd and let C ∈ Rd×d be a positive definite matrix. We call a
random variable X on Rd a multivariate Gaussian random variable with
mean µ and covariance C if it has the PDF

fX (x) =

(
1

(2π)d detC

)1/2

exp

(
− 1

2
(x − µ)TC−1(x − µ)

)
, x ∈ Rd .

In this case, we denote X ∼ N (µ,C ).

Remark. There exists a concept of Gaussian random variable even in the
case where the matrix C is positive semi-definite, i.e., at least one of its
eigenvalues is 0, but such a random variable does not have a well-defined
PDF (it is a “degenerate” random variable). The definition uses the
so-called characteristic function. We omit the details.

The inverse of the covariance matrix is sometimes called a precision
matrix. An often used notation is ∥x∥C =

√
xTC−1x for x ∈ Rd .
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Transformations of Gaussian random variables

Gaussian random variables behave predictably under affine
transformations:

Multiplying a Gaussian RV with a (deterministic) scalar number yields
another Gaussian RV with an updated mean and variance.

Translating a Gaussian RV yields another Gaussian RV with an
updated mean, but the same variance.

An affine transformation of a Gaussian RV yields another Gaussian
RVs with an updated mean and variance.

Nonlinear transformations of Gaussian RVs are typically no longer
Gaussian RVs!

– For example, the Euclidean norm Y = ∥X∥ of a Gaussian RV is not
Gaussian (it follows a so-called “folded normal distribution”).

– The sum of squares of independent Gaussian RVs Z = X 2
1 + · · ·+ X 2

k ,
where Xi are assumed to be independent Gaussian RVs, has the χ2(k)
distribution.
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Proposition (ZCA transform, univariate version)
Let µ ∈ R and σ > 0. The univariate Gaussian distribution satisfies the
following properties:

1 If X ∼ N (0, 1), then Y := µ+ σX ∼ N (µ, σ2).

2 If Y ∼ N (µ, σ2), then X := 1
σ (Y − µ) ∼ N (0, 1).

Proposition (ZCA transform, multivariate version)

Let µ ∈ Rd and let C ∈ Rd×d be a symmetric positive definite covariance
matrix. The multivariate Gaussian distribution satisfies the following
properties:

1 If X ∼ N (0, Id), then Y := µ+ C 1/2X ∼ N (µ,C ).

2 If Y ∼ N (µ,C ), then X := C−1/2(Y − µ) ∼ N (0, Id).

(Here, C−1/2 := (C 1/2)−1 is the inverse of the matrix square root of C .)

Remark. (1) is called a Mahalanobis or ZCA† coloring transform: it turns
a standard Gaussian RV into a Gaussian RV with specified mean and
covariance. (2) is called a Mahalanobis or ZCA† whitening transform: it
turns a Gaussian RV with a specified mean and covariance into a standard
Gaussian RV.

†Zero-phase component analysis 90



.Proof. Let us prove claim (1) of the multivariate version. Let X ∼ N (0, Id)
and define Y = µ+ C 1/2x . By defining g(x) = µ+ C 1/2x , we can write

Y = g(X ) ⇒ fY (y) = fX (g
−1(y))| detDg−1(y)|.

In this case, we have

g−1(y) = C−1/2(y − µ) and | detDg−1(y)| = | detC−1/2| = 1√
detC

.

Therefore

fY (y) =
1

(2π)d/2
exp

(
− 1

2
∥C−1/2(y − µ)∥2

)
1√
detC

=

(
1

(2π)d detC

)1/2

exp

(
− 1

2
(x − µ)TC−1(x − µ)

)
,

which implies that Y ∼ N (µ,C ).

The proof for (2) follows by writing X = g−1(Y ) and using the change of
variables formula fX (x) = fY (g(x))| detDg(x)|.
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Linear transformation of a Gaussian random variable

Proposition

Let µ ∈ Rd and let C ∈ Rd×d be a symmetric, positive definite matrix.
Let X ∼ N (µ,C ). If k ≤ d and L ∈ Rk×d is a matrix with full rank, then

Y = LX ∼ N (Lµ, LCLT).
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Different coloring transforms

Let µ ∈ Rd , let C ∈ Rd×d be a symmetric positive covariance matrix, and
let X ∼ N (0, Id).

The Mahalanobis or ZCA coloring transform uses the matrix square
root factorization C = C 1/2C 1/2 to write a standard Gaussian RV as

Y = µ+ C 1/2X ∼ N (µ,C ).

One could alternatively use the Cholesky decomposition C = RTR to
obtain the Cholesky coloring transform

Y = µ+ RTX ∼ N (µ,C ).

Finally, one could use the eigendecomposition
C = UΛUT = (UΛ1/2)(UΛ1/2)T, where UUT = I = UTU and Λ is a
diagonal matrix containing the eigenvalues of C , to obtain the PCA†

coloring transform

Y = µ+ UΛ1/2X ∼ N (µ,C ).

†Principal component analysis
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Different whitening transforms

Let µ ∈ Rd , let C ∈ Rd×d be a symmetric positive covariance matrix, and
let Y ∼ N (µ,C ).

The Mahalanobis or ZCA whitening transform uses the matrix square
root factorization C = C 1/2C 1/2 to write a standard Gaussian RV as

X = C−1/2(Y − µ) ∼ N (0, Id).

One could alternatively use the Cholesky decomposition C = RTR to
obtain the Cholesky whitening transform

X = R−T(Y − µ) ∼ N (0, Id).

Finally, one could use the eigendecomposition
C = UΛUT = (UΛ1/2)(UΛ1/2)T, where UUT = I = UTU and Λ is a
diagonal matrix containing the eigenvalues of C , to obtain the PCA
whitening transform

X = Λ−1/2UT(Y − µ) ∼ N (0, Id).
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By inductive reasoning, one can deduce that any finite linear combination
of Gaussian RVs is a Gaussian RV.

Proposition (Univariate version)

Let Xj ∼ N (µi , σ
2
i ) be independent Gaussian random variables with

µi ∈ R and σi > 0 for i = 1, . . . , n. Then

X :=
n∑

i=1

Xi ∼ N
( n∑

i=1

µi ,

n∑
i=1

σ2
i

)
.

Proposition (Multivariate version)

Let Xj ∼ N (µi ,Ci ) be independent Gaussian random variables with
µi ∈ Rd and symmetric, positive definite Ci ∈ Rd×d for i = 1, . . . , n. Then

X :=
n∑

i=1

Xi ∼ N
( n∑

i=1

µi ,

n∑
i=1

Ci

)
.
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Expected value and covariance
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Example

If a random variable X takes finitely many values x1, . . . , xn with equal
probability, it is natural to define the average of X as the arithmetic
average 1

n

∑n
i=1 xi .

More generally, if X takes the value xi with probability pi , then it is
natural to define the average of X as the weighted average

∑n
i=1 pixi , i.e.,

values xi which are more likely to be realized are assigned a larger weight
and vice versa for values xi which are less likely to occur.

The expected value of a random variable is used to formalize the notion of
“mean” or “average” of a real-valued random variable X .
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Definition (Expected value of a discrete, real-valued RV)

Let X be a discrete, real-valued random variable with target space
E ⊂ R and PMF pX . The expected value (also called mean) of X is

E[X ] =
∑
x∈E

x pX (x). (1)

Definition (Expected value of a continuous, real-valued RV)

Let X be a continuous, real-valued random variable with PDF fX . The
expected value (also called mean) of X is

E[X ] =

∫ ∞

−∞
x fX (x) dx . (2)

A random variable X is called integrable if

X is a discrete, real-valued random variable and the series (1) is
absolutely convergent.
X is a continuous, real-valued random variable and the integral (2) is
absolutely convergent.
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Example
The expected value of X can be interpreted as the value that X will take
on average. If we observe realizations x1, . . . , xn of X , then for large n, the
empirical mean should be close to E[X ] :

1

n

n∑
i=1

xi ≈ E[X ].

Example
Assume that X is deterministic, i.e., there exists x ∈ R such that X = x
almost surely†. Then E[X ] = x .

Example
Let X be a discrete random variable with a finite target space E ⊂ R.
Suppose that X is uniformly distributed in E . Then

E[X ] =
1

|E |
∑
x∈E

x ,

so the expected value of X coincides with the algebraic average of the
values x ∈ E .

†The term “almost surely”, abbreviated “a.s.”, means that the probability of this
outcome is 1.
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Example

Let a < b and assume that X ∼ U(a, b). Then fX (x) =
1(a,b)(x)

b−a , and

E[X ] =

∫ ∞

−∞
x
1(a,b)(x)

b − a
dx =

∫ b

a

x

b − a
dx =

a+ b

2
.

Example
Let µ ∈ R and σ > 0 and consider X ∼ N (µ, σ2). Then

E[X ] =

∫ ∞

−∞
x

1√
2πσ2

e−
1

2σ2 (x−µ)2 dx .

Performing the change of variables y = x − µ, we obtain

E[X ] =

∫ ∞

−∞
(y + µ)

1√
2πσ2

e−
1

2σ2 y
2

dy

=
1

2πσ2

∫ ∞

−∞
ye−

1
2σ2 y

2

dy︸ ︷︷ ︸
= 0 as an odd function of y

+ µ
1√
2πσ2

∫ ∞

−∞
e−

1
2σ2 y

2

dy︸ ︷︷ ︸
= 1 (PDF integrates to 1 over R)

= µ.

This justifies calling the parameter µ the mean of the Gaussian RV X .
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In many cases, one is interested in the expected value of some derived
quantity of the random variable X . The following result makes this simple.

Theorem (Law of the unconscious statistician)

If X is a discrete random variable with PMF pX and g : E → R
’
then

E[g(X )] =
∑
x∈E

g(x)pX (x).

If X is a continuous RV with PDF fX and g : R → R continuous,

E[g(X )] =

∫ ∞

−∞
g(x)fX (x)dx .

If X is a continuous Rk -valued RV with PDF fX and g : Rk → Rk

continuous,

E[g(X )] =

∫
Rk

g(x)fX (x) dx .

In other words, it is enough to know the distribution of X in order to be
able to compute E[g(X )] for any continuous function g . It is not
necessary to solve the distribution of g(X ). 104



Example
A stick of length 1 is broken into two pieces at a uniformly random point
between 0 and 1. Let Y denote the length of the larger piece and we wish
to know E[Y ].

Let X ∼ U(0, 1) denote the position of the breaking point. Then
Y = max(X , 1− X ). By the law of the unconscious statistician, we obtain

E[Y ] =

∫ ∞

−∞
max(x , 1− x) 1(0,1)(x)dx =

∫ 1

0
max(x , 1− x)dx

=

∫ 1/2

0
(1− x)dx +

∫ 1

1/2
x dx =

1

2
− 1

8
+

1

2
− 1

8
=

3

4
.

Example (Moments)

An important class of maps g are given by g(x) = xk . Then

E[X k ] =

{∑
x∈E xkpX (x) if X is a discrete RV with target space E ⊂ R∫∞

−∞ xk fX (x) dx if X is a continuous, real-valued RV

is the kth moment of X . (If E[|X |k ] = ∞, the moment is said not to exist.)

If this expression is finite for k = 2, then X is called square-integrable.
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Example

Let a < b and assume that X ∼ U(a, b). Then

E[X 2] =

∫ ∞

−∞
x2

1(a,b)(x)

b − a
dx =

∫ b

a
x2

1

b − a
dx

=
b3 − a3

3(b − a)
=

a2 + ab + b2

3
.
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The probability of an event A of a probability space (Ω,P) can be written
as the expected value of the indicator function for set A.

Proposition

Let (Ω,P) be a probability space and let A ⊂ Ω be an event. Define the
random variable 1A : Ω → R,

1A(ω) =

{
1 if ω ∈ A,

0 if ω ̸∈ A.

Then
E[1A] = P(A).

Proof. Since X = 1A is a discrete random variable taking values in
E = {0, 1}, its PMF satisfies

pX (0) = P(A∁) = 1− P(A), pX (1) = P(A).

Hence
E[X ] = 0 · pX (0) + 1 · pX (1) = P(A).
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Properties of the expected value

Proposition

Let X be a real-valued random variable and a, b ∈ R. Then

E[aX + b] = aE[X ] + b.

Proof. For continuous random variables: E[aX + b] =
∫
R(ax + b)fX (x) dx

= a
∫
R xfX (x)dx︸ ︷︷ ︸

=E[X ]

+ b
∫
R fX (x)dx︸ ︷︷ ︸

=1

. The proof is similar for discrete RVs.

Theorem

1 If X ≥ 0 almost surely, then E[X ] ≥ 0. (Similarly, if X ≤ 0 almost
surely, then E[X ] ≤ 0.)

2 If X1, . . . ,Xn are real-valued random variables and α1, . . . , αn ∈ R,
then

E
[ n∑

i=1

αiXi

]
=

n∑
i=1

αiE[Xi ].

3 If X ≤ Y almost surely, then E[X ] ≤ E[Y ].
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Finally, the expected value of a product of independent random variables is
the product of the expected values.

Theorem

Let X1, . . . ,Xn be independent real-valued random variables. Then

E
[ n∏
i=1

Xi

]
=

n∏
i=1

E[Xi ].
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Variance

Definition

Let X be a real-valued random variable with mean µ = E[X ]. The
variance of X is defined as

Var(X ) = E[(X − µ)2].

Note that this quantity is well-defined provided that E[X 2] < ∞.
The standard deviation of X is defined as

σX =
√
Var(X ).

Note that Var(X ) =
∑

x∈E (x − µ)2pX (x) if X is a discrete random
variable with PMF pX , and Var(X ) =

∫∞
−∞(x − µ)2fX (x) dx is X if a

continuous random variable with PDF fX .

The variance Var(X ) is always nonnegative. While E[X ] represents
the average value of X , Var(X ) quantifies how far realizations of X
can spread away from this average value.
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Theorem (Variance translation)

Let µ = E[X ] denote the mean of random variable X . Then

Var(X ) = E[X 2]− µ2.

Proof.

Var(X ) = E[(X − µ)2] = E[X 2 − 2µX + µ2] = E[X 2]− 2µE[X ]︸︷︷︸
=µ

+ µ2

= E[X 2]− µ2.

Remark. If the random variable X satisfies E[X ] = 0, then we say that X
is centered. In this case, we simply have Var(X ) = E[X 2].
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Example

Let a < b and suppose that X ∼ U(a, b). We have already computed that

E[X ] =
a+ b

2
and E[X 2] =

a2 + ab + b2

3
.

Therefore

Var(X ) =
a2 + ab + b2

3
− (a+ b)2

4
=

(b − a)2

12
,

and the standard deviation σX = b−a
2
√
3
. Hence, the larger the interval [a, b]

for the uniform distribution, the larger the standard deviation.

112



Example

Let µ ∈ R and σ > 0 and suppose that X ∼ N (µ, σ2). Then

Var(X ) =

∫ ∞

−∞
(x − µ)2

1√
2πσ2

e−
1

2σ2 (x−µ)2 dx .

Carrying out the change of variables y = x−µ
σ , where dx = σ dy , we get

Var(X ) =
σ2

√
2π

∫ ∞

−∞
y2e−

1
2
y2
dy .

Since ∫ ∞

−∞
y2e−

1
2
y2
dy =

√
2π (3)

(see the following slide for an argument), we conclude that

Var(X ) = σ2.

This justifies calling the parameter σ2 the variance of the Gaussian RV X .
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Intermezzo – computing the value of the integral (3)

Let a > 0 be a parameter and consider the following parametric integral:

I (a) : =

∫ ∞

−∞
y2e−

1
2
ay2

dy = −2

∫ ∞

−∞

∂

∂a
e−

1
2
ay2

dy

(∗)
= −2

d

da

∫ ∞

−∞
e−

1
2
ay2

dy .

Applying 1√
2πσ2

∫∞
−∞ e−

1
2σ2 x

2

dx = 1 ⇔
∫∞
−∞ e−

1
2σ2 x

2

dx =
√
2πσ

with σ = 1√
a
yields

I (a) = −2
d

da

√
2π√
a

=

√
2π

a3/2
.

The value of the integral (3) corresponds to I (1) =
√
2π.

This technique is known as the “Leibniz integral rule”, or “Feynman’s
differentiation under the integral sign”. The difficult part is verifying that
the order of integration and differentiation can be switched in (∗). This is
allowed, e.g., when the integrand f (a, y) is continuously differentiable.
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Theorem

1 If X is a real-valued random variable and a, b ∈ R, then

Var(aX + b) = a2Var(X ).

2 If X1, . . . ,Xn are independent real-valued random variables and
a1, . . . , an ∈ R, then

Var

( n∑
i=1

aiXi

)
=

n∑
i=1

a2i Var(Xi ).
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Covariance and correlation

Definition

Let X and Y be two real-valued random variables with means µX = E[X ]
and µY = E[Y ]. Then the covariance of X and Y is

Cov(X ,Y ) = E[(X − µX )(Y − µY )].

If σ2
X = Var(X ) and σ2

Y = Var(Y ) are the variances, then the correlation
of X and Y is

ρX ,Y =
Cov(X ,Y )

σXσY
.

Remark. The correlation always satisfies

−1 ≤ ρX ,Y ≤ 1

as a consequence of the Cauchy–Schwarz inequality.
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Theorem

Let X and Y be two real-valued random variables with means
µX = E[X ] and µY = E[Y ]. Then

Cov(X ,Y ) = E[XY ]− µXµY .

Proof.

Cov(X ,Y ) = E[(X − µX )(Y − µY )]

= E[XY − µYX − µXY + µXµY ]

= E[XY ]− µYE[X ]︸︷︷︸
=µX

− µXE[Y ]︸ ︷︷ ︸
=µY

+ µXµY

= E[XY ]− µXµY .

The random variables X and Y are said to be uncorrelated if
Cov(X ,Y ) = 0.
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Theorem

If X and Y are independent, then X and Y are uncorrelated.

Proof. Since E[XY ] = E[X ]E[Y ] for independent X and Y , there holds

Cov(X ,Y ) = E[XY ]− µXµY = E[X ]︸︷︷︸
=µX

E[Y ]︸ ︷︷ ︸
=µY

− µXµY = 0.

Note that, in general, X ,Y are uncorrelated ̸⇒ X ,Y are independent!
(However, this converse statement does hold for jointly Gaussian
distributions – we will formulate a special case of this in a moment.)

Theorem

Var(X + Y ) = Var(X ) + 2Cov(X ,Y ) +Var(Y ),

Var(X − Y ) = Var(X )− 2Cov(X ,Y ) +Var(Y ).
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Joint random variables

Definition

Let X = (X1, . . . ,Xd), d ∈ N, be a joint random variable. We define the
mean µ = (µi )

d
i=1 ∈ Rd and the covariance matrix C = (Ci ,j)

d
i ,j=1 ∈ Rd×d

of X by

µi = E[Xi ] for i = 1, . . . , d ,

Ci ,j = Cov(Xi ,Xj) for i , j = 1, . . . , d .

Example

Let X = (X1, . . . ,Xd) be a d-dimensional Gaussian random variable
X ∼ N (µ,C ), where µ = (µi )

d
i=1 ∈ Rd and C = (Ci ,j)

n
i ,j=1 ∈ Rd×d is a

symmetric, positive definite matrix. Then

µi = E[Xi ] for i = 1, . . . , d ,

Ci ,j = Cov(Xi ,Xj) for i , j = 1, . . . , d ,

meaning that µ is the mean of X and C is the covariance matrix of X . 119



Corollary (Independence of jointly Gaussian random variables)

Let X = (X1, . . . ,Xd) ∼ N (µ,C ) for µ = (µj)
d
j=1 ∈ Rd and symmetric,

positive definite C = (Ci ,j)
d
i ,j=1 ∈ Rd×d . Then X1, . . . ,Xd are independent

if and only if C is a diagonal matrix, i.e., Ci ,j = 0 whenever i ̸= j .

Proof. “⇒” If X1, . . . ,Xd are independent, then Xi and Xj are
independent for all i ̸= j . Independent random variables are uncorrelated,
so the covariance

Ci ,j = Cov(Xi ,Xj) = 0 whenever i ̸= j .

“⇐” Let C = diag(σ2
1, . . . , σ

2
d). Then the marginal distribution of Xj is

Gaussian, with PDF fXj
(x) = 1√

2πσ2
j

e
− 1

2σ2
j

(x−µj )
2

. Hence,

fX (x) =
1

(2π)d/2
√
detC

e−
1
2
(x−µ)TC−1(x−µ) =

d∏
j=1

1√
2πσ2

j

e
− 1

2σ2
j

(xj−µj )
2

,

i.e., fX (x) = fX1(x1) · · · fXd
(xd), meaning that X1, . . . ,Xd are

independent.
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Sample mean and sample variance

In practice, the random variables are not observed directly: we observe realizations, or a
sample, thereof. It is useful to define notions of sample mean and sample variance,
which are quantities that can be computed directly from the observed realizations.

Definition
Let X1, . . . ,Xn be real-valued random variables†. The sample mean of is defined as the
arithmetic average

X n =
1

n

n∑
i=1

Xi .

The sample variance is defined as

s2n =
1

n − 1

n∑
i=1

(Xi − X n)
2,

and the sample standard deviation is defined as sn =
√
s2n .

Remark. Note that the sample mean X n and the sample variance s2n are themselves
random variables. As we shall see, if X1, . . . ,Xn are independent and identically
distributed provided some integrability conditions are satisfied, then there holds for large
n that

X n ≈ E[X1] and s2n ≈ Var(X1).

†One may think of X1, . . . ,Xn as representing a sample from some random variable X .
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Sample covariance of vector-valued random variables

If X1, . . . ,Xn are vector-valued random variables taking values in Rd , then
their sample covariance matrix Q = (Qj ,k)

n
j ,k=1 is defined as

Qj ,k =
1

n − 1

n∑
i=1

(Xi ,j − µj)(Xi ,k − µk), j , k = 1, . . . , d ,

where µ = X = (X 1, . . . ,X d) is the mean.
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Inequalities and limits
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Random sample / i.i.d. random variables

Let X1, . . . ,Xn be random variables. We call X1, . . . ,Xn a random sample
if the random variables are independent and identically distributed (i.i.d.).

Independent means that X1, . . . ,Xn are mutually independent random
variables.
Identically distributed means that X1, . . . ,Xn all have the same law.

Often, we specify the law (probability distribution) of a random variable X
and say that X1, . . . ,Xn are i.i.d. copies of X .

Example

Let X ∼ N (0, 1). Suppose that X1, . . . ,Xn are i.i.d. copies of X . This
means that

Xi ∼ N (0, 1) for all i = 1, . . . , n (“identically distributed”).

Xi are mutually independent:

pX1,...,Xn(x1, . . . , xn) = pX (x1) · · · pX (xn), where pX (x) =
1√
2π
e−

1
2
x2 is

the PDF of X ∼ N (0, 1) (“independence”).

In practice, the terms “random sample” and “i.i.d.” are interchangeable.
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We begin by deriving bounds on the probabilities that a random
variable X stays away from its mean by a certain distance t > 0:

P(|X − E[X ]| > t).

Then we discuss two results, which lie at the heart of statistical
inference: the Law of Large Numbers (LLN) and the Central Limit
Theorem (CLT). The LLN states that, if X1,X2, . . . are i.i.d. random
variables with finite mean, then

1

n

n∑
i=1

Xi
n→∞−−−→ E[X1]

where the convergence happens in a sense to be specified. The CLT
states that, if the i.i.d. random variables X1,X2, . . . have finite
variance, then this convergence happens at rate O(n−1/2).
Together, these two results can be used to obtain approximate bounds
on the probability that the empirical sum remains away from its mean:

P(|X n − E[X ]| > t√
n
)

for fixed t > 0 and n large.
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Inequalities for expected values

Theorem (Cauchy–Schwarz inequality)

Let X and Y be two square-integrable, real-valued random variables.†

Then

E[XY ] ≤
√

E[X 2]
√

E[Y 2].

Proof. If X = 0 or Y = 0 almost surely, then the claim is trivial. Suppose
that X ̸= 0 and Y ̸= 0 almost surely. Let t ∈ R and note that

0 ≤ E[(X + tY )2] = E[X 2] + 2tE[XY ] + t2E[Y 2]

is a second degree polynomial with respect to t which has at most one real
root. Therefore its discriminant must be nonpositive:

discriminant ≤ 0 ⇔ (2E[XY ])2 − 4E[X 2]E[Y 2] ≤ 0

⇔ E[XY ]2 ≤ E[X 2]E[Y 2].

†Recall that square-integrability implies that E[X 2] and E[Y 2] are well-defined and
finite.
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Let X be a real-valued random variable. A fundamental problem in
statistics is to be able to bound from above the probability P(X > t) for
fixed t > 0. Bounds of the following kind are known as “tail bounds”.

Theorem (Markov’s inequality)

If X is an integrable†, non-negative real-valued random variable and t > 0,
then

P(X > t) ≤ E[X ]

t
.

Proof. Let us consider the case of X being a continuous RV (the discrete
case is similar). There holds

P(X > t) =

∫ ∞

t
fX (x)dx

(∗)
≤ 1

t

∫ ∞

t
xfX (x) dx ≤ 1

t

∫ ∞

0
xfX (x) dx ,

where (∗) follows from x ≥ t ⇔ 1 ≤ x
t . Since we assumed that X is

non-negative, fX (x) = 0 for x < 0, and thus

P(X > t) ≤ 1

t

∫ ∞

0
xfX (x)dx =

1

t

∫ ∞

−∞
xfX (x) dx =

E[X ]

t
.

†Recall that this means E[|X |] < ∞.
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If X is a square-integrable random variable, then we can bound the
probability that X is at least distance t > 0 away from the average.

Theorem (Chebyshev’s inequality)

Let X be a square-integrable random variable. For all t > 0,

P(|X − E[X ]| > t) ≤ Var(X )

t2
.

Proof. By Markov’s inequality,

P(|X − E[X ]| > t) = P(|X − E[X ]|2 > t2) ≤ E[|X − E[X ]|2]
t2

=
Var(X )

t2
,

where we applied Markov’s inequality P(Y > t ′) ≤ E[Y ]
t′ to the

non-negative random variable Y = |X − E[X ]|2 and t ′ = t2.
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Let σ =
√
Var(X ). It is sometimes useful to rewrite the Chebyshev

inequality in the form (set t = kσ)

P(|X − E[X ]| > kσ) ≤ 1

k2
.

If k = 2, then 1− 1
k2 = 75%.

If k = 3, then 1− 1
k3 ≈ 88.9%.

In practice, expected value and variance must be estimated. Chebyshev’s
inequality can be used to evaluate the rareness of a single observation.
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The Chebyshev inequality can be useful in situations where we only know
the mean and variance of X . On the other hand, it is quite a rough bound.
If we know the distribution of X , the probability P(|X − E[X ]| > t) can be
computed more precisely, typically leading to much better bounds.

Example

Let X be a random variable with mean E[X ] = 0 and variance
Var(X ) = 1. Suppose that we wish to estimate P(|X | > 2).

If the mean and variance is all we know about the random variable, then
Chebyshev’s inequality gives a very rough bound:

P(|X | > 2) ≤ 1

22
=

1

4
= 0.25.

If X is a Gaussian random variable, i.e., in this case we would have
X ∼ N (0, 1), then we know precisely

P(|X | > 2) = 2Φ(−2) = 0.04550 . . .
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If X is a Gaussian random variable, then the probabilities P(|X | > t),
t > 0, can be computed numerically using the CDF. Unfortunately, the
CDF does not have a closed form expression. Sometimes the following
bound is useful.

Theorem (Mill’s inequality)

Let X ∼ N (0, 1). Then for all t > 0,

P(|X | > t) ≤
√

2

π

exp(−1
2 t

2)

t
.

Proof. Let X ∼ N (0, 1) and t > 0. Then

P(|X | > t) =

∫ −t

−∞

1√
2π

e−
s2

2 ds +

∫ ∞

t

1√
2π

e−
s2

2 ds

= 2

∫ ∞

t

1√
2π

e−
s2

2 ds.

It is enough to bound this last integral.
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Arguing similarly as in the proof of Markov’s inequality,∫ ∞

t

1√
2π

e−
s2

2 ds ≤
∫ ∞

t

s

t

1√
2π

e−
s2

2 ds =
1

t
√
2π

∫ ∞

t
s e−

s2

2 ds.

For this integral, we have∫ ∞

t
s e−

s2

2 ds = −
[
e−

s2

2

]∣∣∣∣s=∞

s=t

= e−
t2

2 ,

which yields the assertion.

133



The previous result can be generalized to Gaussian random variables with
arbitrary variance via the whitening transform.

Theorem

Let µ ∈ R, σ > 0, and let X ∼ N (µ, σ2). Then for all t > 0,

P(|X − E[X ]| > t) ≤
√

2σ2

π

e−
t2

2σ2

t
.

Proof. By the whitening transform, the random variable
Y = 1

σ (X − µ) ∼ N (0, 1), so

P(|X − µ| > t) = P(|Y | > σ−1t),

and the result follows from Mill’s inequality with t replaced by σ−1t.

134



Limit theorems

We will state two fundamental limit theorems for sums of i.i.d. random
variables. To do so, we will first need to define what we mean by
convergence of a sequence of random variables.

Definition (Convergence in probability)

Let X be a real-valued random variable and let (Xn)n≥0 be a sequence of
real-valued random variables. We say that Xn converges to X in

probability, and write Xn
P→ X , if for any ε > 0, there holds

lim
n→∞

P(|Xn − X | > ε) = 0.

In other words, Xn converges to X in probability if the probability that
Xn is separated from X by any (even very small) non-zero distance
vanishes as n grows.
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Another, weaker form of convergence involves the CDFs FXn and FX of the
RVs Xn and X , respectively.

Definition

Let X be a real-valued random variable and let (Xn)n≥0 be a sequence of
real-valued random variables. We say that Xn converges to X in

distribution (or in law), and write Xn
d→ X , if for any x ∈ R where FX is

continuous, there holds

lim
n→∞

FXn(x) = FX (x).

If X is a continuous random variable, then FX is everywhere continuous, and the
above condition simply means that FXn converges pointwise to FX .

If X is discrete, then FX will be discontinuous at every point x such that
P(X = x) > 0. The above definition says that, when checking whether
Xn converges in distribution to X , we do not need to look at these points of
discontinuities.

That Xn converges in distribution to X means that P(Xn ≤ x)
n→∞−−−→ P(X ≤ x) for

all points x where FX does not jump. It is only a statement about the probability
distributions of Xn and X . In particular, it does not say at all that Xn is close to X
when n is large.
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Proposition

1 If Xn and X are square-integrable and

E[|Xn − X |2] n→∞−−−→ 0, (1)

then Xn
P→ X . The converse is false in general.

2 If Xn converges to X in probability, then Xn also converges to X in
law. The converse is false in general.

3 If X is constant, i.e., there exists a ∈ R such that X = a almost
surely, then

Xn
P→ X ⇔ Xn

d→ X .

The convergence (1) is called “convergence in quadratic mean”, and

written Xn
q.m.→ X . By the above proposition, convergence in quadratic

mean is strictly stronger than convergence in probability, and convergence
in probability is strictly stronger than convergence in distribution.
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.Proof. We only prove the first claim. Assume that Xn
q.m.→ X . Then for all

ε > 0,

P(|Xn − X | > ε) = P(|Xn − X |2 > ε2) ≤ E[|Xn − X |2]
ε2

,

where the last inequality is a consequence of Markov’s inequality. By
assumption, E[|Xn − X |2] n→∞−−−→ 0. Hence, by the above inequality, we get

P(|Xn − X | > ε)
n→∞−−−→ 0. This proves that Xn

P→ X . That the converse
implication is false in general can be shown by counterexample (left as an
exercise).
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The Law of Large Numbers (LLN)

Before stating the LLN, we need a technical, but intuitive, lemma.

Lemma

Let X and Y be real-valued random variables which are equal in law.
Then, for any real-valued map such that f (X ) is integrable, we have
E[f (X )] = E[f (Y )].

Proof. Let us prove the claim for discrete RVs (the continuous case is
similar just by replacing PMFs with PDFs and sums by integrals). Let X
and Y be discrete. Then pX = pY , so for all integrable functions f , by the
law of the unconscious statistician, there holds

E[f (X )] =
∑
x∈E

pX (x)f (x) =
∑
y∈E

pY (y)f (y) = E[f (Y )].

The above result implies also that if X and Y are equal in law, then

E[X ] = E[Y ], E[X 2] = E[Y 2], Var(X ) = Var(Y ),

provided that these quantities are well-defined.
139



Let (Xn)n≥1 be a sequence of i.i.d. copies of a real-valued random variable
X . By this we mean that (Xn)n≥1 is a sequence of i.i.d. real-valued
random variables having the same law as X . For all n ≥ 1, let X n denote
the sample mean of X1, . . . ,Xn:

X n =
1

n

n∑
i=1

Xi .

If Xi are integrable, then by linearity of the expected value, there holds

E[X n] =
1

n

n∑
i=1

E[Xi ] = E[X ].

Heuristically, we expect X n to converge to E[X ] when n → ∞. This is
made precise by the following theorem.

Theorem (Weak Law of Large Numbers)

Let (Xi )i≥1 be a sequence of i.i.d. copies of a real-valued random variable
X . If Xi are integrable, then

X n =
1

n

n∑
i=1

Xi
P→ E[X ].
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.Proof. For simplicity, we provide a proof in the special case where the Xn

are also square-integrable. Then

E[(X n − E[X ])2] = E[(X n − E[X n])
2] = Var(X n).

Now

Var(X n) = Var

(
1

n

n∑
i=1

Xi

)
=

n∑
i=1

1

n2
Var(Xi ),

where the second equality holds since the Xi are independent. Now, by the
technical lemma we proved prior to this result, Var(Xi ) = Var(X ) for all i ,
so we get

Var(X n) =
Var(X )

n
n→∞−−−→ 0.

Hence E[(X n − E[X ])2]
n→∞−−−→ 0, therefore X n converges to E[X ] in

quadratic mean, and hence also in probability.
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A stronger statement holds with the same assumptions.

Theorem (Strong Law of Large Numbers)

Let (Xi )i≥1 be a sequence of i.i.d. copies of a real-valued random variable
X . If Xi are integrable, then

P
(
{ω ∈ Ω | X n(ω)

n→∞−−−→ E[X ]}) = 1.

That is, X n → E[X ] almost surely.

Remark. The significance of the LLN is that it provides a concrete way of
approximating the value of E[X ] by sampling values of X a large number
of times and taking the sample average.
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Example

Let X1, . . . ,Xn ∼ Ber(p) be independent for some p ∈ (0, 1). Then

X n =
1

n

n∑
i=1

Xi
P→ E[X1] = p.

In other words, if we keep throwing a coin with parameter p a large number
of times, the rate of success will converge in probability to p. If the coin is
fair, i.e., p = 1/2, then the rate of success approaches 1/2 for n large.

Example

Let X1, . . . ,Xn ∼ N (µ, σ2) be independent for some µ ∈ R and σ > 0.
Then

X n =
1

n

n∑
i=1

Xi
P→ E[X1] = µ.

The LLN implies that X n = E[X1] + εn, where εn is some remainder

satisfying εn
P→ 0. The obvious question to consider is to ask, how fast

does εn converge to 0?
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The Central Limit Theorem

Let X1,X2, . . . be a sequence i.i.d. real-valued random variables. We
assume that the Xi are square-integrable and denote by µ and σ2 their
mean and variance, respectively. Thus, for all i ,

E[Xi ] = µ, Var(Xi ) = σ2.

As we saw in the previous section,

E[X n] = µ, Var(X n) =
σ2

n
.

We can perform an affine transformation on Xn in order to set its
expectation and variance to 0 and 1, respectively. This can be achieved as
follows:

1 We center it by subtracting its mean E[X n],

2 We normalize it by dividing it by its standard deviation
√

Var(X n).
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In other words, we set

Yn =
1√

Var(X n)
(X n − E[X n]) =

√
n

σ2
(X n − µ).

With this procedure, we obtain a random variable Yn which is centered
and normalized, i.e., which satisfies

E[Yn] = 0, Var(Yn) = 1.

The following theorem shows that, for n large, the distribution of Yn is
actually close to N (0, 1).

Theorem (Central Limit Theorem)

Let X1,X2, . . . be a sequence of i.i.d. real-valued, square-integrable random
variables with mean µ and variance σ2. Then√

n

σ2
(X n − µ)

d→ N (0, 1).
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.Remark. The CLT implies that, for all a ∈ R,

P
(√

n

σ2
(X n − µ) ≤ a

)
n→∞−−−→

∫ a

−∞

1√
2π

e−
1
2
x2 dx .

Remark. One may loosely formulate the CLT as saying that√
n

σ2
(X n − µ)

d
≈ N (0, 1)

for n large. In other words,

X n
d
≈ µ+

√
σ2

n
Z ,

where Z ∼ N (0, 1). Thus, by the coloring transform,

X n
d
≈ N

(
µ,

σ2

n

)
.
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Example
Let X1, . . . ,Xn ∼ Ber(p) be independent for some p ∈ (0, 1). We know
from the LLN that

X n =
1

n

n∑
i=1

Xi
P→ E[X ] = p.

Since Var(X ) = p(1− p), the CLT further implies that√
n

p(1− p)
(X n − p)

d→ N (0, 1),

or, loosely speaking,

X n
d
≈ N

(
p,

p(1− p)

n

)
for n large.
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Example (Continued)
By approximating X n using the Gaussian distribution, we can make
inferences about the spread of X n. For example, if p = 1

2 and n = 104, we
can use the Gaussian approximation to derive a confidence interval I such
that P(X n ∈ I) ≈ 0.95. Since n is large, we can use the Gaussian
approximation

X n ≈ µ+ σnZ , Z ∼ N (0, 1),

where µ = p and σn =
√

p(1−p)
n . We wish to find a > 0 such that∫ µ+a

µ−a

1√
2πσ2

n

e
− 1

2σ2
n
(x−µ)2

dx = 0.95.

Using the change of variables z = x−µ
σn

, where dx = σn dz , we obtain∫ a/σn

−a/σn

1√
2π

e−
1
2
z2 dz = 0.95 ⇔ 2

∫ a/σn

0

1√
2π

e−
1
2
z2 dz = 0.95

⇔
∫ a/σn

−∞

1√
2π

e−
1
2
z2 dz =

1

2
+

0.95

2
.
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Example (Continued)

Using the CDF Φ(t) =
∫ t
−∞

1√
2π
e−

1
2
z2 dz , we obtain

Φ

(
a

σn

)
=

1

2
+

0.95

2
⇔ a = σn Φ

−1

(
1

2
+

0.95

2

)
.

Plugging in the values µ = p = 1
2 and σn =

√
p(1−p)

n = 1
200 yields the

interval
I = (µ− a, µ+ a) = (0.4902, 0.5098).
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Statistical testing
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Statistical research is collecting, organizing, analyzing, and interpreting
data.

Statistical models are mathematical and are based on probability theory.

In probability theory, if we know the law of a random variable, then
we are easily able to draw an i.i.d. sample from the distribution,
compute the probabilities of different events, compute the expected
value, variance, higher moments, etc.

In statistics, we are usually given a finite sample, and we are
interested in making inferences about the distribution and population
parameters such as the expected value, variance, higher moments,
etc. We are also interested in assessing the uncertainty of the
population parameters (confidence interval).

– If the data (approximately) follows a distribution which we are able to
identify, we can make use of the properties of that distribution from
probability theory to assess the uncertainty (parametric tests).

– It is also important to discuss statistical methods for data which does
not clearly follow a known distribution (non-parametric tests).

Correlations between variables, regression models, . . .
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Population and sample

In statistical analysis, a population is a collection of all the people,
items or events about which one wants to make inferences. (For
example, university students in Germany.)

In statistical analysis, a sample is a subset of the population (i.e., the
people, items or events) that one collects and analyzes to make
inferences. (For example, 200 randomly chosen university students.)

In statistical analysis, an observation is an element of the sample.
(For example Helen, a student at FU Berlin.)
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In statistical research, data consists of the values of selected variables that
describe the observations. The data points (the values of the selected
variables) can also be called observations.

Examples:

temperature, height, blood pressure (continuous quantitative
variables)

gender, eye color (categorical qualitative variables)

clothing size (s,m,l) (ordinal quantitative variable)
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Statistical research projects

Statistical research projects can usually be conducted in the following
steps:

1 Setting of the research topic and the relevant research questions.
Research questions should be defined precisely.

2 Defining of the population and interesting variables.
3 Planning of the sample collection. Collected sample must represent

the population!
4 Collection of the sample.
5 Organization of the sample.
6 Description of the variables and the sample, descriptive statistics and

visualization.
7 Inference based on statistical analysis. Model assumptions have to be

tested separately!
8 Critical evaluation of the analysis. Possible errors and weaknesses

have to be reported.
9 Communication of the research and findings.
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Different statistical studies

Statistical research projects can be conducted in several different ways.
Research questions, population, goals, and resources all have an effect on
the choice of the methods.

In observational research, observations are made without changing
any existing conditions. For example, temperature is measured or the
lung cancer risk of smokers is compared to the lung cancer risk on
non-smokers.

In controlled experiments, the effect of one variable to another is
examined by controlling existing conditions. For example, the effect of
allergy medicine is compared to the effect of placebo by randomizing
patients to two groups.

156



Different statistical studies

In simulations, mathematical modeling is used to mimic natural
conditions or processes. For example, the spread of the Ebola virus is
predicted by applying computer simulations or the safety of a new car
model is tested using crash test dummies.

In surveys, the goal is to find a representative sample of the
population and get answers to some particular questions. For
example, opinion polls are used in order to predict election results, or
health related questionnaires are used to assess the health of
university students.
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Descriptive statistics
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Descriptive statistics and inference

Descriptive statistics provide a concise summary of the data. The
summary may either be numerical or graphical or both. Descriptive
statistics may consist of, for example, numerical tables, average values,
deviations, summaries and visualizations.

Statistical inference draws conclusions about the population using data.
Statistical inference is based on mathematical modeling and probabilities.
Inferential statistical analysis includes, for example, estimation and
statistical testing.
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Visualization

Discrete variable: bar plot, pie chart

Continuous variable: box plot, histogram

Bivariate: scatter plot
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Bar plot
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Pie chart
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Histogram
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Box plot
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Box plot

In a box plot (sometimes also called a “box-and-whisker plot”), the box
contains 50% of the data. The line in the middle is the sample median.

Let Q1 and Q3 denote the 25 and 75 sample percentiles. By default, the
lower whisker is at the lowest data point above Q1 − 1.5(Q3 −Q1) and the
upper whisker is at the highest data point below Q3 + 1.5(Q3 − Q1).

Outlying points are marked using circles.
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Scatter plot
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Location

Mean, median, and mode are commonly used measures of location.

Let x1, . . . , xn be i.i.d. observations of a random variable x . Then the
sample mean

x = xn =
1

n

n∑
i=1

xi

estimates the expected value E[x ] = µ of the variable x .

The population median mx of a random variable x is the value with the
property

P(x < mx) ≤
1

2
and P(x ≤ mx) ≥

1

2
.

Let y1 < y2 < · · · < yn be the ordered values of the data. The sample
median is the middle value of the ordered values. If the number of
observations is even, then the sample median is the average of the two
middle elements. The sample median estimates the population median.

The sample mode is the value x1, . . . , xn that has the highest frequency.
Mode estimates a value of a qualitative variable or discrete quantitative
variable that has the highest probability.
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Percentiles

Let x1, . . . , xn be i.i.d. observations of a random variable x . Let
y1 < y2 < · · · < yn be the ordered values of the data. Then the sample β
percentile, 0 < β < 100, is the data point yk , where k is the closest
integer that is larger than or equal to β · (n/100). The population β
percentile of a random variable x is the value βx with the property

P(x < βx) ≤
β

100
and P(x ≤ βx) ≥

β

100
.
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Numerical example

Consider the sample
{3, 1, 2, 3, 7, 8, 3, 4, 4, 6}.

The sample mean is

x =
1

10
· (3 + 1 + 2 + 3 + 7 + 8 + 3 + 4 + 4 + 6) =

41

10
= 4.1.

The sample median is

m̂x =
3 + 4

2
=

7

2
= 3.5.

The sample mode is 3.
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Deviation/scatter

Variance, standard deviation, median absolute deviation (MAD), and
range are commonly used measures of deviation/scatter.

Let x1, . . . , xn be i.i.d. observations of a random variable x . The sample
variance

s2 = s2n =
1

n − 1

n∑
i=1

(xi − x)2

estimates the population variance E[(x − E[x ])2] = σ2.

The sample standard deviation is the square root of the sample variance:

s = sn =
√

s2n .
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Chebyshev’s inequality

Let x be a random variable with finite expected value E[x ] = µ and finite
variance E[(x − E[x ])2] = σ2. Let k > 1. Then

P(|x − µ| ≥ kσ) ≤ 1

k2
.

If k = 2, then 1− 1
k2 = 75%.

If k = 3, then 1− 1
k3 ≈ 88.9%.

In practice, the expected value and variance must be estimated.
Chebyshev’s inequality can be used to evaluate the outlyingness/rareness
of a single observation:

If an observation lies further away than two times the standard
deviation of the sample mean, it is considered rare.

If an observation lies further away than three times the standard
deviation of the sample mean, it is considered very rare.

These definitions are based on Chebyshev’s inequality.
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Rare observation under normality

If it is known that observations follow a Gaussian distribution, then the
probability for a data point lying within one standard deviation of the
sample mean is ≈ 68%. The probability for a data point lying within two
standard deviations of the sample mean is ≈ 95% and for three standard
deviations it is ≈ 99.7%.
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Median absolute deviation and range

Let x1, . . . , xn be i.i.d. observations of a random variable x and let mx be
the sample median. Then the median absolute deviation (MAD) is the
median of the sample |x1 −mx |, |x2 −mx |,. . . ,|xn −mx |.†

Let Maxx be the largest data point and Minx the smallest data point.
Then the sample range is the interval [Minx ,Maxx ] and the length of the
range is Maxx −Minx .

†To make the MAD comparable with the standard deviation, one often multiplies the
MAD with a scale factor k depending on the distribution. For example, for normally
distributed data, k = 1

Φ−1(3/4)
≈ 1.4826. (In fact, this is the default scaling used in R,

but for example the scipy.stats.median abs deviation function uses k = 1 by
default.)
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Numerical example

Consider the sample
{3, 1, 2, 3, 7, 8, 3, 4, 4, 6}.

The sample mean was calculated above and it was 4.1. The sample
variance is

s2n =
1

n − 1

n∑
i=1

(xi − x)2 =
1

9

10∑
i=1

(xi − 4.1)2 = 4.9888 . . .

and the sample standard deviation is sn =
√
s2n =

√
4.9888 . . . = 2.233 . . .

The sample median was calculated above and it was 3.5. Mean absolute
deviation:

MAD = median{|3− 3.5|, |1− 3.5|, |2− 3.5|, |3− 3.5|, |7− 3.5|,
|8− 3.5|, |3− 3.5|, |4− 3.5|, |4− 3.5|, |6− 3.5|}

= 1.

The range can be calculated from the minimum and maximum values of
the sample:

[min(x),max(x)] = [1, 8].

The length of the range is 8− 1 = 7. 174



Skewness

Let x1, . . . , xn be i.i.d. observations of a random variable x . Then the
sample skewness coefficient is

v =
m3

s3n
,

where

m3 =
1

n

n∑
i=1

(xi − x)3.

Sample skewness coefficient estimates the population value

E
[(

x − µ

σ

)3]
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Skewness

If the skewness coefficient v > 0, then the distribution is skewed to
the right (positively skewed distribution).

If the skewness coefficient v < 0, then the distribution is skewed to
the left (negatively skewed distribution).

Usually†, a positively (right) skewed distribution has a long right tail and
the mass of the distribution is concentrated on the left. A negatively (left)
skewed distribution has a long left tail and the mass of the distribution is
concentrated on the right.
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A left-skewed distribution

†Multimodal distributions or asymmetric distributions which have one long tail but
the other tail is fat can break this rule of thumb.
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Skewness

Alternative skewness coefficient v2: Let x1, . . . , xn be i.i.d. observations of
a random variable x . Then also

v2 =
x −mx

sn

is a measure of skewness. (Here, mx denotes the sample median.)

For symmetric distributions, the sample mean and sample median estimate
the same population value.
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Kurtosis

Let x1, . . . , xn be i.i.d. observations of a random variable x . Then the
sample kurtosis coefficient is

k =
m4

s4n
− 3,

where

m4 =
1

n

n∑
i=1

(xi − x)4.

The sample kurtosis coefficient estimates the population value

E
[(

x − µ

σ

)4

− 3

]
.
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Kurtosis

A random variable with normal distribution has kurtosis value 0. If the
kurtosis value is k > 0, then the distribution is more peaked than normal
distribution. If k < 0, then the distribution is less peaked than normal
distribution.

A distribution with large kurtosis value (leptokurtic) typically has a sharp
peak and thick tails, while less peaked distributions (platykurtic) have
round peaks and thin tails.
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Linear dependence and correlation

Let (x1, y1), . . . , (xn, yn) be i.i.d. observations of a bivariate random
variable (x , y). Then the sample covariance

sxy =
1

n − 1

n∑
i=1

(xi − x)(yi − y)

estimates the population covariance E[(x − E[x ])(y − E[y ])] = σxy , and

ρ̂(x , y) =
sxy
sxsy

=

∑n
i=1(xi − x)(yi − y)√∑n

i=1(xi − x)2
∑n

i=1(yi − y)2

estimates the Pearson correlation coefficient

ρ(x , y) =
σxy
σxσy

.

The Pearson correlation coefficient measures numerically the linear
dependence of two random variables. The coefficient is always in the
interval [−1, 1].

180



Confidence interval
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Confidence interval

In statistics, we often have a sample and we estimate the value of some
parameter using the observations. For example, we estimate the expected
value by calculating the sample mean or we estimate the population
skewness coefficient by calculating the corresponding sample estimate.
The simple estimate, however, still gives us quite little information. We
cannot directly evaluate how good our estimate is. It would be nice to
know a bit more. That is why an estimate of a parameter is often
presented with a corresponding confidence interval.
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Confidence interval

A confidence interval gives an estimated range of values which is likely to
include an unknown population parameter, the estimated range being
calculated from a given set of sample data. A confidence level for a
confidence interval determines the probability that the confidence interval
produced will contain the true parameter value.
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Confidence interval

Let x be a random variable from a distribution Px . Let θ be a parameter
of the distribution Px and let θ̂ be an estimate of the parameter. (For
example, θ could be the population mean, population standard deviation,
population median, etc., and θ̂ would be the corresponding sample mean,
sample standard deviation, sample median, etc.)

We say that an interval (l , u) is a confidence interval for the estimate θ̂ at
confidence level (1− α) if the following holds: before the sample is
generated, the random range (l , u) corresponding to θ̂ includes the true
parameter value θ with probability p = 1− α.

After the sample has been generated and the estimate θ̂ and the
corresponding confidence interval (l , u) has been calculated, the
confidence interval either includes or does not include the true parameter
value θ. If 100 samples are generated, the corresponding 100 estimates θ̂
and the corresponding 100 confidence intervals are calculated, then
≈ (1− α) · 100 of the confidence intervals include the true parameter
value and ≈ α · 100 do not include it.

184



Bootstrap confidence intervals

Let {x1, . . . , xn} denote i.i.d. observations from the distribution Px . Let θ
be a parameter of the distribution Px . (For example, θ could be the
population mean, population standard deviation, population median, etc.)
Let θ̂ be an estimate of the parameter θ calculated from the sample
{x1, . . . , xn}. (For example, θ̂ would be the sample mean, sample standard
deviation, sample median, etc., corresponding to θ.)

An estimate for the confidence interval (l , u) can now be obtained by
resampling as follows:

1. Select n data points randomly with replacement from the original
sample x1, . . . , xn. Each data point can be selected once, multiple
times, or not at all. (Note that the sample size of the new sample is
the same as the sample size of the original sample.)

2. Calculate a new estimate for the parameter θ from the new sample
formed in the previous step.

(Continued on the next slide.)
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3. Repeat the steps 1–2 k times and order the obtained estimates from
the smallest to the largest. Include also the original estimate θ̂.

4. Calculate an estimate for a (1− α) · 100% confidence interval by
selecting a lower bound l that is smaller than (or equal to)
(1− α

2 ) · 100% of the ordered estimates and an upper bound u that is
larger than (or equal to) (1− α

2 ) · 100% of the estimates.

Example

Assume that we compute 999 bootstrap estimates. Then, in total, there
are 1000 estimates – the original one and the 999 new ones. Now, an
estimated 90% confidence interval (l , u) is obtained by choosing the 50th

ordered estimate as l and the 951st estimate as u.

An estimate for the 95% confidence interval (l , u) is obtained by choosing
the 25th estimate as l and the 976th estimate as u.

On the accuracy of the bootstrap confidence interval:

The larger the original sample size, the better the confidence interval.

The larger the number k of bootstrap samples, the better the
confidence interval.
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Exact confidence intervals

Bootstrap confidence intervals are nowadays easy to calculate and they
have the advantage of being distribution free.

However, when the type of distribution is known, also exact confidence
intervals can be calculated. It is possible to obtain exact confidence
intervals for the parameters of the normal distribution or for the parameter
of the Bernoulli distribution, for example.
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Confidence interval, normal distribution

A random variable with normal distribution has a probability density
function (PDF) of the form

f (x) =
1√
2πσ2

exp

(
− 1

2σ2
(x − µ)2

)
.

The normal distribution has two parameters: the mean µ and the variance
σ2.
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Example (Confidence interval for population mean µ of a normal
i.i.d. sample with known variance σ2)
Let x1, . . . , xn be i.i.d. copies of x ∼ N (µ, σ2). Suppose that we are
interested in finding a level (1− α) confidence interval for the population
mean µ given the sample x1, . . . , xn. If we know the population variance
σ2, then we can use the whitening transform

Z =
xn − µ

σ/
√
n

∼ N (0, 1) (1)

and deduce that the (1− α) confidence interval for the population mean is
given by (

xn − zα/2
σ√
n
, xn + zα/2

σ√
n

)
, (2)

where zα/2 = Φ−1(1− α
2 ) is the (1− α/2) · 100 percentile of the standard

normal distribution. E.g., if α = 0.05, then z0.025 = Φ−1(0.975) ≈ 1.96.

In practice, the population standard derivation must be approximated by
the sample standard deviation sn. If n is large (e.g., n > 30), then simply
approximating σ ≈ sn in (1)–(2) may lead to a reasonable approximation
of the CI. However, simply replacing σ by sn makes the test statistic (1)
non-Gaussian in general. A better method is to note that xn−µ

sn/
√
n
follows

Student’s t-distribution. 189



Confidence interval, mean of normal distribution

Let x1, . . . , xn be i.i.d. copies of x ∼ N (µ, σ2). We are interested in
finding a level (1− α) confidence interval for the population mean µ given
the sample x1, . . . , xn. In practice, the population standard deviation σ
must be approximated by the sample standard deviation sn. Substituting
the population standard deviation σ by the sample standard deviation sn
in (1) yields the t-statistic

tn−1 :=
xn − µ

sn/
√
n

and we say that tn−1 has Student’s t-distribution with n − 1 degrees of
freedom. Then the (1− α) confidence interval for the population mean µ
is given by (

xn − tn−1,α/2
sn√
n
, xn + tn−1,α/2

sn√
n

)
,

where tn−1,α/2 is the (1− α/2) · 100 percentile of the tn−1 distribution.

E.g., if n = 10 and α = 0.05, then t9,0.025 = F−1
t9 (0.975) = 2.262, where

F−1
t9 is the quantile function of t9.
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Figure: Student’s t-distributions with different degrees of freedom. The
t-distribution has heavier tails than the standard Gaussian distribution. As the
degrees of freedom increase, the t-distributions tend to the standard Gaussian
distribution.
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Confidence interval, variance of normal distribution

Let x1, . . . , xn be i.i.d. copies of x ∼ N (µ, σ2). We are interested in
finding a level (1− α) confidence interval for the population variance given
the sample x1, . . . , xn. It is assumed that the population mean µ is also
unknown. The statistic

Q =
(n − 1)s2n

σ2
=

1

σ2

n∑
i=1

(xi − xn)
2

has the χ2 distribution with n− 1 degrees of freedom, i.e., Q ∼ χ2(n− 1).
Then the level (1− α) confidence interval for the variance of a normal
distribution can be given as(

(n − 1)s2n
χ2
n−1,α/2

,
(n − 1)s2n
χ2
n−1,1−α/2

)
,

where χ2
n−1,α/2 is the (1− α/2) · 100 percentile of the χ2(n − 1)

distribution. Similarly, χ2
n−1,1−α/2 is the (α/2) · 100 percentile of the

χ2(n − 1) distribution. E.g., if n = 10 and α = 0.05, then
χ2
9,0.025 = F−1

χ2(9)
(0.975) ≈ 19.02 and χ2

9,0.975 = F−1
χ2(9)

(0.025) ≈ 2.70.
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χ2 distribution
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Figure: χ2 distribution with different degrees of freedom.
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Confidence interval, parameter p of Bernoulli distribution

Let {x1, . . . , xn} denote i.i.d. observations of a random variable x . Assume
that P(xi = 1) = p and P(xi = 0) = 1− p. Then x ∼ Ber(p), with
expected value E[x ] = p and E[(x − E[x ])2] = p(1− p). An unbiased
estimate of the expected the expected value p is the sample mean

p̂ =
1

n

n∑
i=1

xi .

If n is large, the level (1− α) confidence interval for the mean p of the
Bernoulli distribution can be given as(

p̂ − zα/2

√
p̂(1− p̂)√

n
, p̂ + zα/2

√
p̂(1− p̂)√

n

)
,

where zα/2 is the (1− α/2) · 100 percentile of the standard normal
distribution N (0, 1).

There exist several alternative estimates for the confidence interval for the
mean of the Bernoulli distribution. If the sample size is small, one can try
the Wilson score interval, for example.
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Numerical example, confidence intervals

The masses of Brand X cookie packages are approximately normally
distributed with expected value µ. The randomly chosen packages were
weighted and the following data (measured in grams) was obtained: 397.3,
399.6, 401.0, 392.9, 396.8, 400.0, 397.6, 392.1, 400.8, 400.6.

The mean of the masses is 397.87g and the sample standard deviation is

s =

√√√√ 1

10− 1

10∑
i=1

(xi − 397.87)2 ≈ 3.2128.

As we saw above, the 97.5% percentile of the Student’s t-distribution with
10− 1 = 9 degrees of freedom is t = 2.262. The 95% confidence interval
for the mean masses of the cookie packages is(

x ± t
s√
n

)
= (397.87g ± 2.262 · 3.2128g√

10

)
= (395.6g , 400.3g).
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Hypothesis testing

Statistical tests are applied extensively in various fields of science. We
might want to test, for example:

If one concrete type is stronger than another (competing) concrete
type.

If there a difference in the average salaries of men and women across
the population.

Whether or not a new medicine lowers systolic blood pressure.
...
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Hypothesis testing

A statistical hypothesis is a hypothesis that is tested using probabilities.
Statistical testing is based on setting general statistical assumptions, a null
hypothesis and an alternative hypothesis, and on selecting a suitable test
statistic. The value of the selected test statistic is calculated from a
sample of observations.
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Assumptions

General statistical assumptions include assumptions about the
population, sampling method, and about the distribution of the
observations.

Statistical assumptions hold throughout the testing process.

Statistical assumptions may, and should, be tested separately.
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Null hypothesis

The statement about a population parameter that is being tested is
called the null hypothesis H0.

The null hypothesis is assumed to be true, unless there is strong
evidence that indicates otherwise.

If strong evidence against the null hypothesis is found, then it is
rejected.

In simple statistical tests, the null hypothesis can often be stated as

H0 : θ = θ0,

where θ is the parameter being tested and θ0 is a fixed value of the
parameter.

The null hypothesis is often of the form “is the same” or “no
difference”.
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Alternative hypothesis

If the null hypothesis H0 is rejected, then the alternative hypothesis
H1 is accepted.

If the alternative hypothesis can be stated as H1 : θ > θ0 or
H1 : θ < θ0, then it is called a one tailed alternative hypothesis.

If the alternative hypothesis can be stated as H1 : θ ̸= θ0, then it is
called a two tailed alternative hypothesis.

The alternative hypothesis is often of the form “not the same” or
“different”.

It is not always easy to decide whether one tailed or two tailed alternative
hypothesis should be used.

Do not fish for favorable results by using one tailed alternative hypothesis!

The use of one tailed alternative hypothesis must be justified by the
context.
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Test statistic

A test statistic compares the observations and the null hypothesis H0.

A test statistic is a random variable and its value depends on the
observations.

A test statistic is used in evaluating the probability of getting the
observed value of the statistic, under the assumption that the null
hypothesis H0 is true.

The distribution of the test statistic under the null hypothesis H0 must
be known for comparing the observations and the null hypothesis H0.
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Critical value

The expected value of a chosen test statistic is calculated under the
null hypothesis H0.

If the observed value of the test statistic is close to the expected
value, no strong argument against the null hypothesis H0 is found.

If the observed value of the test statistic is far away from the
expected value, then evidence against the null hypothesis H0 is found.

The set of values of the test statistic for which the null hypothesis is
rejected (i.e., the set of the values that are far away from the
expected value) is called the critical region.

The threshold values defining the critical region are called the critical
values.
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p-value

The p-value of a statistical test is the probability, assuming that the null
hypothesis H0 is true, of observing at least as extreme value as the
observed value of the test statistic.

Rejecting or not rejecting the null hypothesis H0 is based on the p-value.
Statistical software can be used to calculate the p-value.

The significance level α of a test statistic is the smallest p-value that is
accepted without rejecting the null hypothesis H0. It is possible to use
pre-selected significance levels and the corresponding critical regions.
Commonly used significance levels α are 0.05, 0.1, 0.01, and 0.001.

If the significance level is α = 0.05 and the p-value of the test statistic is
< 0.05

’
then the null hypothesis H0 is rejected.
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p-value

The p-value of a test statistic is calculated as follows:

1 Calculate the value of the test statistic using the observations.

2 Assuming that the null hypothesis H0 is true and based on the known
distribution of the test statistic, calculate the probability of the value
of the test statistic being as extreme, or more extreme, as it is.

The null hypothesis H0 can be rejected, if the p-value is small enough.
The smaller the p-value, the stronger the evidence against H0.
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Errors

There are two types of errors related to the rejection of the null hypothesis
H0:

Type 1 error: True null hypothesis is rejected.
Type 2 error: False null hypothesis is not rejected.

The type 1 error rate is the probability of rejecting the null hypothesis
given that it is true. Thus type 1 error rate is equal to the significance
level α.

The type 2 error rate is the probability of not rejecting the null hypothesis
given that it is false. Type 2 error rate is in general a function of the
possible distributions, often determined by a parameter, under the
alternative hypothesis. The power of a test statistic is equal to
1− (type 2 error rate). Thus, the power of a test statistic is also a
function of the possible distributions. As the power increases, the chance
of a type 2 error decreases – one is more likely to detect significant
differences when they truly exist.

In statistical testing, type 1 errors are generally considered worse than type
2 errors. That is why the significance level α is usually selected to be small.
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p-value, one tailed and two tailed alternative hypothesis

Let z be the value of a test statistic Z calculated from the observations.

If the one tailed alternative hypothesis is given as H1 : θ > θ0, then the
p-value of the test is

p = P(Z ≥ z | H0).

If the one tailed alternative hypothesis is given as H1 : θ < θ0, then the
p-value of the test is

p = P(Z ≤ z | H0).

If the alternative hypothesis is two tailed, H1 : θ ̸= θ0, then the p-value of
the test is

p = 2min(P(Z ≤ z | H0),P(Z ≥ z | H0)).
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Steps of statistical hypothesis testing

1 State the hypotheses and general assumptions.

2 Select a test statistic.

3 Pick a sample such that the general assumptions hold.

4 Calculate the value of the test statistic using the sample.

5 Calculate the p-value corresponding to the observed value of the test
statistic.

6 Draw conclusions and reject/do not reject the null hypothesis.
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t-tests
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One sample t-test

The one sample t-test compares the expected value of a random variable
to a given constant.

Let x1, . . . , xn be i.i.d. observations of a random variable x . Assume that
the observed values come from the normal distribution N (µ, σ2).

The null hypothesis: H0 : µ = µ0.

The possible alternative hypotheses:

H1 : µ > µ0 (one tailed),

H1 : µ < µ0 (one tailed),

H1 : µ ̸= µ0 (two tailed).
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One sample t-test

The t-test statistic is

t =
x − µ0

sn/
√
n
.

If the null hypothesis H0 is true, then the test statistic follows
Student’s t-distribution with n − 1 degrees of freedom.

The expected value of the test statistic under the null hypothesis H0

is 0, i.e., E[t] = 0.

If the value of the test statistic is large/small, evidence against the
null hypothesis H0 is found. On the other hand, the null hypothesis
H0 is rejected if the p-value is small enough.

Python:
t stat,p value = scipy.stats.ttest 1samp(a=x,popmean=µ0)
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One sample t-test, normality assumption

When the one-sample t-test is used, it is assumed that the
observations follow the normal distribution.

If the sample size is large, then one sample t-test is not very sensitive
to moderate deviations from normality.

Even without normality, the one sample t-test is quite reliable if the
sample size n > 25. That is, unless the distribution is very skewed.

With sample size n > 40, the one sample t-test is quite reliable even
for clearly skewed distributions.
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One sample t-test – implementation in Python

import numpy as np

from scipy.stats import t as tdist

def tTest_1sample(x,mu0,alternative=’two-sided’):

n = len(x)

xbar = np.mean(x)

std = np.std(x,ddof=1) # Use Bessel’s correction

t_stat = (xbar-mu0)/(std/np.sqrt(n))

q = tdist.cdf(t_stat,n-1)

if alternative == ’less’:

return t_stat,q

elif alternative == ’greater’:

return t_stat,1-q

else:

return t_stat,2*min(q,1-q)
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Numerical example, one sample t-test

According to the package text, Brand X cookies have 12 chocolate chips
in each cookie. The number of chocolate chips of ten randomly selected
cookies were calculated and the following data was obtained:

{12, 11, 10, 13, 14, 12, 11, 12, 12, 12}.

We want to test, on significance level 5%, the hypothesis that the
expected value of the number of chocolate chips in Brand X cookies is 12.
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The sample mean of the chocolate chips is 11.9 and the sample standard
deviation is 1.1005. One sample t-test is used and the value of the test
statistic is

t =
x − µ0

s/
√
n

=
11.9− 12

1.1005/
√
10

= −0.287.

Assuming normality and i.i.d. observations, under the null hypothesis
(µ = µ0 = 12), the test statistic follows Student’s t-distribution with 9
degrees of freedom.

With significance level 5% and 9 degrees of freedom, the critical values of
the test statistic are ±2.262. Since the observed value of the test statistic
−0.287 > −2.262 and −0.287 < 2.262, the null hypothesis is not rejeced.

The p-value is often observed directly without setting any pre-selected
significance level. Probabilities P(T ≤ t|H0) and P(T ≥ t|H0) are 0.6098
and 0.3902, respectively. Then the p-value is

p = 2min(P(Z ≤ z | H0),P(Z ≥ z | H0)) = 2 · 0.3902 = 0.7804.

The p-value is large and no evidence against the null hypothesis is found.
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What went wrong in the previous example? What are the general
statistical assumptions when one sample t-test is used?
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Two sample t-test

The two sample t-test compares the expected values of two independent
variables. We first consider the case when the variances are not assumed
to be equal.
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Two sample t-test, assumptions

Let x1, . . . , xn be the observed values of a random variable x and let
y1, . . . , ym be the observed values of a random variable y . Assume that
the observed values x1, . . . , xn are i.i.d. and come from the normal
distribution N (µx , σ

2
x) and assume that the observed values y1, . . . , ym are

i.i.d. and come from the normal distribution N (µy , σ
2
y ). Furthermore,

assume that xi and yj are independent for all i , j .

The null hypothesis: H0 : µx = µy .

The possible alternative hypotheses:

H1 : µx > µy one tailed,

H1 : µx < µy one tailed,

H1 : µx ̸= µy two tailed.
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Two sample t-test

The t-test statistic

t =
x − y√

s2x /n + s2y /m
.

If the null hypothesis H0 is true, then the test statistic follows
Student’s t-distribution with v degrees of freedom, where

v =
(s2x /n + s2y /m)2

((s2x /n)
2/(n − 1)) + ((s2y /m)2/(m − 1))

.

The expected value of the test statistic under the null hypothesis H0

is 0 (E[t] = 0).

If the value of the test statistic is large/small, evidence against the
null hypothesis H0 is found.

The null hypothesis H0 is rejected if the p-value is small enough.

Python:
t stat,p value =

scipy.stats.ttest ind(a=x,b=y,equal var=False)
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Two sample t-test – implementation Python

import numpy as np

from scipy.stats import t as tdist

def tTest_2sample(x,y,alternative=’two-sided’):

n = len(x); m = len(y)

xbar = np.mean(x); ybar = np.mean(y)

stdx = np.std(x,ddof=1); stdy = np.std(y,ddof=1)

t_stat = (xbar-ybar)/np.sqrt(stdx**2/n+stdy**2/m)

v = (stdx**2/n+stdy**2/m)**2 \

/((stdx**2/n)**2/(n-1)+((stdy**2/m)**2/(m-1)))

q = tdist.cdf(t_stat,v)

if alternative == ’less’:

return t_stat,q

elif alternative == ’greater’:

return t_stat,1-q

else:

return t_stat,2*min(q,1-q)
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Two sample t-test, normality assumption

When the two sample t-test is used, it is assumed that the
observations follow the normal distribution.

If the sample sizes are large, then the two sample t-test is not very
sensitive to moderate deviations from normality.

Even without normality, the two sample t-test is quite reliable, if the
sample sizes n > 25 and m > 25. That is, unless the distributions are
very skewed.

If n > 40 and m > 40, then the test can be quite safely used even
with clearly skewed distributions.
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Two sample t-test, equal variances

The two sample t-test has a bit simpler form if the variances are assumed
to be equal.

Assumptions and hypotheses are the same as in the general two sample
t-test, but the variances of the distributions are assumed to be equal –
that is, it is assumed that σ2

x = σ2
y .
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Two sample t-test, equal variances

The t-test statistic

t =
x − y

sp
√

1/n + 1/m
,

where

s2p =
(n − 1)s2x + (m − 1)s2y

n +m − 2
.

If the null hypothesis H0 is true, then the test statistic follows
Student’s t-distribution with n +m − 2 degrees of freedom.
The expected value of the test statistic under the null hypothesis H0

is 0 (E[t] = 0).
If the value of the test statistic is large/small, evidence against the
null hypothesis H0 is found.
The null hypothesis H0 is rejected if the p-value is small enough.
Normality assumption can be relaxed as in the general two sample
t-test.
Python:
t stat,p value =

scipy.stats.ttest ind(a=x,b=y,equal var=True)
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Paired t-test

General two sample t-tests can be applied when the two samples are
independent.

The paired t-test can be used to compare two measuring equipments by
using both equipments to measure the same subject in the same
circumstances. (Do two pedometers give the same result?) A paired t-test
can be used for example to study if a treatment works by measuring the
same subjects before and after the treatment. (Does drinking have an
effect on reaction time? Does malnutrition have an effect on memory?)
The aim can also be to compare two populations by measuring the same
variables of fitted pairs. (Do the voting preferences of couples living
together differ from each other?)
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Paired t-test

Paired t-test:

Observations (xi ,1, xi ,2), i = 1, . . . , n, consist of measured pairs of a
random variable x .

The pairs are assumed to be independent. However, the two values
inside one pair are not assumed to be independent.

General two sample t-tests should not be used for paired observations.

Calculate the differences di = xi ,1 − xi ,2, i = 1, . . . , n, of the
measurements xi ,1 and xi ,2.

Measurements xi ,1 and xi ,2 have on average about the same value if
the differences are on average about 0.

It is now possible to apply the standard one sample t-test to the
differences di .

Python:
t stat,p value = scipy.stats.ttest rel(a=x,b=y)
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Paired t-test

General statistical assumptions: differences di are i.i.d. and come
from the normal distribution.
The null hypothesis: H0 : µd = 0.
Possible alternative hypotheses: H1 : µd > 0 (one tailed), H1 : µd < 0
(one tailed) or H1 : µd ̸= 0 (two tailed).
The t-test statistic

t =
d

sd/
√
n
.

If the null hypothesis H0 is true, then the test statistic follows
Student’s t-distribution with n − 1 degrees of freedom.
The expected value of the test statistic under the null hypothesis H0

is 0 (E[t] = 0).
If the value of the test statistic is large/small, evidence against the
null hypothesis H0 is found.
The null hypothesis H0 is rejected if the p-value is small enough.
The normality assumption can be relaxed as in the general one sample
t-test.
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Paired t-test – implementation in Python

def tTest paired(x,y,alternative=’two-sided’):

return tTest 1sample(x-y,0,alternative)
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Variance tests
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Variance test, assumptions

Let x1, . . . , xn be observed values of a random variable x . Assume that the
observed values are i.i.d. and come from the normal distribution N (µ, σ2).

The null hypothesis: H0 : σ
2 = σ2

0.

The possible alternative hypotheses:

H1 : σ
2 > σ2

0 (one tailed),

H1 : σ
2 < σ2

0 (one tailed),

H1 : σ
2 ̸= σ2

0 (two tailed).
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Variance test

The χ2 test statistic

χ2 =
(n − 1)s2

σ2
0

.

If the null hypothesis is true, then the test statistic follows the χ2

distribution with n − 1 degrees of freedom.

The expected value of the test statistic is n − 1.

Large and small values of the test statistic (compared to the expected
value n − 1) suggest that the null hypothesis H0 is false.

The null hypothesis is rejected if the p-value is small enough.

This test is sensitive to deviations from normality! Variance test does
not work, not even with large sample sizes, if the distribution of the
observations is skewed.
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Variance test – implementation in Python

import numpy as np

from scipy.stats import chi2

def varTest(x,sigma_squared,alternative=’two-sided’):

n = len(x)

Q_stat = (n-1) * np.var(x,ddof=1)/sigma_squared

q = chi2.cdf(Q_stat,n-1)

if alternative == ’less’:

return Q_stat,q # one-sided variance test

elif alternative == ’greater’:

return Q_stat,1-q # one-sided variance test

else:

return Q_stat,2*min(q,1-q) # two-sided variance test
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Variance comparison test, assumptions

Let x1, . . . , xn be observed values of a random variable x and let
y1, . . . , ym be observed values of a random variable y . Assume that the
observations x1, . . . , xn are i.i.d. and follow the normal distribution
N (µx , σ

2
x) and assume that y1, . . . , ym are i.i.d. and follow the normal

distribution N (µy , σ
2
y ). Furthermore, assume also that xi and yj are

independent for all i , j .

The null hypothesis: H0 : σ
2
x = σ2

y .

The possible alternative hypotheses:

H1 : σ
2
x > σ2

y (one tailed),

H1 : σ
2
x < σ2

y (one tailed),

H1 : σ
2
x ̸= σ2

y (two tailed).
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Variance comparison test

The F -test statistic

F =
s2x
s2y

.

If the null hypothesis is true, then the test statistic follows
F -distribution with n − 1 and m − 1 degrees of freedom.

The expected value of the test statistic is ≈ 1.

Large and small values of the test statistic (compared to the expected
value ≈ 1) suggest that the null hypothesis H0 is false.

The null hypothesis H0 is rejected if the p-value is small enough.

This test is also sensitive to deviations from normality and does not
work, not even with large sample sizes, if the distribution of the
observations is skewed.
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Variance comparison test – implementation in Python

import numpy as np

from scipy.stats import f as Fdist

def Ftest(x,y,alternative=’two-sided’):

dfx = len(x)-1

dfy = len(y)-1

F_stat = np.var(x,ddof=1)/np.var(y,ddof=1)

q = Fdist.cdf(F_stat,dfx,dfy)

if alternative == ’less’:

return F_stat,q

elif alternative == ’greater’:

return F_stat,1-q

else:

return F_stat,2*min(q,1-q)

235



Hypothesis testing

Nonparametric (distribution free) statistical tests
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Sign tests and rank tests

Parametric tests are usually preferred over non-parametric tests since they
usually have more statistical power (= lower type 2 error rate) than
non-parametric tests, given that the statistical assumptions are satisfied.

The advantage of sign tests and rank tests is that they do not require
strong distributional assumptions. Sign tests and rank tests are suitable for
continuous quantitative variables, but can also be used for any ordinal
data.
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Sign test
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One sample sign test

The one sample sign test is applied in similar testing problems as the one
sample t-test. However, the sign test requires milder distributional
assumptions.

Let x1, . . . , xn be observed values of a continuous random variable x with
population median m. Assume that the observed values are i.i.d.

The null hypothesis: H0 : m = m0.

Possible alternative hypotheses:

H1 : m > m0 (one tailed),

H1 : m < m0 (one tailed),

H1 : m ̸= m0 (two tailed).
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One sample sign test

Calculate the differences di = xi −m0, i = 1, . . . , n.

The test statistic S is the number of cases where di > 0.
(Alternatively, the number of cases where di < 0.)

If the null hypothesis H0 is true, then the test statistic follows the
binomial distribution with parameters n and 1/2.

Under H0, the expected value of the test statistic is 1
2n and the

variance is 1
4n.

Large and small values of the test statistic (compared to the expected
value 1

2n) suggest that the null hypothesis H0 is false.

The null hypothesis is rejected if the p-value is small enough.
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One sample sign test, p-value

The distribution of the test statistic S is tabulated and many softwares
give exact p-values of the test.

Let s denote the observed value of the test statistic S . Then the p-value
of the test is given as follows:

If the alternative hypothesis is H1 : m > m0, then the p-value is
p = P(S ≥ s).

If the alternative hypothesis is H1 : m < m0, then the p-value is
p = P(S ≤ s).

If the alternative hypothesis is H1 : m ̸= m0, then the p-value is
p = 2min(P(S ≥ s),P(S ≤ s)).

Naturally, the probabilities P(S ≤ s) and P(S ≥ s) are calculated under H0.
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.Remark. The sign test can also be used for discrete variables as well. Then
it is possible that for some of the observations di = xi −m0 = 0. If the
number of zeros is small compared to the sample size, these observations
can be deleted and the sample size can be modified accordingly. If the
number of zeros is large, then the zeros should be dealt with such that
they are against rejecting the null hypothesis. For example: consider the
two-tailed null hypothesis, 3 negative signs, 15 positive signs and 6 zeros.
Now the test should be conducted as if there were 9 negative signs and 15
positive ones.

Python:
S stat = sum(x-m0>0)

n = sum(i!=0 for i in x −m0)

#n = len(x) # if the number of zeros in x −m0 is large

p value = scipy.stats.binomtest(S stat,n,p=0.5).pvalue
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One sample sign test – implementation in Python

import numpy as np

from scipy.stats import binom

def signTest_1sample(x,m0,alternative=’two-sided’):

diff = x-m0

S_stat = sum(diff>0)

n = sum(i!=0 for i in diff)

#n = len(x) # if the number of zeros in x −m0 is large

q = binom.cdf(S_stat,n,0.5)

q2 = binom.pmf(S_stat,n,0.5)+1-q # (*)

if alternative == ’less’:

return S_stat,q

elif alternative == ’greater’:

return S_stat,q2

else:

return S_stat,2*min(q,q2)

# Note that in (*), we used P(S≥s) = P(S=s)+1-P(S≤s)
243



Asymptotic one sample sign test

If the sample size is large, then under the null hypothesis H0, the
standardized test statistic Z = S−n/2√

n/4
approximately follows the standard

normal distribution.

The approximation is usually good enough if n > 20. For smaller samples,
the test relies on the exact distribution of the test statistic S .
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Paired sign test

The paired sign test is applied in similar testing problems as the paired
t-test.

The observations (xi ,1, xi ,2), i = 1, . . . , n, consist of measured pairs of
a random variable x .

The pairs are assumed to be independent. However, the two values
inside one pair are not assumed to be independent.

Calculate the differences di = xi ,1 − xi ,2, i = 1, . . . , n, of the
measurements xi ,1 and xi ,2.
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Paired sign test

General statistical assumptions: the differences di are i.i.d. and follow
a distribution with median m.

The null hypothesis H0 : m = 0.

Possible alternative hypotheses: H1 : m > 0 (one tailed), H1 : m < 0
(one tailed) or H1 : m ̸= 0 (two tailed).

Now it is possible to apply the one sample sign test for the differences
di .
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Paired sign test – implementation in Python

def signTest_paired(x,y,alternative=’two-sided’):

return signTest_1sample(x-y,0,alternative)
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Numerical example

An imaginary medical study was conducted to examine the effect of
medicine a in lowering plasmatoxin levels in plasma. High plasmatoxin
levels in plasma are related to several diseases. Plasmatoxin levels were
measured at the beginning of the study and again 8 weeks after the
treatment. We wish to study, whether the medicine had the desired effect
on 5% significance level.
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Data

Patient Level Difference
Before After

1 1384 1332 -52
2 1640 1564 -76
3 1122 1100 -22
4 1272 1260 -12
5 1380 1360 -20
6 624 1624 1000
7 360 1821 1461
8 456 450 -6
9 1726 1712 -14
10 332 821 489
11 1342 1338 -4
12 1630 1626 -4
13 1170 1160 -10

Table: Plasmatoxin levels (µg/1000ml) before and after treatment.
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t-test

One sample t-test
Data: differences
t = 1.5646, df = 12, p-value=0.9282
Alternative hypothesis: true mean is less than 0
Sample estimates: mean of x = 210.
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Sign test

One sample sign test
Data: differences
s = 3, p-value=0.04614
Alternative hypothesis: true median is less than 0
Sample estimates: median of x = −10.
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Compare the results given by the two tests. Neither one of the tests alone
gives a clear view on how the medicine a affects the toxin levels. Why?
Based on this sample, how does the medicine seem to affect the toxin
levels? Is there anything suspicious in the testing set up? Is it OK to use
one sided alternative hypothesis here?
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Wilcoxon signed rank test
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The one sample Wilcoxon signed rank test is applied in similar testing
problems as the one sample t-test. However, the one sample Wilcoxon
signed rank test requires milder distributional assumptions.

Let x1, . . . , xn be observed values of a continuous symmetric random
variable x with population median m. Assume that the observed values are
i.i.d.

The null hypothesis H0 : m = m0.

Possible alternative hypotheses:

H1 : m > m0 (one tailed),

H1 : m < m0 (one tailed),

H1 : m ̸= m0 (two tailed).
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One sample Wilcoxon signed rank test

Calculate the absolute values of the differences |di | = |xi −m0| for
i = 1, . . . , n. Order the absolute values from the smallest to the
largest. Define the signed ranks R⋆(xi ) such that R⋆(xi ) is the rank of
the absolute value |di | = |xi −m0| multiplied with the sign of the
difference xi −m0.

The test statistic W⋆ =
∑

R⋆(xi )>0 R⋆(xi ) is the sum of the positive
ranks. (Alternatively, the sum of the negative ranks.)

Under H0, the expected value of the test statistic is n(n+1)
4 and the

variance is n(n+1)(2n+1)
24 .

Large and small values (compared to the expected value n(n+1)
4 ) if the

test statistic suggest that the null hypothesis H0 is false.

The null hypothesis is rejected if the p-value is small enough.

Python:
, p value = scipy.stats.wilcoxon(x-m0)
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One sample Wilcoxon signed rank test, p-value

The distribution of the test statistic W⋆ is tabulated and many softwares
give exact p-values of the test.

The p-value of the Wilcoxon signed rank test, where w⋆ is the observed
value of the test statistic W⋆, is given as follows:

If the alternative hypothesis is H1 : m > m0, then the p-value is
p = P(W⋆ ≥ w⋆).

If the alternative hypothesis is H1 : m < m0, then the p-value is
p = P(W⋆ ≤ w⋆).

If the alternative hypothesis is H1 : m ̸= m0, then the p-value is
p = 2min(P(W⋆ ≥ w⋆),P(W⋆ ≤ w⋆)).

The probabilities P(W⋆ ≥ w⋆) and P(W⋆ ≤ w⋆) are calculated under the
null H0.
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Asymptotic one sample Wilcoxon signed rank test

Under H0, when the sample size is large, the standardized test statistic
Z = W⋆−E[W⋆]√

Var(W⋆)
, where E[W⋆] =

n(n+1)
4 and Var(W⋆) =

n(n+1)(2n+1)
24 ,

approximately follows the standard normal distribution.

The approximation is usually good enough if n > 20. For smaller samples,
the exact distribution of W⋆ is needed.
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One sample Wilcoxon signed rank test

We assumed above that the observations come from a continuous
distribution. The Wilcoxon signed rank test can be applied for discrete
observations as well. However, it is then possible that some points share
the same rank of absolute values |xi −m0|. In that case, all these points
are assigned to have the median of the corresponding ranks. For example,
if two sample points have the same rank, corresponding to ranks 7 and 8,
then both points are assigned to have rank 7.5. If three sample points
have the same rank corresponding to ranks 3, 4, and 5, then each is
assigned to have rank 4.
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Paired Wilcoxon signed rank test

The paired Wilcoxon signed rank test is applied in similar testing problems
as the paired t-test.

The observations (xi ,1, xi ,2), i = 1, . . . , n, consist of measured pairs of
a random variable x .

The pairs are assumed to be independent. However, the two values
inside one pair are not assumed to be independent.

Calculate the differences di = xi ,1 − xi ,2, i = 1, . . . , n, of the
measurements xi ,1 and xi ,2.
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Paired Wilcoxon signed rank test

General statistical assumptions: the differences di are i.i.d. and follow
a symmetric distribution with median m.

The null hypothesis is H0 : m = 0.

Possible alternative hypotheses: H1 : m > 0 (one tailed), H1 : m < 0
(one tailed) or H1 : m ̸= 0 (two tailed).

Now it is possible to apply the one sample Wilcoxon signed rank test
for the differences di .

Python:
, p value = scipy.stats.wilcoxon(x,y)
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Numerical example

We want to compare the prices of Brand X and Brand Y cookies in
different stores. The distribution of the prices is not known, but it can be
assumed to be symmetrical. 10 different stores were selected randomly for
this study. The cookie prices have been tabulated below.

Brand X 4.56 4.67 4.28 4.57 4.78 4.54 4.56 4.48 4.47 4.50
Brand Y 4.52 4.48 4.51 4.30 4.59 4.67 4.53 4.54 4.71 4.49
Difference 0.04 0.19 -0.23 0.27 0.19 -0.13 0.03 -0.06 -0.24 0.01

Table: Prices of Brand X and Brand Y cookie packages in different stores.
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Numerical example

The price differences are assumed to be symmetrically distributed. The
null hypothesis is that the theoretical medians of the prices of Brand X
and Brand Y cookies do not differ, i.e., the difference of the population
medians is zero. The ordered absolute values of the differences and the
corresponding signed ranks are as follows.

Difference 0.01 0.03 0.04 0.06 0.13 0.19 0.19 0.23 0.24 0.27
Signed rank 1 2 3 -4 -5 6.5 6.5 -8 -9 10

Table: The ordered absolute values of the differences and the corresponding
signed ranks.

The test statistic

W⋆ =
∑

R⋆(di )>0

R⋆(xi ) = 1 + 2 + 3 + 6.5 + 6.5 + 10 = 29.

The p-value (obtained using statistical software) is 0.9219. We do not
reject the null hypothesis.
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Signed test vs. Wilcoxon signed rank test

Both tests are suitable for similar problems: one sample – comparison
of the median to a constant, paired samples – comparison of the
medians.

The tests are non-parametric counterparts of the one sample t-test.

The values of the test statistic do not depend on the numerical values
of the observations – only the order of the observations matters.

No assumption of the type of the population distribution is needed for
the sign test. Symmetry assumption is required for the Wilcoxon
signed rank test.

The Wilcoxon signed rank test uses more information of the order of
the observations.

If the distribution can be assumed to be symmetric, use the Wilcoxon
signed rank test. Otherwise, apply the sign test.

263



Two sample Wilcoxon rank test

The two sample Wilcoxon rank test is used in similar settings as the two
sample t-test, but Wilcoxon rank test requires milder assumptions.

In practice, the two sample Wilcoxon rank test is exactly the same test
statistic as the Mann-Whitney test – both names are used in the literature.

Let x1, . . . , xn be the observed values of a continuous random variable x
and let y1, . . . , ym be the observed values of a continuous random variable
y . Assume that the observations x1, . . . , xn are i.i.d. and assume that
y1, . . . , ym are i.i.d. as well. Assume also that xi and yj are independent for
all i , j . Assume that x is distributed as y up to a location shift (i.e., x and
y follow otherwise the same distribution, but possibly with different
medians) and assume that the variables have population medians mx and
my , respectively.
The null hypothesis H0 : mx = my .
Possible alternative hypotheses: H1 : mx > my (one tailed), H1 : mx < my

(one tailed) or H1 : mx ̸= my .
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Two sample Wilcoxon rank test

Consider the samples x1, . . . , xn and y1, . . . , ym. Assume (without loss of
generality) that n ≤ m.

The two sample Wilcoxon rank test is based in analyzing the order of all
the observations. Combine the samples x1, . . . , xn and y1, . . . , ym to one
sample z1, . . . , zn+m. Order the observations zi from the smallest to the
largest. Let R(zi ) be the rank of zi in the combined sample z1, . . . , zn+m.

The test statistic W =
∑n

i=1 R(xi ) is the sum of the ranks of the
smaller sample.

Under H0, the expected value of the test statistic is n(n +m + 1)/2
and the variance is nm(n +m + 1)/12.

Large and small values of the test statistic (compared to the expected
value n(n +m + 1)/2) suggest that the null hypothesis H0 is false.

The null hypothesis H0 is rejected if the p-value is small enough.

Python:
, p value = scipy.stats.mannwhitneyu(x,y)
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Two sample Wilcoxon rank test, p-value

The distribution of the test statistic W is tabulated and many softwares
give the exact p-values.

The p-value of the two sample Wilcoxon rank test, where w is the
observed value of the test statistic W , is defined as follows:

If the alternative hypothesis is H1 : mx > my , then the p-value is
p = P(W ≥ w).

If the alternative hypothesis is H1 : mx < my , then the p-value is
p = P(W ≤ w).

If the alternative hypothesis is H1 : mx ̸= my , then the p-value is
p = 2min(P(W ≥ w),P(W ≤ w)).

Naturally, P(W ≥ w) and P(W ≤ w) are calculated under H0.
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Asymptotic two sample Wilcoxon rank test

Assuming that the null hypothesis is true, if the sample size is large, the
standardized test statistic z = W−E[W ]√

Var(W )
, where E[W ] = n(n +m + 1)/2

and Var(W ) = nm(n +m + 1)/12, approximately follows the standard
normal distribution.

The approximation is usually good enough if n,m > 10. For smaller
samples, the exact distribution of the test statistic W is needed.
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Two sample Wilcoxon rank test

The Wilcoxon rank test can be used also when the observations are
discrete. Then it is possible that some of the sample points have the same
rank. In that case, all those points are assigned to have the median of the
corresponding ranks. For example, if two observations have the same rank,
corresponding to ranks 7 and 8, then both are assigned to have rank 7.5.
If three observations have the same rank, corresponding to ranks 3,5, and
5, then each is assigned to have rank 4.

Note that ranks can be used even when the variables cannot be measured
numerically, but they can be ordered. (For example, one could order/rank
singers, or qualities of apartments, without measuring them numerically.)

268



Two sample Wilcoxon rank test

The two sample Wilcoxon rank test is the non-parametric counterpart
of the two sample t-test.

The value of the test statistic depends on the order/rank of the
observed value, not on the exact numerical values of the observations.

The test is an excellent alternative to two sample t-test, when the
populations are not normally distributed.
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Numerical example

The height of 10 randomly chosen students was measured in the corridor
of the Department of Mathematics. The students were put to stand in line
from the shortest to the tallest. There were both, male and female
students, in the sample. We wish to know if there is a difference in the
distribution of male and female students. The null hypothesis is that the
population median of the heights of the female students is equal to the
population median of the heights of the male students.
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The following table displays the gender and rank of the height of the
students.

Student F F M M M F M M F M

Rank 1 2 3 4 5 6 7 8 9 10

Table: Female and male students ordered according to the rank of their height.

The test statistic

W =
4∑

i=1

R(xi ) = 1 + 2 + 6 + 9 = 18

is the sum of the ranks of the smaller, female, sample. We decide to use
the two-tailed alternative hypothesis (why?) and significance level 0.05.
Since the samples are small, we take the critical values of the test statistic
from tabulated values. The critical values are 12 and 32. Since
12 < 18 < 32, we do not reject the null hypothesis.
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Proportion test
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Proportion test

Proportion tests can be used for example when testing proportions of
faulty products in a production process.

Let x1, . . . , xn be the observed values of a random variable x . Assume that
the observed values are i.i.d. and come from the Bernoulli distribution with
parameter p.†

The null hypothesis: H0 : p = p0.

Possible alternative hypotheses:

H1 : p > p0 (one tailed),

H1 : p < p0 (one tailed),

H1 : p ̸= p0 (two tailed).

†Now P(x = 1) = p, P(x = 0) = 1− p, E[p] = p, and Var(x) = p(1− p).
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Proportion test

The test statistic C =
∑n

i=1 xi .

If the null hypothesis H0 is true, then the test statistic follows the
binomial distribution with parameters n and p = p0.

Under the null hypothesis H0, the expected value of the test statistic
is np0 (E[C ] = np0) and the variance of the test statistic is
np0(1− p0).

If the value of the test statistic is large or small compared to the
expected value np0, evidence against the null hypothesis is found.

The null hypothesis is rejected if the p-value is small enough.

Python:

C stat = sum(x) # x is a (0,1) vector of length n

# containing the outcomes of

# Bernoulli trials

p value = scipy.stats.binomtest(C stat,n,p=p0).pvalue
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Proportion test, p-value

The distribution of the test statistic C is tabulated and statistical software
can be used to calculate p-values of the test.

Let c denote the observed value of the test statistic C . Then the p-value
of the test is given as follows:

If the alternative hypothesis is H1 : p > p0, then the p-value is
p = P(C ≥ c).

If the alternative hypothesis is H1 : p < p0, then the p-value is
p = P(C ≤ c).

If the alternative hypothesis is H1 : p ̸= p0, then the p-value is
usually† defined as p =

∑
k:pC (k)≤pC (c)

pC (k), where pC denotes the
PMF of Bin(n, p0).

The probabilities P(C ≥ c) and P(C ≤ c) are calculated under H0.

†Especially, statistical software such as R or the Scipy library use this formula.
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Asymptotic proportion test

If the sample size is large, then under the null hypothesis H0, the
standardized test statistic

Z =
p̂ − p0√

p0(1− p0)/n
,

where p̂ = 1
n

∑n
i=1 xi is the unbiased estimator of the parameter p,

approximately follows the standard normal distribution.

The approximation is usually good enough if np̂ > 10 and n(1− p̂) > 10.
For smaller samples, the test relies on the exact distribution of the test
statistic.
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Numerical example

In anticipation of an upcoming election, an opinion poll was conducted. In
the poll, the sample size was 1000 and 420 out of the 1000 eligible voters
reported that they support the mayor. We want to test on significance
level 5% whether the true support is less than 50% of the population.

Null hypothesis: H0 : p = 0.5.

Alternative hypothesis: H1 : p < 0.5.

Since n = 1000 and p̂ = 420
1000 = 0.42 satisfy np̂ > 10 and n(1− p̂) > 10,

we can use normal approximation. The observed value of the Z-statistic is

z =
p̂ − p0√

p0(1− p0)/1000
=

0.42− 0.50√
0.52/1000

≈ −5.06.

The p-value is p = P(Z ≤ z) = Φ(−5.06) ≈ 2.10 · 10−7. H0 is rejected.
Python:
>>>scipy.stats.binomtest(420,1000,p=0.5,alternative=’less’)

2.348554631632085e-07 # exact binomial test

>>>scipy.stats.norm.cdf((0.42-0.50)/numpy.sqrt(0.5*0.5/1000))

2.1001969880109918e-07 # normal approximation 278



Two sample proportion test

In the two sample proportion test, parameters of two different Bernoulli
distributed samples are compared.

Let x1, . . . , xn be the observed values of a random variable x and let
y1, . . . , ym be the observed values of a random variable y . Assume that
the observed values x1, . . . , xn are i.i.d. and come from the Bernoulli
distribution with parameter px , and assume that the observed values
y1, . . . , ym are i.i.d. and come from the Bernoulli distribution with
parameter py . Furthermore, assume that xi and yj are independent for all
i , j .

The null hypothesis: H0 : px = py .

Possible alternative hypotheses:

H1 : px > py (one tailed),

H1 : px < py (one tailed),

H1 : px ̸= py (two tailed),
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Two sample proportion test

Calculate the sample proportions p̂x = 1
n

∑n
i=1 xi and

p̂y = 1
m

∑m
i=1 yi , and p̂ =

np̂x+mp̂y
n+m .

Calculate the test statistic

Z =
p̂x − p̂y√

p̂(1− p̂)( 1n + 1
m )

.

If the sample size is large, then under the null hypothesis H0, the test
statistic Z approximately follows the standard normal distribution.
The approximation is usually good enough if np̂x > 5, n(1− p̂x) > 5,
mp̂y > 5, and m(1− p̂y ) > 5.

If the value of the test statistic has large absolute value, then
evidence against the null hypothesis H0 is found.

The null hypothesis H0 is rejected if the p-value is small enough.

280



Testing general statistical assumptions
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In statistics, we very often make assumptions about the underlying
distribution. Most statistical methods become ineffective or give false
results if these assumptions do not hold. Hence it is very important to test
the distributional assumptions separately.
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Testing normality
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Normality assumption

The normal distribution has a central role in statistics. Multiple methods
for testing the normality of observations have been developed. Here, we
take a look at a couple of them.

In what follows, let x1, . . . , xn be i.i.d. observations of a random variable x .

The null hypothesis is H0 :“the random variable x is normally distributed.”

The alternative hypothesis is H1 :“the random variable x is not normally
distributed.”
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The Bowman and Shenton normality test

The Bowman and Shenton normality test is a function of skewness and
kurtosis:

BS = n

(
v2

6
+

k2

24

)
,

where v is the sample skewness coefficient and k is the sample kurtosis
coefficient.

If the skewness or kurtosis differ a lot from the skewness and/or kurtosis of
the normal distribution, the test statistic gets large values.

285



Bowman and Shenton normality test

If n is large, then under the null hypothesis H0, the test statistic BS
follows approximately the χ2(2) distribution.
The expected value of the test statistic under the null hypothesis H0

is E[BS ] = 2.
Large values of the test statistic compared to the expected value
suggest that the null hypothesis H0 is false.
The null hypothesis H0 is rejected if the p-value is small enough.
If one uses the formulae v̂ = m3

ŝ3
and k̂ = m4

ŝ4
− 3, where

ŝ =
√

1
n

∑n
i=1(xi − x)2 is the biased sample standard deviation, then

one obtains the closely related Jarque–Bera test statistic

JB = n

(
v̂2

6
+

k̂2

24

)
,

also used to assess normality. This test statistic is implemented in the
Python Scipy library as scipy.stats.jarque bera

Note that the Bowman and Shenton (resp. Jarque–Bera) normality
test is suitable for large samples only!
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Implementation using Python

import numpy as np

from scipy.stats import chi2

def BowmanShentonTest(x):

n = len(x)

xbar = np.mean(x)

std = np.std(x,ddof=1)

v = (1/n)*sum((x-xbar)**3)/std**3

k = (1/n)*sum((x-xbar)**4)/std**4-3

BS = n*(v**2/6+k**2/24)

q = chi2.cdf(BS,2)

return BS,1-q

# Note: if the distribution has 0 skewness and 0 kurtosis

# (ideal case for the normal distribution), then the test

# statistic BS == 0. Thus we choose a one sided alternative

# hypothesis of type ’greater’ since only large values of BS

# would be evidence of non-normality.
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Rank plot

Let x1, . . . , xn be i.i.d. observations from some distribution Fx . Let
z1 ≤ · · · ≤ zn be the observations x1, . . . , xn ordered from the smallest to
the largest one. Let y1 ≤ · · · ≤ yn be the ordered values of n
i.i.d. observations from the standard normal distribution N (0, 1) and let
E[yi ] be the expected value of yi .

Plot the pairs (E[yi ], zi ), i = 1, . . . , n. If the xi come from a normal
distribution, then the points (E[yi ], zi ) should approximately lie on a line.
If the points do not lie on a line, the sample differs from the normal
distribution. The plot can be used in detecting skewness of the
distribution and in finding outliers.

Rank plots are useful for quick visual assessment of the distribution of the
data: cf., e.g., the excellent StackExchange post
https://stats.stackexchange.com/a/101290
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Shapiro–Wilk normality test

The Shapiro–Wilk normality test statistic is the squared value of the
Pearson sample correlation coefficient calculated from the rank plot
points (E[yi ], zi ), i = 1, . . . , n.

Small values of the test statistic suggest that the assumption of
normality does not hold. Large values of the test statistic are in line
with the null hypothesis.

The null hypothesis is rejected if the p-value is small enough. The
test requires a large sample.

Statistical software can be used to calculate the p-value of the test.
Python: scipy.stats.shapiro(x)
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Numerical example

During the previous lecture, we considered an example where we compared
Brand X and Brand Y cookies. In the example, the price differences were
assumed to be symmetrically distributed. The data consisted of the cookie
prices in 10 randomly selected stores. We now wish to test the normality
of the price differences. The price differences are given below.

Difference: 0.04 0.19 -0.23 0.27 0.19 -0.13 0.03 -0.06 -0.24 0.01

Table: The differences of Brand X and Brand Y cookie prices.
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The Bowman and Shenton test: In order to calculate the test statistic, the
sample skewness and kurtosis coefficients v and k are needed. The sample
standard deviation is s ≈ 0.176 and the sample mean is x ≈ 0.07. Now

v =
m3

s3
=

1
n

∑n
i=1(xi − x)3

s3
≈ −0.0139

k =
m4

s4
− 3 =

( 1
n

∑n
i=1(xi − x)4

s4

)
− 3 ≈ −1.506.

The value of the test statistic is

BS = n

(
v2

6
+

k2

24

)
≈ 0.945.

Under the null hypothesis, the test statistic follows the χ2(2) distribution.
We decide to use the significance level 0.05. The critical values are then
0.051 and 7.378. Since 0.051 < 0.945 < 7.378, evidence of non-normality
was not found.

291



Rank plot (Q-Q plot):
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Figure: Rank plot of the price differences.
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Shapiro–Wilk test: calculated in Python using the function
scipy.stats.shapiro

data: differences

W = 0.9439, p-value = 0.5966

The p-value is large and thus evidence of non-normality was not found.
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Can these results be trusted? Were all the required assumptions fulfilled?
What was the type 2 error?
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χ2 tests
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Multinomial distribution

Consider a situation, where a random experiment has k mutually exclusive
outcomes and consider n independent runs of that experiment. The
multinomial distribution models the frequency distribution of the outcome
of these n independent random experiments.

The random variables x1, . . . , xk follow the multinomial distribution with
parameters n, p1, . . . , pk , if the probability mass function is

p(x1, . . . , xk) =
n!

x1! · · · xk !
px11 · · · pxkk ,

where
k∑

i=1

xi = n and
k∑

i=1

pi = 1.
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Assume that x1, . . . , xk follow multinomial distribution with parameters
n, p1, . . . , pk . If n is large, then

k∑
i=1

(xi − npi )
2

npi

approximately follows the χ2(k − 1) distribution.
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χ2 goodness-of-fit test

The χ2 goodness-of-fit test examines the discrepancy between observed
values and the values expected under some particular distribution of a
random variable x .

The null hypothesis H0 : “The random variable x follows distribution Fx
(with or without unknown parameters).”

The alternative hypothesis H1 : “The random variable x does not follow
distribution Fx (with or without unknown parameters).”
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χ2 goodness-of-fit test

Let x1, . . . , xn be i.i.d. observations of a random variable x .

Categorize the n observations into k categories.

Calculate the frequencies Oi , i = 1, . . . , k, where Oi is the observed
frequency of the category i . Note that

∑k
i=1Oi = n.

Let pi be the probability that, under the null hypothesis, the random
variable x belongs to the category i . Calculate the expected
frequencies Ei = npi of the observations in category i . Note that∑k

i=1 pi = 1.

Now, under the null hypothesis, the random variables O1, . . . ,Ok

follow the multinomial distribution with parameters n, p1, . . . , pk .
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χ2 goodness-of-fit test

Calculate the test statistic

χ2
g =

k∑
i=1

(Oi − Ei )
2

Ei
.

If n is large, then under the null hypothesis, the test statistic χ2
g

approximately follows χ2(k − 1− e) distribution, where e is the
number of estimated parameters.
The expected value of the test statistic, under the null hypothesis, is
E[χ2

g ] = k − 1− e.
Large values of the test statistic (compared to the expected value)
suggest that the null hypothesis H0 does not hold.
If the p-value is small enough, then the null hypothesis H0 is rejected.
If the value of the test statistic is large, the sample frequencies differ
greatly from the expected value and it is clear that the null hypothesis
should be rejected. However, if the value is very small, then the
sample frequencies differ less than expected. This is called overfitting
– usually, we are not concerned about this, so typically a one tailed
alternative hypothesis (of type alternative=’greater’) is used. 300



Goodness-of-fit test, Example 1

Let us examine the quality of giant mugs made in a ceramics factory. The
null hypothesis is that:

an error in the shape of the mug occurs with probability 2/14,

a color error occurs with probability 2/14,

both errors occur simultaneously with probability 1/14,

the probability of an error-free product is 9/14.

Consider a sample of 200 randomly selected mugs such that

40 mugs have an error in the shape,

44 have a color error,

26 mugs have both errors,

90 mugs are error-free.

Now O1 = 40, O2 = 44, O3 = 26, O4 = 90
E1 = 200 · 2

14 , E2 = 200 · 2
14 , E3 = 200 · 1

14 , E4 = 200 · 9
14

∴ χ2
g =

∑4
i=1

(Oi−Ei )
2

Ei
= 34.08. Under the null hypothesis, the test

statistic approximately follows the χ2(4− 1) = χ2(3) distribution. Since
P(χ2(3) ≥ 34.08) < 0.00001, the null hypothesis is rejected.
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Goodness-of-fit test, Example 1

The χ2 goodness-of-fit test is implemented in the Python Scipy library as
scipy.stats.chisquare

For example, we can solve the previous example numerically as follows:

from scipy.stats import chisquare

O = [40,44,26,90]

E = [200*2/14,200*2/14,200*1/14,200*9/14]

chisquare(O,E)

The output is

Power_divergenceResult(statistic=34.08,

pvalue=1.905621048402571e-07)
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Goodness-of-fit test, Example 2

Consider testing whether the monthly salary of Germans follows the
normal distribution. Select randomly n Germans and document the
salaries. The null hypothesis is that the observations come from a normal
distribution with an unknown expected value and an unknown variance.

Estimate the unknown parameters (µ and σ2) from the sample.
Discretize the continuous salary variable.
Calculate the observed category frequencies O1, . . . ,Ok , i.e., calculate
the number of observations in each category.
Calculate the category probabilities from the normal distribution. For
example,

. . . ,P(1900 < X ≤ 2000), P(2000 < X ≤ 2100), . . .

Calculate the expected category frequencies E1, . . . ,Ek .
Calculate the test statistic. Under the null hypothesis, the test
statistic approximately follows the χ2(k − 1− 2) = χ2(k − 3), where
k is the number of the used categories and we estimated
e = 2 parameters (µ and σ2). Calculate the p-value and based on
that, either reject or do not reject the null hypothesis. 303



χ2 homogeneity test

In the χ2 homogeneity test, several (r) samples are examined.

The null hypothesis H0 : “The samples come from (some) same
distribution.”

The alternative hypothesis H1 : “The samples do not come from the same
distribution.”
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χ2 homogeneity test

Consider several (r) independent samples. Assume that the observations
of each sample are i.i.d. Assume that the sample i , i ∈ {1, . . . , r}, has ni
observations.

Categorize all the observations into c categories of size Cj .
Calculate the frequencies Oij , i = 1, . . . , r , j = 1, . . . , c , where Oij is
the observed frequency of the observations of the sample i in category j

1 2 · · · c sum

1 O11 O12 · · · O1c n1
2 O21 O22 · · · O2c n2
· · · · · · · · · · · · · · · · · ·
r Or1 Or2 · · · Orc nr

sum C1 C2 · · · Cc n

Table: The observed frequencies.

Let pj = Cj/n. Under the null hypothesis, for each sample i , the
probability of the category j is the same pj .
Calculate the expected frequencies Eij = nipj .
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χ2 homogeneity test

1 2 · · · c sum

1 E11 E12 · · · E1c n1
2 E21 E22 · · · E2c n2
· · · · · · · · · · · · · · · · · ·
r Er1 Er2 · · · Erc nr

sum C1 C2 · · · Cc n

Table: The expected frequencies.
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χ2 homogeneity test

Calculate the value of the test statistic

χ2
h =

r∑
i=1

c∑
j=1

(Oij − Eij)
2

Eij
.

If n is large, then under the null hypothesis, the test statistic χ2
h

approximately follows the χ2((r − 1)(c − 1)) distribution.

Under the null hypothesis, the expected value of the test statistic is
(r − 1)(c − 1). (That is, E[χ2

h] = (r − 1)(c − 1).)

Large values of the test statistic compared to the expected value
suggest that the null hypothesis H0 is false. Small values of the test
statistic compared to the expected value are indicative of overfitting –
the data fits the model “too well”. Usually, we are not too concerned
about this, so typically a one tailed alternative hypothesis (of type
alternative=’greater’) is used.

The null hypothesis H0 is rejected if the p-value is small enough.
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Homogeneity test, Example

A city council is about to make decisions about building a new library.
There was a preliminary plan and 250 randomly selected men and 300
randomly selected women were asked to comment the plan. 169 men and
125 women thought that the plan was good, 52 men and 144 women did
not like the plan, and 29 men and 31 women did not have an opinion
about the plan.

good plan bad plan no opinion Total

Men 169 52 29 250
Women 125 144 31 300

Total 294 196 60 550

Table: Observed frequencies

good plan bad plan no opinion Total

Men 133.6 89.1 27.3 250
Women 160.4 106.9 32.7 300

Total 294 196 60 550

Table: Expected frequencies 308



Homogeneity test, Example

The value of the test statistic:

χ2
h =

r∑
i=1

c∑
j=1

(Oij − Eij)
2

Eij
= 45.7105.

Under the null hypothesis, the test statistic approximately follows the
χ2((2− 1)(3− 1)) = χ2(2) distribution. Since
P(χ2(2) ≥ 45.7105) < 0.00001, it can be concluded that the opinions
about the preliminary plan do differ between men and women.

Solution using Python:

import pandas as pd

from scipy.stats import chisquare

O = pd.DataFrame({’good plan’:[169,125],’bad plan’:

[52,144],’no opinion’:[29,31]},index=[’Men’,’Women’])

tmp = O.values # create expected frequency table

E = pd.DataFrame((tmp.sum(0)*tmp.sum(1)[:,None])/tmp.sum(),

columns=O.columns,index=O.index)

chisquare(O,E,ddof=(O.shape[0]-1)*(O.shape[1]-1),axis=None) 309



χ2 test of independence

The χ2 test of independence is applied to study whether two random
variables (factors) are stochastically independent.

Null hypothesis H0 :“the variables are independent.”

Alternative hypothesis: H1 :“the variables are not independent.”

310



χ2 test of independence

Consider a simple random sample of size n. Divide the observations to r
classes with respect to a factor A and to c classes with respect to a factor
B. Let Ri be the frequency of the observations in class i with respect to
the factor A. Let Cj be the frequency of the observations in class j with
respect to the factor B. Let Oij be the observed frequency of the
observations in class i with respect to the factor A and class j with respect
to the factor B.

1 2 · · · c sum

1 O11 O12 · · · O1c R1

2 O21 O22 · · · O2c R2

· · · · · · · · · · · · · · · · · ·
r Or1 Or2 · · · Orc Rr

sum C1 C2 · · · Cc n

Table: The observed frequencies.

Let Pj = Cj/n. Under the null hypothesis, for each category i of the
factor A, the probability of category j of the factor B has the same
probability Pj .
Calculate the expected frequencies Eij = RiPj . 311



1 2 · · · c sum

1 E11 E12 · · · E1c R1

2 E21 E22 · · · E2c R2

· · · · · · · · · · · · · · · · · ·
r Er1 Er2 · · · Erc Rr

sum C1 C2 · · · Ec n

Table: The expected frequencies.
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χ2 test of independence

Calculate the value of the test statistic

χ2
l =

r∑
i=1

c∑
j=1

(Oij − Eij)
2

Eij
.

If n is large, then under the null hypothesis, the test statistic
approximately follows the χ2((r − 1)(c − 1)) distribution.

The expected value of the test statistic is (r − 1)(c − 1). That is,
E[χ2

l ] = (r − 1)(c − 1).

Large values (compared to the expected values) of the test statistic
suggest that the null hypothesis is false. Small values of the test
statistic compared to the expected value are indicative of overfitting –
the data fits the model “too well”. Usually, we are not too concerned
about this, so typically a one tailed alternative hypothesis (of type
alternative=’greater’) is used.

The null hypothesis is rejected if the p-value is small enough.
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Test of independence, Example

There was an interesting presidential election and we wish to examine the
independence of the voting behavior of married men (M) and women (W).
The sample consists of 120 married couples and the presidential candidates
were A, B, C. In total, there are nine categories: AA, AB, AC, BA, BB,
BC, CA, CB, CC.

A, man B, man C, man Total

A, woman 15 7 8 30
B, woman 20 25 5 50
C, woman 10 10 20 40

Total 45 42 33 120

Table: Observed frequencies

A, man B, man C, man Total

A, woman 11.25 10.50 8.25 30
B, woman 18.75 17.50 13.75 50
C, woman 15.00 14.00 11.00 40

Total 45 42 33 120

Table: Expected frequencies 314



The value of the test statistic

χ2
r =

r∑
i=1

c∑
j=1

(Oij − Eij)
2

Eij
= 21.46.

Under the null hypothesis, the test statistic approximately follows the
χ2((3− 1)(3− 1)) = χ2(4) distribution. Since
P(χ2(4) ≥ 21.46) = 0.000257, we conclude that the voting behavior of
married men and women is not independent.

Solution using Python:

import pandas as pd

from scipy.stats import chisquare

O = pd.DataFrame({’A, man’: [15,20,10],’B, man’: [7,25,10],

’C, man’: [8,5,20]},index=[’A, woman’,’B, woman’,’C, woman’])

tmp = O.values # create expected frequency table

E = pd.DataFrame((tmp.sum(0)*tmp.sum(1)[:,None])/tmp.sum(),

columns=O.columns,index=O.index)

chisquare(O,E,ddof=(O.shape[0]-1)*(O.shape[1]-1),axis=None)
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Remark. The χ2 test of independence and the χ2 homogeneity test are
very similar. The test statistics and the degrees of freedom are calculated
identically. However, the tests measure very different phenomena.
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Analysis of variance
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Analysis of variance

The two sample t-test generalizes into analysis of variance.

In analysis of variance – ANOVA – the population consists of two or more
independent groups. Observations are assumed to follow a normal
distribution. Each group is independently sampled.

ANOVA tests the equality of the expected values of the groups.

For example, we could test if there is a difference in the mean monthly
salary in the 10 largest cities in Germany.
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ANOVA

ANOVA can be generalized in several different ways:

In multivariate analysis of variance, MANOVA, the tested expected
values are vectors. We could test the equality of the mean monthly
salary and weekly overtime in the 10 largest cities in Germany.

The population could also be divided into groups based on multiple
factors (multifactor ANOVA), of which some can be continuous
(analysis of covariance, ANCOVA). For example, we could divide
people into groups based on the city they live in and based on their
gender.

In multifactor MANOVA, the tested expected values are vectors.

.
...

In what follows, we only consider cases where the population is divided
into groups with respect to just one factor and the expected value that is
tested is univariate.
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ANOVA

Let x1,j , x2,j , . . . , xnj ,j be observed values of a random variable xj ,
j ∈ {1, . . . , k}. Assume that the observations x1,j , x2,j , . . . , xnj ,j are
i.i.d. and follow the normal distribution N (µj , σ

2), j ∈ {1, . . . , k}.

That is, we now have k random samples from univariate normal
distributions, and the variance of all the k normal distributions are
assumed to be equal.

Assume that the k samples are independent.

Null hypothesis H0 : µ1 = µ2 = · · · = µk .

Alternative hypothesis H1 : µi ̸= µj for some i ̸= j .
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ANOVA

In analysis of variance, the total variance is divided into two parts. The
first part measures the variation between the group means, and the second
part measures the variation within the groups. If the first part is much
larger than the second part, there is evidence against the null hypothesis
and it can be rejected.

The test of equality of the expected values is based on comparison of
between-groups variance and within-groups variance. Hence the name of
the method – analysis of variance.
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ANOVA

Calculate the group means

x j =
1

nj

nj∑
i=1

xi ,j

and the combined sample mean

x =
1

n

k∑
j=1

nj∑
i=1

xi ,j ,

where n =
∑k

j=1 nj .
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ANOVA

Consider the total sum of squares

SST =
k∑

j=1

nj∑
i=1

(xi ,j − x)2,

the variance between groups (group sum of squares)

SSG =
k∑

j=1

nj∑
i=1

(x j − x)2 =
k∑

j=1

nj(x j − x)2,

and the variance within groups (error sum of squares)

SSE =
k∑

j=1

nj∑
i=1

(xi ,j − x j)
2 =

k∑
j=1

(nj − 1)s2j ,

where s2j = 1
nj−1

∑nj
i=1(xi ,j − x j)

2.

Now the total sum of squares SST = SSG + SSE .
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ANOVA

The F -test statistic

F =
n − k

k − 1

SSG

SSE
.

Under the null hypothesis, the test statistic follows the F -distribution
with parameters (k − 1) and (n − k).

The expected value of the test statistic under H0 is E[F ] = n−k
n−k−2 .

Large values of the test statistic suggest that the null hypothesis H0

is false.

The null hypothesis H0 is rejected if the p-value is small enough.

Python:
F stat,p value = scipy.stats.f oneway(group1,...,groupk)
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F -distribution

F(10,∞)

F(10,50)

F(10,10)

F(10,4)
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x

y

F-distribution

Figure: F -distributions with different parameters.
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Numerical example

A research group was set to study whether the expected value of a specific
laboratory test L differs between patients that are on different medications
(A, B, C). 10 patients receiving medication A (group 1), 10 patients
receiving medication B (group 2), and 10 receiving medication C (group 3)
were picked randomly and lab test L was taken. The next table shows the
accurately measured laboratory test results.
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Group 1 (A) Group 2 (B) Group 3 (C)
0.111 0.109 0.119
0.123 0.107 0.124
0.109 0.103 0.125
0.120 0.104 0.117
0.115 0.098 0.111
0.112 0.110 0.120
0.117 0.101 0.118
0.110 0.115 0.116
0.119 0.099 0.122
0.116 0.111 0.119

Table: Laboratory test results for groups 1, 2, and 3.
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The group means are x1 = 0.1152, x2 = 0.1057, and x3 = 0.1191 and the
combined mean is x = 0.1133. The group variances are
s21 = 2.173333 · 10−5, s22 = 3.134444 · 10−5, and s23 = 1.654444 · 10−5.
The total sum of squares is

SST =
k∑

j=1

nj∑
i=1

(xi ,j − x)2 =
10∑
i=1

(x1,i − 0.1133)2 +
10∑
i=1

(x2,i − 0.1133)2

+
10∑
i=1

(x3,i − 0.1133)2 = 0.001576667,

the group sum of squares is

SSG =
k∑

j=1

nj(x j − x)2 =
3∑

j=1

10 · (x j − 0.1133)2 = 0.0009500667,

and the error sum of squares is

SSE =
k∑

j=1

(nj − 1)s2j

= 9 · (2.173333 · 10−5 + 3.134444 · 10−5 + 1.654444 · 10−5)

= 0.0006265999. 329



The value of the test statistic is

F =
n − k

k − 1

SSG

SSE
=

27

2
· 0.0009500667
0.0006265999

= 20.46904.

Under the null hypothesis, the test statistic follows the F -distribution with
parameters 2 and 27. The one-tailed critical value on 5% significance level
is 3.354 < 20.46904. The null hypothesis can be rejected.

Solution using Python:

import pandas as pd

from scipy.stats import f_oneway

data = pd.DataFrame({

"A": [.111,.123,.109,.120,.115,.112,.117,.110,.119,.116],

"B": [.109,.107,.103,.104,.098,.110,.101,.115,.099,.111],

"C": [.119,.124,.125,.117,.111,.120,.118,.116,.122,.119]

})

F_stat,p_value = f_oneway(*data.T.values)
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Pairwise comparison
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Pairwise comparison

If the null hypothesis (equality of the expected values) is rejected based on
the F -test, then we know at least two of the groups differ (but we do not
know which ones).

The next step in the analysis is pairwise comparison. The goal in pairwise
comparison is to identify the groups with statistically significant differences
in expected values.

A simple way to do this is to analyze the groups in pairs of two with the
t-test.

There are c = k(k−1)
2 pairs in total to compare and conducting all possible

comparisons has the side effect that the probability of type 1 error is
inflated greatly above its set level.
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Bonferroni’s method for pairwise comparison

Consider pairwise comparison of the expected values. There are
c = k(k−1)

2 pairs in total to compare. Let us consider analyzing the pairs
with the t-test.

Let β be the significance level of the c pairwise comparisons, i.e., the
(upper bound for the) probability that H0 is incorrectly rejected in a single
comparison. Let α be the probability that H0 is incorrectly rejected in at
least one test when the test is repeated c times, i.e., the probability of
making at least one type 1 error during the c tests.

Probability theory shows that α ≤ cβ. For this reason, if the significance
level α is chosen for the combined comparison, the individual comparisons
must be done on level β = α

c . (For pairwise tests, instead of p-value α,
one looks for p-values ≤ α

c .) This is known as the Bonferroni correction.

Example. We want to investigate, on significance level α = 0.05, the
differences in expected values for k = 5 groups. Then there are c = 10
pairs to compare. The t-test should be carried out at significance level
0.05
10 = 0.005 for each of the 10 pairs.

333



Bartlett’s test for equality of variances
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Bartlett’s test for equality of variances

ANOVA makes two key assumptions:

1. The groups are normally distributed.

2. The groups have equal variances.

As usual, the first assumption can (by CLT) be replaced with a large
enough sample size n.

The second assumption is also required for large samples. However,
ANOVA is robust to moderate violations from it. As a rule of thumb, the
largest group variance should be at most 4 times the smallest group
variance.

The variance assumption can also be tested using Bartlett’s test.
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Bartlett’s test for equality of variances

Let x1,j , x2,j , . . . , xnj ,j be observed values of a random variable xj ,
j ∈ {1, . . . , k}. Assume that the observations are i.i.d. and follow a normal
distribution N (µj , σ

2
j ), j ∈ {1, . . . , k}. Assume that all the k samples are

independent.

The null hypothesis H0 : σ
2
1 = σ2

2 = · · · = σ2
k .

The alternative hypothesis H1 : σ
2
i ̸= σ2

j for some i ̸= j .
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Bartlett’s test for equality of variances

Let

s2 =
1

n − k

k∑
j=1

nj∑
i=1

(xi ,j − x j)
2,

and

s2j =
1

nj − 1

nj∑
i=1

(xi ,j − x j)
2.

Let

B =
Q

h
,

where

Q = (n − k) ln s2 −
k∑

j=1

(nj − 1) ln s2j

and

h = 1 +
1

3(k − 1)

(( k∑
j=1

1

nj − 1

)
− 1

n − k

)
.
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Bartlett’s test for equality of variances

Bartlett’s test statistic

B =
Q

h
,

where

Q = (n − k) ln s2 −
k∑

j=1

(nj − 1) ln s2j

and

h = 1 +
1

3(k − 1)

(( k∑
j=1

1

nj − 1

)
− 1

n − k

)
.

If the sample size is large, then under the null hypothesis the test
statistic approximately follows the χ2 distribution with (k − 1)
degrees of freedom.
The expected value of the test statistic under H0 is E[B] = k − 1.
Large values of the test statistic suggest that the null hypothesisH0 is
false. The null hypothesis H0 is rejected if the p-value is small enough.
Python:
Q stat,p value = scipy.stats.bartlett(group1,...,groupk)

338



Kruskal–Wallis test
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Analysis of variance

ANOVA tests the equality of the expected values of normally distributed
samples. Next we consider a non-parametric alternative to ANOVA.
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Kruskal–Wallis test

The Kruskal–Wallis test is similar to one way analysis of variance, but it
does not require the normality assumption.

It is a generalization of the two sample Wilcoxon rank test.
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Kruskal–Wallis test

Let x1,j , x2,j , . . . , xnj ,j be observed values of a continuous random variable
xj , j ∈ {1, . . . , k}. Assume that the observations x1,j , x2,j , . . . , xnj ,j are
i.i.d. Assume also that the k samples are independent and that the
variables xj , j ∈ {1, . . . , k}, follow the same distribution up to location
shifts (i.e., xj follow otherwise the same distribution, but possibly with
different medians) and assume that the variables xj have population
medians mj , j ∈ {1, . . . , k}.

The null hypothesis H0 : m1 = m2 = · · · = mk .

The alternative hypothesis H1 : mi ̸= mj for some i ̸= j .
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Kruskal–Wallis test

The Kruskal–Wallis test is based on examining the ranks of the
observations.
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Kruskal–Wallis test

Combine the groups x1,j , x2,j , . . . , xnj ,j , j ∈ {1, . . . , k}, into one big sample

z1, z2, . . . , zn, where n =
∑k

j=1 nj . Order the observations zs from the
smallest value to the largest value. Let R(zs) be the rank of the
observation zs in the combined sample z1, z2, . . . , zn.

Calculate the group means of the ranks

r j =
1

nj

nj∑
zs=xi,j ,i=1

R(zs),

and the mean of the combined sample

r =
1

n

n∑
s=1

R(zs).
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Kruskal–Wallis test

Consider the group sum of squares, which describes the variation of the
ranks between the groups

k∑
j=1

nj(r j − r)2

and the total sum of squares, which describes the variation of the ranks in
the combined sample

n∑
s=1

(R(zs)− r)2.
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Kruskal–Wallis test

Kruskal–Wallis test statistic

K = (n − 1)

∑k
j=1 nj(r j − r)2∑n
s=1(R(zs)− r)2

.

Under the null hypothesis H0, if the sample size is large, the test
statistic approximately follows the χ2 distribution with k − 1 degrees
of freedom.

Under H0, the (asymptotic) expected value of the test statistic is
k − 1.

Large values of the test statistic suggest that the null hypothesis H0

is false.

The null hypothesis is rejected if the p-value is small enough.

Python:
K stat,p value = scipy.stats.kruskal(group1,...,groupk)
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Kruskal–Wallis test

Statistical software often calculate exact p-values for the Kruskal–Wallis
test when the sample size is small. With large sample sizes, the calculation
of exact p-values requires intense computations and in these cases
asymptotic p-values (based on the χ2 distribution) are used.
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Discrete distributions

We assumed above that the observations follow some continuous
distribution. However, the Kruskal–Wallis test can be used for discrete
observations as well. Then it is possible that some of the observations have
the same rank. In this case, all those observations are assigned to have the
median of the corresponding ranks. For example, if two observations have
the same rank corresponding to ranks 7 and 8, then both are assigned to
have rank 7.5. If three observations have the same ranks corresponding to
ranks 3, 4, and 5, then each is assigned to have rank 4.
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ANOVA vs. Kruskal–Wallis

ANOVA is explicitly a test for the equality of the expected values. The
Kruskal–Wallis test can, technically, be seen as a comparison of the
expected ranks. Hence, the Kruskal–Wallis test is in fact more general
than a test for the equality of the medians. It tests whether the probability
that a random observation from each group is equally likely to be above or
below a random observation from another group. The test is sensitive to
differences in medians and that is why it is usually considered a test for
the equality of medians.
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Example

Consider three student groups (1, 2, 3) and their statistics exam scores.
The table below displays the scores and the corresponding ranks (in
parenthesis).

Group 1 Group 2 Group 3
18.0 (14) 16.5 (11) 23 (22)

11.0 (4.5) 10.0 (3) 22 (20)

17.0 (12) 15.0 (8.5) 23 (22)

14.0 (7) 15.0 (8.5) 24 (24)

11.0 (4.5) 20.5 (17) 21 (18)

9.5 (2) 8.0 (1) 21.5 (19)

16.0 (10) 12.0 (6) 23 (22)

20.0 (16)

17.5 (13)

19.0 (15)
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Example

Calculate the rank means within groups:

r1 =
1

7
(14 + 4.5 + 12 + 7 + 4.5 + 2 + 10) =

54

7
= 7.714286,

r2 =
1

7
(11 + 3 + 8.5 + 8.5 + 17 + 1 + 6) =

55

7
= 7.857143,

r3 =
1

10
(22 + 20 + 22 + 24 + 18 + 19 + 22 + 16 + 13 + 15) =

191

10
= 19.1,

and the mean rank of the combined sample

r =
1

24
(54 + 55 + 191) =

300

24
= 12.5.
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Calculate the group sum of squares:

k∑
j=1

nj(r̄j − r̄)2 = 7 · (7.714286− 12.5)2 + 7 · (7.857143− 12.5)2

+ 10 · (19.1− 12.5)2 = 746.8143

and the total sum of squares:
n∑

s=1

(R(zs)− r̄)2

= (14− 12.5)2 + (4.5− 12.5)2 + (12− 12.5)2 + (7− 12.5)2

+ (4.5− 12.5)2 + (2− 12.5)2 + (10− 12.5)2 + (11− 12.5)2

+ (3− 12.5)2 + (8.5− 12.5)2 + (8.5− 12.5)2

+ (17− 12.5)2 + (1− 12.5)2 + (6− 12.5)2

+ (22− 12.5)2 + (20− 12.5)2 + (22− 12.5)2 + (24− 12.5)2

+ (18− 12.5)2 + (19− 12.5)2 + (22− 12.5)2

+ (16− 12.5)2 + (13− 12.5)2 + (15− 12.5)2

= 1147. 352



Example

Now

K = (n − 1)

∑k
j=1 nj(r j − r)2∑n
s=1(R(zs)− r)2

= (24− 1)
746.8143

1147
= 14.97535.

The p-value of the test is clearly less than 0.05 – the value 5.79
corresponds approximately to p-value 0.05. The null hypothesis can be
rejected. There is a statistically significant difference in the exam success
between the three groups.

Solution using Python:

import pandas as pd

from scipy.stats import kruskal

nan = float(’nan’)

data = pd.DataFrame({

"1": [18,11,17,14,11,9.5,16,nan,nan,nan],

"2": [16.5,10,15,15,20.5,8,12,nan,nan,nan],

"3": [23,22,23,24,21,21.5,23,20,17.5,19]})

K_stat,p_value = kruskal(*data.T.values,nan_policy=’omit’)
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Bonferroni’s method pairwise comparison

If the null hypothesis of the Kruskal–Wallis test is rejected, then the next
step is pairwise comparison.
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Bonferroni’s method pairwise comparison

Compare the pairwise equality/difference of the medians. There are

c = k(k−1)
2 pairs to compare.

The first idea would be to use the Wilcoxon two sample rank test for
pairwise comparison It should be noted that if the comparison is done on
significance level α, then the pairwise comparisons should be done on
significance level β = α

c . For example, if the significance level 0.05 is used
for the combined comparison, then the pairwise comparisons can be used
to reject the null hypothesis if the p-value is smaller than or equal to 0.05

c .
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Numerical example

Previously we applied ANOVA to examine whether the expected value of a
specific laboratory test L differs between patients that are on different
medications (A, B, C). The null hypothesis was rejected. We are now a bit
worried about the normality assumption and we decide to conduct pairwise
comparisons using the Wilcoxon two sample rank test. We decide to use
significance level 0.05.
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Group 1 (A) Group 2 (B) Group 3 (C)
0.111 0.109 0.119
0.123 0.107 0.124
0.109 0.103 0.125
0.120 0.104 0.117
0.115 0.098 0.111
0.112 0.110 0.120
0.117 0.101 0.118
0.110 0.115 0.116
0.119 0.099 0.122
0.116 0.111 0.119

Table: Laboratory test results for groups 1, 2, and 3.
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There are c = k(k−1)
2 = 3 pairs to compare. Thus, in pairwise comparison,

we reject the null hypothesis (equality of the medians) if the p-value is
smaller than or equal to 0.05

3 = 0.0166 . . .

Wilcoxon rank sum test with continuity correction
data: A and B
W=91, p-value = 0.002169
alternative hypothesis: true location shift is not equal to 0

Wilcoxon rank sum test with continuity correction
data: A and C
W=26, p-value = 0.07478
alternative hypothesis: true location shift is not equal to 0

Wilcoxon rank sum test with continuity correction
data: B and C
W=1.5, p-value = 0.0002821
alternative hypothesis: true location shift is not equal to 0

358



Two (A vs. B and B vs. C) of the p-values are smaller than
0.05
3 = 0.0166 . . . We conclude that the median of the laboratory test L of

the patients that are on medication B differs from the median of the
laboratory test L of the patients that are on medication A or on
medication C.
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Stochastic independence
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Independence

Two random variables are independent if the result of one does not in any
way help us predict the result of the other.

Formally, if P(x ∈ A, y ∈ B) = P(x ∈ A)P(y ∈ B) for all events A and B,
then the random variables x and y are independent.

If the above does not hold, then the random variables x and y are
dependent.

In statistics, the dependence of random variables is of great interest:

The dependence between the unemployment rate and the GDP
growth rate.

The dependence between alcohol consumption and the price of
alcohol.

The dependence between lung cancer incidences and smoking.

362



Linear dependence

Let x and y be random variables. Let

y = ax + b, a, b ∈ R, a ̸= 0.

Then the random variable y is a linear combination of the variable x and
thus the variables x and y are (completely) linearly dependent. Linear
dependence between two variables can be measured, for example, using
the Pearson correlation coefficient.
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Linear dependence

Let (x1, y1), . . . , (xn, yn) be i.i.d. observations of a bivariate random
variable (x , y). Then the sample covariance

sxy =
1

n − 1

n∑
i=1

(xi − x)(yi − y)

estimates the population covariance

σxy = E[(x − E[x ])(y − E[y ])]

and

ρ̂(x , y) =
sxy
sxsy

=

∑n
i=1(xi − x)(yi − y)√∑n

i=1(xi − x)2
∑n

i=1(yi − y)2

estimates the Pearson correlation coefficient

ρ(x , y) =
σxy
σxσy

.
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Linear dependence

Let (x1, y1), . . . , (xn, yn) be i.i.d. observations of a bivariate random
variable (x , y).

If the variables x and y are independent, then

E[(x − E[x ])(y − E[y ])] = E[x − E[x ]]E[y − E[y ]] = 0

and the Pearson correlation coefficient ρ(x , y) = 0.

If y = ax + b, a > 0 and b ∈ R, then ρ(x , y) = 1.

If y = ax + b, a < 0 and b ∈ R, then ρ(x , y) = −1.

In general, the Pearson correlation coefficient is a measure of the strength
of linear dependence between two random variables. The coefficient
ρ ∈ [−1, 1].
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Pearson correlation coefficient

Note that linear independence does not guarantee independence.

For example, if x ∼ U([−1, 1]) and y = x2, then the (linear) correlation
between the variables x and y is 0, even though they do depend on each
other.

Recall that normally distributed random variables are uncorrelated if and
only if they are independent.
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Example 1

1 0.8 0.4 0 -0.4 -0.8 -1

367



Example 2

1 1 1 -1 -1 -1
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Example 3

Correlation coefficients

0 0 0 0 0 0 0
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Probability density function of a bivariate normal distribution:

f (x , y) =
1

2π
√

1− ρ2(x , y)σxσy

× exp

(
− 1

2(1− ρ2(x , y))

(
(x − µx)

2

σ2
x

− 2ρ(x , y)
(x − µx)

σx

(y − µy )

σy
+

(y − µy )
2

σ2
y

))
.
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Parametric confidence interval

Let (x1, y1), . . . , (xn, yn) be i.i.d. observations of a bivariate random
variable (x , y). Assume that (x , y) follows a bivariate normal distribution.
Let

I =
(1 + ρ̂(x , y))− (1− ρ̂(x , y)) exp(2zα/2/

√
n − 3)

(1 + ρ̂(x , y)) + (1− ρ̂(x , y)) exp(2zα/2/
√
n − 3)

and let

u =
(1 + ρ̂(x , y))− (1− ρ̂(x , y)) exp(−2zα/2/

√
n − 3)

(1 + ρ̂(x , y)) + (1− ρ̂(x , y)) exp(−2zα/2/
√
n − 3)

,

where zα/2 = Φ−1(1− α
2 ) is the (1− α/2) · 100 percentile of the standard

normal distribution.

If the sample size n is large, then (l , u) estimates a level (1− α)
confidence interval for the Pearson correlation coefficient. Note that this
confidence interval can only be used under the assumption of bivariate
normal distribution. Note also that the confidence intervals for the
Pearson correlation coefficient provided by different statistical softwares
are almost always based on normality assumption.
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Nonparametric confidence interval

Let (x1, y1), . . . , (xn, yn) be i.i.d. observations of a bivariate random
variable (x , y). One can use bootstrapping to obtain nonparametric
confidence intervals for the Pearson correlation coefficient:

1. Pick a new random sample of size n from the observed values
(x1, y1), . . . , (xn, yn) with replacement, such that the new values are
selected one-by-one and the selected observation is returned back to
the original sample. (Note that this means that the same observation
can be selected multiple times.)

2. Calculate the Pearson correlation coefficient for the new sample
formed in the previous step.

Continued on the next slide!
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3. Repeat the previous steps several times and order the obtained
estimates from the smallest to the largest. Include also the original
estimate of the Pearson correlation coefficient.

4. Calculate an estimate for a (1− α)% confidence interval by selecting
a lower bound l that is smaller than (or equal to) 1− α

2 of the
ordered estimates and an upper bound u that is larger than (or equal
to) 1− α

2 if the estimates. (Assume, for example, that there are 999
bootstrap estimates. Then, in total, there are 1000 estimates – the
original one and the 999 new ones. Now, an estimated 90%
confidence interval (l , u) is obtained by choosing the 50th ordered
estimate as l and the 951st estimate as u. An estimate for the 95%
confidence interval (l , u) is obtained by choosing the 25th estimate as
l and the 976th estimate as u.)
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One sample test for the Pearson correlation coefficient
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One sample test for the Pearson correlation coefficient

The one sample test for the Pearson correlation coefficient compares the
Pearson correlation coefficient to a given constant.

Let (x1, y1), . . . , (xn, yn) be i.i.d. observations of a bivariate random
variable (x , y). Assume that (x , y) follows a bivariate normal distribution.

The null hypothesis: H0 : ρ(x , y) = ρ0.

The possible alternative hypotheses:

H1 : ρ(x , y) > ρ0 (one tailed),

H1 : ρ(x , y) < ρ0 (one tailed),

H1 : ρ(x , y) ̸= ρ0 (two tailed).
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One sample test for the Pearson correlation coefficient

The test statistic

z =
ar tanh(ρ̂(x , y))− ar tanh(ρ0)√

1
n−3

=

1
2 log

(1+ρ̂(x ,y)
1−ρ̂(x ,y)

)
− 1

2 log
(1+ρ0
1−ρ0

)√
1

n−3

.

If the sample size n is large, then under the null hypothesis, the test
statistic z approximately follows the standard normal distribution.

The expected value of the test statistic is 0.

Large absolute values of the test statistic suggest that the null
hypothesis H0 is false.

The null hypothesis H0 is rejected if the p-value is small enough.
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Two sample test for Pearson correlation coefficients
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Two sample test for Pearson correlation coefficients

The two sample test (correlation comparison test) compares the Pearson
correlation coefficients of two independent samples.

Let (x1, y1), . . . , (xn, yn) be i.i.d. observations of a bivariate random
variable (x , y) and let (z1,w1), . . . , (zm,wm) be i.i.d. observations of a
bivariate random variable (z ,w). Assume that (x , y) follows a bivariate
normal distribution with Pearson correlation coefficient ρ(x , y) and that
(z ,w) follows a bivariate normal distribution with Pearson correlation
coefficient ρ(z ,w). Assume that (xi , yi ) and (zj ,wj) are independent for
all i , j .

The null hypothesis H0 : ρ(x , y) = ρ(z ,w).

The possible alternative hypotheses:

H1 : ρ(x , y) > ρ(z ,w) (one tailed),

H1 : ρ(x , y) < ρ(z ,w) (one tailed),

H1 : ρ(x , y) ̸= ρ(z ,w) (two tailed).
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Two sample test for Pearson correlation coefficients

The test statistic

z =

1
2 log

(1+ρ̂(x ,y)
1−ρ̂(x ,y)

)
− 1

2 log
(1+ρ̂(z,w)
1−ρ̂(z,w)

)√
1

n−3 + 1
m−3

.

If n and m are large, then under the null hypothesis, the test statistic
z approximately follows the standard normal distribution.

The expected value of the test statistic is 0.

Large absolute values of the test statistic suggest that the null
hypothesis H0 is false.

The null hypothesis H0 is rejected if the p-value is small enough.
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Parametric significance test
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Parametric significance test

Let (x1, y1), . . . , (xn, yn) be i.i.d. observations of a bivariate random
variable (x , y). Assume that (x , y) follows a bivariate normal distribution.

The null hypothesis H0 : ρ(x , y) = 0.

The possible alternative hypotheses:

H1 : ρ(x , y) > 0 (one tailed),

H1 : ρ(x , y) < 0 (one tailed),

H1 : ρ(x , y) ̸= 0 (two tailed).
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Parametric significance test

The test statistic

t = ρ̂(x , y)

√
n − 2

1− ρ̂(x , y)2
.

Under the null hypothesis, the test statistic follows Student’s
t-distribution with n − 2 degrees of freedom.

The expected value of the test statistic is 0.

Large absolute values of the test statistic suggest that the null
hypothesis H0 does not hold.

The null hypothesis H0 is rejected if the p-value is small enough.
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Nonparametric significance test
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Nonparametric significance test

Let (x1, y1), . . . , (xn, yn) be i.i.d. observations of a bivariate random
variable (x , y).

The null hypothesis H0 : ρ(x , y) = 0.

The possible alternative hypotheses:

H1 : ρ(x , y) > 0 (one tailed),

H1 : ρ(x , y) < 0 (one tailed),

H1 : ρ(x , y) ̸= 0 (two tailed).
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Nonparametric significance test

Let (x1, y1), . . . , (xn, yn) be i.i.d. observations of a bivariate random
variable (x , y). The significance of the observed Pearson sample
correlation coefficient under the null hypothesis can be assessed using a
Monte Carlo permutation test:

1. Form n new pairs (x1, y
∗
1 ), . . . , (xn, y

∗
n ) from the original observed

values (x1, y1), . . . , (xn, yn) such that each original yj is used exactly
once in the new sample.

2. Calculate the Pearson correlation coefficient ρ̂(x , y∗) for the sample
(x1, y

∗
1 ), . . . , (xn, y

∗
n ).

3. Repeat steps 1 and 2 several times and estimate the probability of the
estimate ρ̂(x , y) under the null hypothesis using the values from step
2. That is, calculate the percentage of the estimates in step 2 that

satisfy ρ̂(x , y∗) ≥ ρ̂(x , y) (one tailed H1 : ρ(x , y) > 0);
satisfy ρ̂(x , y∗) ≤ ρ̂(x , y) (one tailed H1 : ρ(x , y) < 0);
satisfy |ρ̂(x , y∗)| ≥ |ρ̂(x , y)| (two tailed H1 : ρ(x , y) ̸= 0).

Remark. A more accurate procedure can be obtained by using the permutation test
without simulations: instead of simulating new pairs, all the n! possible combinations
are used. The probability of ρ̂(x , y) under the null hypothesis is estimated using all n!
correlation coefficients. 385



Spearman (rank) correlation coefficient
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Monotonic dependence

Let x and y be random variables. Let y = g(x), where g is a monotonic
(increasing or decreasing) function. Then the variable y is a monotonic
function of the variable x and the variables x and y are (completely)
monotonically dependent.

The monotonic dependence between two random variables can be
measured using the Spearman rank correlation coefficient.
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Spearman correlation coefficient

Let (x1, y1), . . . , (xn, yn) be i.i.d. observations of a bivariate random
variable (x , y). Let R(xi ), i ∈ {1, . . . , n}, be the rank of the observation
xi in the sample x1, . . . , xn and let R(yi ), i ∈ {1, . . . , n}, be the rank of
the observation yi in the sample y1, . . . , yn.

The Spearman rank correlation coefficient ρS(x , y) is the Pearson
correlation coefficient calculated for the rank sample

(R(x1),R(y1)), . . . , (R(xn),R(yn)).

The Spearman correlation coefficient is a measure of the strength of
monotonic dependence between the two random variables. The coefficient
ρS ∈ [−1, 1].

Confidence intervals for the Spearman correlation coefficient can be
estimated using bootstrap.
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Significance test

Let (x1, y1), . . . , (xn, yn) be i.i.d. observations of a bivariate random
variable (x , y).

The null hypothesis H0 : ρS(x , y) = 0.

The possible alternative hypotheses:

H1 : ρS(x , y) > 0 (one tailed),

H1 : ρS(x , y) < 0 (one tailed),

H1 : ρS(x , y) ̸= 0 (two tailed).
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Significance test

The test statistic

t = ρ̂S(x , y)

√
n − 2

1− ρ̂S(x , y)2
.

If n is large, then under the null hypothesis the test statistic t
approximately follows Student’s t-distribution with n − 2 degrees of
freedom. If the sample size is small, statistical software can be used
to calculate exact p-values for the test statistic.

The expected value of the test statistic is 0.

Large absolute values of the test statistic suggest that the null
hypothesis H0 is not true.

The null hypothesis H0 is rejected if the p-value is small enough.

The significance of the Spearman rank correlation coefficient can
alternatively be tested using the permutation test.
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Spearman rank correlation coefficient

It is possible that some of the sample points have the same rank. In that
case, all those points are assigned to have the median of the corresponding
ranks. For example, if two observations have the same rank, corresponding
to ranks 7 and 8, then both are assigned to have rank 7.5. If three
observations have the same rank, corresponding to ranks 3, 4, and 5, then
each is assigned to have rank 4.
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Numerical example

Twin sisters were asked to rank different cookie brands according to the
taste. The goal was to test, on significance level 5%, whether the cookie
preferences were monotonically dependent. The null hypothesis is
ρ(x , y) = 0.

rank 10 9 8 7 6 5 4 3 2 1

X (twin 1) J G D H A C B I E F
Y (twin 2) G H D C A B J E I F

Table: Cookie preferences of the twins.

The tabulated values can be converted to rank pairs:
(6, 6), (4, 5), (5, 7), (8, 8), (2, 3), (1, 1), (9, 10), (7, 9), (3, 2), (10, 4).

392



The sample standard deviations are sX = 3.02765 and sY = 3.02765 and
the sample covariance is sXY = 6.5. The Spearman rank correlation
coefficient is ρ̂S(X ,Y ) = 0.7090909. The test statistic has the value

t = ρ̂S(X ,Y )

√
n − 2

1− ρ̂S(X ,Y )2
=

0.7090909 ·
√
8

1− (0.7090909)2
= 2.844367.

Under the null hypothesis, the test statistic approximately follows
Student’s t-distribution with 10− 2 = 8 degrees of freedom. The critical
values on significance level 5% are −2.306 and 2.306. Since 2.844 > 2.306,
the null hypothesis is rejected and the alternative hypothesis is accepted.
The cookie preferences of the twins are monotonically dependent.

Q: What went wrong with the previous example?
A: The sample size in this example is quite small, so using asymptotic
p-values is questionable. It would be better to use the exact p-value
computed using statistical software or to use the permutation test.
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Words of warning

Dependence ̸= linear dependence!

Dependence does not imply causation! See Spurious Correlations:
https://www.tylervigen.com/spurious-correlations

394

https://www.tylervigen.com/spurious-correlations


Regression analysis
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Regression analysis

The aim in regression analysis is to study how a dependent variable
changes when one or more explanatory variables are varied. It can be used
to study, e.g., if the number of violent crimes depends on alcohol
consumption and if it does, how strong is this dependence.

Does salary depend on the education level and if it does, how strong
is this dependence?
Does a parent’s smoking have an effect on the height of a child and if
it does, how strong is this dependence?
Do crime rates depend on the income inequality level and if yes, how
strong is this dependence?
...

Possible goals in regression analysis:

Description of the dependence between the explanatory and
dependent variables. What is the type of the relationship? How
strong is the dependence?
Predicting the values of the dependent variable.
Controlling the values of the dependent variable.
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Linear model

There are several different models that can be used in regression analysis.
Today, we focus on linear regression.

Consider n observations (pairs) (x1, y1), . . . , (xn, yn) of (x , y). Assume that
the values yi are observed values of a random variable y and assume that
the values xi are observed non-random values of x . Assume that the
values yi depend linearly on the value xi . A simple (one explanatory
variable) linear model can be represented in the following way:

yi = b0 + b1xi + εi , i ∈ {1, . . . , n},

where the regression coefficients b0 and b1 are unknown constants and the
expected value of the residuals εi is E[εi ] = 0.
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Simple linear model
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Linear regression

Figure: As the values of the variable x increase, the values of the variable y
decrease.
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Linear model, assumptions

The following assumptions are usually made when simple linear models are
considered.

The measurement of the values xi is error-free.

The residuals are independent of the values xi .

The residuals are independently and identically distributed (i.i.d.).

The expected value of the residuals is E[εi ] = 0, i ∈ {1, . . . , n}.
The residuals have the same variance E[ε2i ] = σ2, i ∈ {1, . . . , n}.
The residuals are uncorrelated, i.e., ρ(εi , εj) = 0, i ̸= j .

Under these assumptions, the variable y has the following properties:

The expected value E[yi ] = b0 + b1xi , i ∈ {1, . . . , n}.
The variance Var(yi ) = Var(εi ) = σ2, i ∈ {1, . . . , n}.
The correlation coefficient ρ(yi , yj) = 0, i ̸= j .

399



Linear regression
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Linear regression

The linear model

yi = b0 + b1xi + εi , i ∈ {1, . . . , n},

has the following parameters: the regression coefficients b0 and b1, and
the variance of the residuals E[ε2i ] = σ2. These parameters are usually
unknown and must be estimated from the observations.

Under the assumption E[εi ] = 0 for all i ∈ {1, . . . , n}, the linear model can
be given as

yi = E[yi ] + εi , i ∈ {1, . . . , n},

where E[yi ] = b0 + b1xi is the so-called systematic part and εi is the
random part of the model.
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Regression line

The systematic part
E[yi ] = b0 + b1xi

of the linear model defines the regression line

y = b0 + b1x ,

where

b0 is the intersection of the regression line and the y -axis;

the slope b1 tells us how much the independent variable y changes
when the explanatory variable x grows by one unit;

the variance of the residuals E[ε2i ] = σ2 describes the deviation of the
observed values from the regression line.

The aim in linear regression analysis is to find estimates for the regression
coefficients b0 and b1. The estimates should be such that the estimated
regression line would explain the variation of the values of the dependent
variable with great accuracy.
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Least squares method

In the so-called l2 regression (least squares method), the least squares
estimates are

b̂1 =
sxy
s2x

= ρ̂(x , y)
sy
sx

and
b̂0 = y − b̂1x .

These estimates minimize the sum of squared differences

n∑
i=1

ε2i =
n∑

i=1

(yi − b0 − b1xi )
2.

The least squares estimates now give an estimated regression line

ŷ = b̂0 + b̂1x = y − b̂1x + ρ̂(x , y)
sy
sx
x

= y + ρ̂(x , y)
sy
sx
(x − x).
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Properties of the estimated regression line:

If ρ̂(x , y) > 0, then the line is increasing.

If ρ̂(x , y) < 0, then the line is decreasing.

If ρ̂(x , y) = 0, then the line is horizontal.
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Fitted values and residuals

The fitted value of the variable yi , i.e., the value given to the variable y by
the regression line at points xi , is

ŷi = b̂0 + b̂1xi , i ∈ {1, . . . , n}.

The residual ε̂i of the estimated model is the difference

ε̂i = yi − ŷi , i ∈ {1, . . . , n},

between the observed value yi (of the variable y) and the fitted value ŷi .

Note that yi = ŷi + ε̂i , i ∈ {1, . . . , n}.

The regression model explains the observed values of the dependent
variables the better, the closer the fitted values are to the observed ones.
In other words, the regression model explains the observed values of the
dependent variable the better, the smaller the residuals of the estimated
model are.
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Example
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Figure: The estimated regression line minimizes the squared sum of the residuals.
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Numerical example

We wish to model the dependence of the sales of Brand X cookies and
Brand Y cookies. We assume that the sales are linearly dependent, and try
to apply linear regression.

Brand X Brand Y

5673 5489
4892 5987
5735 5362
5382 5738
5982 4988
5487 5576
5764 5481
5933 4999
5298 5832
5561 5591
5721 5298
5386 5632

Table: Monthly sales of Brand X and Brand Y cookies. 407



The sample standard errors sX = 302.95 and sY = 302.85, the sample
covariance sXY = −86145.95, and the sample means X = 5567.833 and
Y = 5497.75. The estimated regression parameters

b̂1 =
sXY
s2X

=
−86145.95

302.952
= −0.938 . . .

and

b̂0 = Y − b̂1X = 5497.75− (−0.938 . . .) · 5567.833 = 10723.87.

An estimated regression model can now be given as

Ŷi = 10723.87− 0.938Xi .
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Fit Actual Residual

5399.040 5489 89.96
6132.108 5987 -145.11
5340.845 5362 21.15
5672.181 5738 65.82
5109.004 4988 -121.00
5573.625 5576 2.38
5313.625 5481 167.37
5154.997 4999 -156.00
5751.025 5832 80.97
5504.166 5591 86.83
5353.986 5298 -55.99
5668.426 5632 -36.43

Table: Fitted values and actual sales of Brand X cookies. The residuals
ϵ̂i = yi − ŷi have been tabulated as well.
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Figure: Brand Y cookies, sales and fit.
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Residual mean square estimation

If the assumptions of the linear model hold, then an unbiased estimate of
Var(εi ) = σ2 is

Var(ε̂) =
1

n − 2

n∑
i=1

(ε̂i − ε̂)2 =
1

n − 2

n∑
i=1

(ε̂i )
2 =

1

n − 2

n∑
i=1

(yi − ŷi )
2.

In the formula above, the number of the estimated parameters (b0 and b1)
is subtracted from the sample size n.
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Error sum of squares

Consider the total sum of squares (SST)

n∑
i=1

(yi − y)2,

and the error sum of squares (SSE)

n∑
i=1

(ε̂i )
2.

It can be shown that

SSE =
n∑

i=1

(ε̂i )
2 = (1− ρ̂(x , y)2)

n∑
i=1

(yi − y)2 = (1− ρ̂(x , y)2)SST .

Since ρ̂(x , y) ∈ [−1, 1], we have that SSE≤SST.
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Error sum of squares

The error sum of squares SSE is 0 if and only if all the observed values lie
on the same line. In this case, the linear regression model explains the
values of the dependent variable perfectly.

The error sum of squares SSE equals the total sum of squares if and only if
the sample correlation coefficient ρ̂(x , y) = 0. In this case, the linear
regression model fails to explain any part of the values of y .
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Model sum of squares

The model sum of squares SSM is defined as

SSM = SST − SSE .

The model sum of squares SSM describes the part of variation of the
observed values of y that is explained by the regression model.

There holds

SSM =
n∑

i=1

(ŷi − y)2,

and since y = ŷ , the equation can be given as

SSM =
n∑

i=1

(ŷi − ŷ)2.
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Coefficient of determination

The coefficient of determination is defined as

R2 = 1− SSE

SST
=

SSM

SST
.

The coefficient of determination R2 measures the proportion of SST
explained by the model.

There holds 0 ≤ R2 ≤ 1, and the coefficient of determination is usually
given as a percentage 100R2%.

The coefficient of determination R2 = (ρ̂(y , ŷ))2, where ρ̂(y , ŷ) is the
sample correlation coefficient of the observed values of the dependent
variable and the corresponding fitted values. In a simple linear regression
model with one explaining variable, R2 = (ρ̂(y , x))2.
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Properties of the coefficient of determination

The following conditions are equivalent:

The coefficient of determination R2 = 1.

All the residuals vanish: ε̂i = 0, i ∈ {1, . . . , n}.
All the observations (xi , yi ) lie on the same line.

The sample correlation coefficient ρ̂(x , y) = ±1.

The regression model completely explains the variation of the
observed values of the dependent variable y .
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Properties of the coefficient of determination

The following conditions are equivalent:

The coefficient of determination R2 = 0.

The regression coefficient b̂1 = 0.

The sample correlation coefficient ρ̂(x , y) = 0.

The regression model fails completely in explaining the variation of
the observed values of the dependent variable y .
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Numerical example

The numerical example from above continues. . .

Calculate the total sum of squares

SST =
n∑

i=1

(yi − y)2 =
12∑
i=1

(yi − 5497.75)2 = 1008932.25,

the error sum of squares

SSE =
n∑

i=1

(ε̂i )
2 = 119482.3

and the model sum of squares

SSM = SST − SSE = 1008932.25− 119482.3 = 889449.95.

Now, the coefficient is determination

R2 =
SSM

SST
=

889449.95

1008932.25
≈ 0.8816.

Is this a good model?
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About the assumptions: We assumed above that the values xi of the
explanatory variable x are non-random. In linear regression, the values xi
can very well also be assumed to be random.

Words of warning:

The regression model should not be used to predict any values of the
range of x . Tail behavior can differ from majority of the data.

If there is nonlinear dependence between x and y , then linear
regression is not a suitable approach.

The least squares method (l2 regression) is very sensitive to outliers
(i.e., it is non-robust).
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Example, linear regression
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Figure: Estimated regression line and residuals.
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Example, outlier
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Figure: Estimated regression line and residuals. Note the effect of an outlier.
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Example, heteroscedasticity
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Figure: Estimated regression line and residuals. Note that the variance of the
residuals increases.
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Example, non-linear dependence
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Figure: Estimated regression line and residuals. Note the clear non-linear
dependence.
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Tests and confidence intervals for linear regression
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Consider n observations (pairs) (x1, y1), . . . , (xn, yn) of (x , y). Assume that
the values yi are observed values of a random variable y and assume that
the values xi are observed non-random values of x . Assume that the
values yi depend linearly on the value xi . A simple (one explanatory
variable) linear model can be presented in the following way:

yi = b0 + b1xi + εi , i ∈ {1, . . . , n},

where the regression coefficients b0 and b1 are unknown constants and the
expected value of the residuals εi is E[εi ] = 0.
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Linear model, assumptions for parametric tests and
confidence intervals

We now consider testing the parameters of a linear regression model and
calculating confidence intervals for the estimated parameters under
classical assumptions.

Measurement of the values xi is error-free.

The residuals are independent of the values xi .

The residuals are independently and identically distributed (i.i.d.).

The expected value of the residuals is E[εi ] = 0.

The residuals have the same variance E[ε2i ] = σ2.

The residuals are uncorrelated, i.e., ρ(εi , εj) = 0, i ̸= j .

The residuals are normally distributed.

427



Slope of the regression line
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Testing the slope of the regression line

The null hypothesis:
H0 : b1 = b01

(typically null hypothesis b1 = 0 is tested).

Possible alternative hypotheses:

H1 : b1 > b01 (one tailed),

H1 : b1 < b01 (one tailed),

H1 : b1 ̸= b01 (two tailed).
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Testing the slope of the regression line

t-test statistic

t =
b̂1 − b01

s/(sx
√
n − 1)

,

where s2 = Var(ε̂) = 1
n−2

∑n
i=1(ε̂i )

2 (see previous lecture) and s2x is
the sample variance of the variable x .

Under the null hypothesis H0, the test statistic follows Student’s
t-distribution with n − 2 degrees of freedom.

Under the null hypothesis H0, the expected value of the test statistic
is E[t] = 0.

Large absolute values of the test statistic suggest that the null
hypothesis H0 does not hold.

The null hypothesis H0 is rejected if the p-value is small enough.
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Slope of the regression line, confidence interval

Under the normality assumption on the residuals, the (1− α) · 100%
confidence interval for the slope of the regression line can be given as(

b̂1 − tn−2,α/2
s

sx
√
n − 1

, b̂1 + tn−2,α/2
s

sx
√
n − 1

)
,

where s2 = Var(ε̂), s2x is the sample variance of the variable x , tn−2 is
Student’s t distribution with n − 2 degrees of freedom, and tn−2,α/2 is the
(1− α/2) · 100 percentile of the t(n − 2) distribution.
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Intercept/constant term
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Testing the constant term of the regression line

The null hypothesis:
H0 : b0 = b00.

Possible alternative hypotheses:

H1 : b0 > b00 (one tailed),

H1 : b0 < b00 (one tailed),

H1 : b0 ̸= b00 (two tailed).
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Testing the constant term of the regression line

t-test statistic

t =
b̂0 − b00
s
√∑n

i=1 x
2
i

sx
√

n(n−1)

,

where s2 = Var(ε̂) = 1
n−2

∑n
i=1(ε̂i )

2 and s2x is the sample variance of
the variable x .

Under the null hypothesis H0, the test statistic follows Student’s
t-distribution with n − 2 degrees of freedom.

Under the null hypothesis H0, the expected value of the test statistic
is E[t] = 0.

Large absolute values of the test statistic suggest that the null
hypothesis H0 does not hold.

The null hypothesis H0 is rejected if the p-value is small enough.
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Intercept, confidence interval

Under normality assumption, (1− α) · 100% confidence interval for the
constant term of the regression line can be given as

(
b̂0 − tn−2,α/2

s
√∑n

i=1 x
2
i

sx
√

n(n − 1)
, b̂0 + tn−2,α/2

s
√∑n

i=1 x
2
i

sx
√
n(n − 1)

)
,

where s2 = Var(ε̂), s2x is the sample variance of the variable x , tn−2 is
Student’s t-distribution with n − 2 degrees of freedom, and tn−2,α/2 is the
(1− α/2) · 100 percentile of the t(n − 2) distribution.
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Predicting
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Predicting the values of variable y

A prediction ỹ for the value of the variable y , when x has value x̃ , can be
given as

ỹ |x̃ = b̂0 + b̂1x̃ .

The more there are observations, the smaller the variance σ2 is, and the
closer x̃ is to the sample mean of x

’
then the better (more accurate) the

prediction is. Note that x̃ should be on the range of the observed values of
the variable x .
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Predicting the values of variable y

Under normality assumption, a (1− α) · 100% confidence interval for the
value of y , when x has value x̃ , can be given as

b̂0 + b̂1x̃ ± tn−2,α/2s

√
1 +

1

n
+

(x̃ − x)2

(n − 1)s2x
,

where s2 = Var(ε̂), s2x is the sample variance of the variable x , tn−2 is
Student’s t-distribution with n − 2 degrees of freedom, and tn−2,α/2 is the
(1− α/2) · 100 percentile of the t(n − 2) distribution.
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Predicting the expected value of variable y

A prediction µ̂y for the expected value E[y ], when x has value x̃
’
can be

given as
µ̂y |x̃ = b̂0 + b̂1x̃ .

Remarks:

Note that ỹ |x̃ estimates the value of a random variable while µ̂y |x̃
estimates the expected value (constant). The estimate ỹ |x̃ estimates
the values of the variable on an individual level when x has value x̃ ,
while the estimate µ̂y |x̃ estimates the mean value of the variable y
when x has value x̃ .

Even though the estimates are the same, the corresponding
confidence intervals are not! The confidence interval for the value of
y is wider. It is easier to predict average behavior than to predict
individual values.
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Predicting the expected value of variable y

Under normality assumption, a (1− α) · 100% confidence interval for E[y ],
when x has value x̃ , can be given as

b̂0 + b̂1x̃ ± tn−2,α/2s

√
1

n
+

(x̃ − x)2

(n − 1)s2x
,

where s2 = Var(ε̂), s2x is the sample variance of the variable x , tn−2 is
Student’s t-distribution with n − 2 degrees of freedom, and tn−2,α/2 is the
(1− α/2) · 100 percentile of the t(n − 2) distribution.
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Numerical example

Last lecture, we obtained the regression model

ŷ = b̂0 + b̂1x , b̂0 = 10723.87 and b̂1 = −0.9386

for the cookie sales of Brand Y (dependent variable) with respect to the
cookie sales of Brand X (explanatory variable). We wish to derive the 95%
confidence interval for the sales when 5500 units of BrandX cookies are sold.

On the condition that ĉ = 5500 units of Brand X cookies are sold, the
prediction of the sales of Brand Y cookies is

j̃ |c̃ = b̂0 + b̂1c̃ = 10723.87− 0.9386 · 5500 = 5561.57.

The corresponding confidence interval can be given as

b̂0 + b̂1c̃ ± tn−2,α/2s

√
1 + 1

n + (c̃−c)2

(n−1)s2c
= 5561.57± 257.974,

where we plugged in the values tn−2,α/2 = t10,0.025 = 2.228, c = 5567.833,
sc = 302.95, and s2 = 11948.42.

∴ If 5500 units of Brand X cookies are sold, then the prediction for the
sales of Brand Y cookies is 5562 units. A 95% confidence interval for the
prediction is (5308,5816).
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Bootstrap confidence intervals
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Bootstrap confidence intervals for the regression
coefficients

Consider the estimated residuals ε̂1, . . . , ε̂n and the fitted values ŷ1, . . . , ŷn
of the regression model. Collect a new sample ε̌1, . . . , ε̌n by picking n data
points randomly with replacement from ε̂1, . . . , ε̂n. Form a bootstrap
sample

(x1, y̌1), . . . , (xn, y̌n),

where
y̌i = ŷi + ε̌i .

Calculate estimates for the regression coefficients b0 and b1 from the
bootstrap sample. Repeat this several times, for example 999 times. Order
now all the estimates (the original ones and the 999 bootstrap estimates)
from the smallest to the largest. Now an estimate for the 90% confidence
interval (l , u) is obtained by choosing the 50th ordered estimate as l and
the 951st estimate as u. An estimate for the 95% confidence interval (l , u)
is obtained by choosing the 25th estimate as l and the 976th estimate as u.
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Prediction, bootstrap confidence intervals

A prediction µ̂y for the expected value E[y ], when x has value x̃ , was
given as

µ̂y |x̃ = b̂0 + b̂1x̃ .

Consider bootstrap estimates for the regression coefficients b0 and b1.
One can calculate bootstrap confidence intervals for µ̂y |x̃ by replacing b̂0
and b̂1 by bootstrap estimates in the formula above. That is then
repeated, for example, 999 times. After that, all the 1000 predictions are
ordered and bootstrap confidence intervals are obtained.
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Coefficient of determination, bootstrap confidence intervals

Bootstrap samples
(x1, y̌1), . . . , (xn, y̌n)

can be used also for calculating bootstrap confidence intervals for the
coefficient of determination of the model. Coefficient of determination is
estimated (separately) from every bootstrap sample. One can use, for
example, 999 bootstrap samples. After that, all the 1000 estimates are
ordered and bootstrap confidence intervals are obtained.
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Bootstrap confidence intervals, alternative approach

Instead of bootstrapping from the estimated residuals, one may take
bootstrap samples directly from the original observations
(x1, y1), . . . , (xn, yn). Parameter estimates are then calculated from the
bootstrap samples, the estimates are ordered and bootstrap confidence
intervals are obtained.
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Multivariate linear regression
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Multiple linear model

Consider n observations (pairs) (x1, y1), . . . , (xn, yn) of (x , y). Assume that
the values yi are observed values of a random variable y and assume that
the values xi are observed non-random values of a p-dimensional x . (Here,
xi is a p-vector.) Assume that p < n and that the values of the variable y
depend linearly on the values of the variable x .

A multiple linear model can be presented in the following way

yi = b0 + b1(xi )1 + b2(xi )2 + · · ·+ bp(xi )p + εi , i ∈ {1, . . . , n}, (1)

where the regression coefficients b0, . . . , bp are unknown constants and the
expected value of the residuals εi is E[εi ] = 0.

The model (1) can also be expressed in vectorized form as

yi = b0 + bTxi + εi , i ∈ {1, . . . , n},

where b = [b1, . . . , bp]
T and xi = [(xi )1, . . . , (xi )p]

T.
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Linear model, general assumptions

The following assumptions are usually made when multiple linear models
are considered.

The measurement of the values xi is error-free.

The values (xi )s , (xi )k , s ̸= k , are mutually independent.

The residuals are independent of the values xi .

The residuals are independently and identically distributed (i.i.d.).

The expected value of the residuals is E[εi ] = 0.

The residuals have the same variance E[ε2i ] = σ2, i = 1, . . . , n.

The residuals are uncorrelated, i.e., ρ(εi , εj) = 0, i ̸= j .

—

Under the assumptions above, the variable y has the following properties:

The expected value E[yi ] = b0 + bTxi , i = 1, . . . , n.

The variance Var(yi ) = Var(εi ) = σ2, i = 1, . . . , n.

The correlation coefficient ρ(yi , yj) = 0, i ̸= j .
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Multiple linear regression
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Multiple linear regression

The multiple linear model

yi = b0 + bTxi + εi , i = 1, . . . , n,

has the following parameters: regression coefficients b0 and
b = (b1, . . . , bp)

T and the variance of the residuals E[ε2i ] = σ2. These
parameters are usually unknown and must be estimated from the
observations.

—

Under the assumption E[εi ] = 0 for all i = 1, . . . , n, the linear model can
be given as

yi = E[yi ] + εi , i = 1, . . . , n,

where E[yi ] = b0 + bTxi is the systematic part and εi is the random part
of the model.
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Regression plane

The systematic part of the linear model

E[yi ] = b0 + bTxi

defines the regression plane

y = b0 + bTx .

The variance of the residuals E[ε2i ] = σ2 describes the deviation of the
observed points from the regression plane.

—

The aim in multiple linear regression analysis is to find estimates for the
regression coefficients b0 and b = (b1, . . . , bp)

T. The estimates should be
such that the estimated regression plane would explain the variation of the
values of the dependent variable with great accuracy.
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Least squares method

Let β = (b0, b1, . . . , bp)
T. Let X be an n× (p + 1) data matrix, where the

elements of the first column are all equal to 1 and where the columns
2, . . . , p + 1 are the observations xi . Let Y = (y1, . . . , yn)

T be an n × 1
data vector.

The least squares estimates for b0 and b = (b1, . . . , bp)
T are given by

β̂ = (b̂0, b̂1, . . . , b̂p)
T = (XTX )−1XTY .

These estimates minimize the sum of the squared differences

n∑
i=1

ε2i =
n∑

i=1

(yi − b0 − bTxi )
2.

Remark. We assumed above that the matrix XTX is non-singular. If XTX
is singular, then some of the explanatory variables must be fully linearly
dependent. In that case, some of the variables can be excluded from the
analysis without losing any information.
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Fits and residuals

The least squares estimates now give an estimated regression plane

ŷ = b̂0 + b̂Tx .

The fitted values of the variable yi , i.e., the values given to the variable y
by the regression plane at point xi , are

ŷi = b̂0 + b̂Txi , i = 1, . . . , n.

The residuals ε̂i of the estimated model are the differences

ε̂i = yi − ŷi , i = 1, . . . , n

of the observed values yi (of the variable y) and the fitted values ŷi .

The regression model explains the observed values of the dependent
variable the better, the closer the fitted values are to the observed ones. In
other words, the regression model explains the observed values of the
dependent variable the better, the smaller the residuals of the estimated
model are.
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Residual mean square estimation

If the assumptions of the linear model hold, then an unbiased estimate of
the Var(εi ) = σ2 is

Var(ε̂) =
1

n − p − 1

n∑
i=1

ε̂2i .

(In the formula above, the number of the estimated parameters
(b0, b1, . . . , bp) is subtracted from the sample size n.)
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Sums of squares

The total sum of squares (SST)

n∑
i=1

(yi − y)2

measures total variation of the observed values yi . The error sum of
squares (SSE)

n∑
i=1

(ε̂i )
2

measures the variation of the residuals ε̂i . The model sum of squares
(SSM)

n∑
i=1

(ŷi − y)2

measures the part of the variation of the dependent variable y that is
explained by the regression model.
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Coefficient of determination

The coefficient of determination

R2 = 1− SSE

SST
=

SSM

SST

measures the proportion of SST explained by the model.

There holds 0 ≤ R2 ≤ 1 and the coefficient of determination is usually
given as a percentage 100R2%.
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Numerical example

The effect of nonpareils and chocolate chops on the mass of cookies is
examined in a lab.

Nonpareil Chocolate chip Mass

15 5 24
13 7 28
12 9 26
11 7 27
10 10 29
9 12 31
17 2 19
16 4 21
12 8 25
3 15 36

Table: The number of nonpareils and chocolate chips, as well as the measured
masses of a sample of cookies.
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The least squares estimates for the regression coefficients (b0, b1, b2)
T can

be calculated using

X =



1 15 5
1 13 7
1 12 9
1 11 7
1 10 10
1 9 12
1 17 2
1 16 4
1 12 8
1 3 15


and Y =



24
28
26
27
29
31
19
21
25
36


.

The estimates are

(b̂0, b̂1, b̂2)
T = (XTX )−1XTY = (29.9718,−0.6562, 0.5533)T.

Now one obtains the fits ŷi = b̂0 + b̂Txi for the mass and can calculate the
residuals ε̂i = yi − ŷi .
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Nonpareil Chocolate chip Mass Fit Residual

15 5 24 22.8953 1.1047
13 7 28 25.3143 2.6857
12 9 26 27.0771 -1.0771
11 7 27 26.6267 0.3733
10 10 29 28.9428 0.0572
9 12 31 30.7056 0.2944
17 2 19 19.9230 -0.9230
16 4 21 21.6858 -0.6858
12 8 25 26.5238 -1.5238
3 15 36 36.3027 -0.3027

Table: The effect of nonpareils and chocolate chips on the mass. Also the fitted
values and residuals are tabulated.
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The sample mean of the mass y = 26.6 and the total sum of squares

SST =
n∑

i=1

(yi − y) =
10∑
i=1

(yi − 26.6)2 = 214.4.

The error sum of squares

SSE =
10∑
i=1

(ε̂i )
2 = 13.5586

and the model sum of squares

SSM =
n∑

i=1

(ŷi − y)2 =
10∑
i=1

(ŷi − 26.6)2 = 200.8307.

Thus, the coefficient of determination is

R2 =
SSM

SST
=

200.8307

214.4
= 0.9367 = 93.67%.
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Multivariate linear regression
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Multivariate linear model

Consider n observations (pairs) (x1, y1), . . . , (xn, yn) of (x , y). Assume that
the values yi are the observed values of a q-variate random vector y and
assume that the values xi are observed non-random values of a p-variate
x . Assume that p < n and that the values of the variable y depend linearly
on the variable x .

A multivariate linear model can be given as

yi = b0 + BTxi + εi , i = 1, . . . , n,

where the elements of a q × 1 vector b0 and p × q regression matrix B are
unknown constants and the expected value of the residuals εi is E[εi ] = 0.
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Linear model, general assumptions

The following assumptions are usually made when multivariate linear
models are considered.

The measurement of the values xi is error-free.

The values (xi )s , (xi )k , s ̸= k , are mutually independent.

The residuals are independent of the values xi .

The residuals are independently and identically distributed (i.i.d.).

The expected value of the residuals E[εi ] = 0, i = 1, . . . , n.

The residuals have the same covariance matrix E[εiεTi ] = Σ,
i = 1, . . . , n.

The residuals are uncorrelated, i.e., ρ((εi )k , (εj)k) = 0 for all k and
for all i ̸= j .
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Generalized least squares

Let β = (b0, b1, . . . , bp)
T. Let X be an n× (p + 1) data matrix, where the

elements of the first column are all equal to 1 and where the columns
2, . . . , p+1 are the observations xi . Let Y be an n× q data matrix, where
the columns are the observations yi .

Now the regression parameters b0 and B can be estimated using

β̂ = [b̂0, B̂
T]T = (XTX )−1XTY .
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Fits and residuals

The fitted values of the variable yi , i.e., the values given to the variable y
by the regression model at points xi , are

ŷi = b̂0 + B̂Txi , i = 1, . . . , n.

The fits can also be expressed as a matrix

Ŷ = X β̂.

The residuals ε̂i of the estimated model are the differences

ε̂i = yi − ŷi , i = 1, . . . , n,

of the observed values yi (of the variable y) and the fitted values ŷi .
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Trace correlation and determinant correlation

Assume that the matrix Y is centered so that the columns of Y have zero
mean. (That is, the sample mean is subtracted from the original
observations.) Let X be as above, and let β̂ be calculated for the centered
data. Let

Ŷ = X β̂,

Ê = Y − X β̂

and let
D = (Y TY )−1ÊTÊ .

It is straightforward to see that the matrix ÊTÊ ranges between zero,
when all the variation of Y is explained by the regression model, and
Y TY , when no part of the variation in Y is explained by X . Therefore
I − D varies between the identity matrix and the zero matrix. It can be
shown that all the eigenvalues of I − D lie between 1 and 0.
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Trace correlation and determinant correlation

It would be desirable that a multivariate coefficient of determination would
range between zero and one. This is obtained by either using trace
correlation rT or determinant correlation rD :

r2T =
1

p
tr(I − D),

r2D = det(I − D).

Note that the coefficient rD is zero if and only if at least one of the
eigenvalues of I − D is zero, while rT is zero if and only if all the
eigenvalues of I − D are zero.

It is possible to construct parametric tests and confidence intervals for the
parameters in multiple and multivariate regression analysis. Alternatively,
one can consider bootstrapping.
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Selecting variables
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Selecting variables

In multiple and multivariate regression analysis, the explanatory variables
are usually assumed to be independent. Perfect independence is rarely
achieved if more than one explanatory variables are used. Still, the
explanatory variables may not be highly correlated. Multicollinearity makes
the model unstable and complicates assessing the effects of different
explanatory variables separately.
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Variance inflation factor

The variance inflation factor (VIF) can be used to measure the
multicollinearity of the explanatory variables. The VIF for the explanatory
variable (xi )k is defined as

VIFk =
1

1− R2
k

,

where R2
k is the coefficient of determination for a model where (xi )k is the

dependent variable and the rest of (xi )s are explanatory variables. VIF is
calculated separately for each explanatory variable (xi )k . If the variable
(xi )k is independent from the other explanatory variables, then VIF = 1.
On the other hand, VIF ≥ 10 suggests that multicollinearity is present.

In multiple and multivariate regression models the aim is to select variables
such that the coefficient of determination is as high as possible and the
explanatory variables are as independent as possible. VIF (or some other
measure of dependence) can be used in selecting the variables. Variables
can be added and removed one by one and the changes in VIF and
coefficient of determination can be tracked.
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Cookie example continues

In this example VIF is used to assess multicollinearity of nonpareils and
chocolate chips.

Nonpareil Chocolate chip

15 5
13 7
12 9
11 7
10 10
9 12
17 2
16 4
12 8
3 15

Table: Cookie data, number of nonpareils and chocolate chips.
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The sample standard deviation for nonpareil sx = 4.022161 and chocolate
chips sy = 3.842742, the sample means x = 11.8 and y = 7.9, and the
sample correlation coefficient ρ̂(x , y) = −0.9647379 are needed. Fit

ŷi = y + ρ̂(x , y)
sy
sx
(xi − x) = 7.8 + (−0.9647379)

3.842742

4.022161
(xi − 11.8).

Total sum of squares SST = 113, error sum of squares SSE = 9.307418,
and model sum of squares SSM = 123.6926. Coefficient of determination

R2 =
SSM

SST
=

123.6926

133
= 0.9300195

and

VIF =
1

1− R2
=

1

1− 0.930 . . .
= 14.28969.
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Words of warning

Regression models should not be used to predict any values outside of
the range of x . Tail behavior can differ from majority of the data.

If there is nonlinear dependence between x and y , then linear
regression is not a suitable approach.

The least squares method (l2 regression) is very sensitive to outlines
(i.e., it is non-robust).
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Parameter identification for non-linear models
and the maximum likelihood estimator
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Linear regression is a prototypical example of a parameter identification
problem. In addition to linear models, one may also be interested in
parameter identification for other types of models.

Example

Given i.i.d. normally distributed data y1, . . . , yn ∼ N (µ, σ2), estimate µ
and σ2.

Example

Given data (x1, y1), . . . , (xn, yn) ∈ R2, find parameters a, b, c ∈ R such
that

yi = ax2i + bxi + c + εi , i ∈ {1, . . . , n},

where the residuals εi satisfy E[εi ] = 0.

Example

Given data y ∈ Rk , find the unknown parameter x ∈ Rd such that
y = Ax + ε, where the residual ε satisfies E[ε] = 0.
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Let y1, . . . , yn be the data, which are i.i.d. random variables. We assume
that these follow a parameter-dependent probability distribution with PDF
(resp. PMF) f (x , y) for some realization of the parameter x ∈ X . (With a

slight abuse of notation, one might write y1, . . . , yn
i.i.d.∼ f (x , ·) for some

unknown x ∈ X .)

Thus we are interested in identifying the value of the parameter x ∈ X ,
which (in some sense) best approximates the data out of the set

F = {f (x , y) | x ∈ X}

containing all the possible candidates for the PDFs f (x , y) which could
have generated the data.

A common method to estimate parameters in a parametric models is the
maximum likelihood method.
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Maximum likelihood

Let y1, . . . , yn be i.i.d. with the PDF f (x , y).

Definition

The likelihood function is defined by

Ln(x) =
n∏

i=1

f (x , yi ).

The log-likelihood function is defined by ℓn(x) = logLn(x).

The likelihood function is simply the joint density of the data, except that
we treat it as a function of the parameter x . The likelihood function is not
a density function: in general, the function Ln(x) does not integrate to 1
with respect to x .
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Definition

The maximum likelihood (ML) estimator is defined as a maximizer of the
likelihood function

x̂ML = argmax
x∈X

Ln(x).

Remarks:

The ML estimator satisfies

Ln(x̂ML) ≥ Ln(x) for all x ∈ X .

It answers the question: Which value of the unknown x is the most
likely to produce the measured data?
The ML estimator may not be unique.
The maximum of the log-likelihood ℓn(x) occurs at the same point as
the maximum of Ln(x). It is often more convenient to work with

x̂ML = argmax
x∈X

ℓn(x).

Multiplying Ln(x) by any positive constant c (not depending on x)
will not change the ML estimator, so the constants in the likelihood
function are often dropped. 479



Example

Assume that y1, . . . , yn
i.i.d.∼ N (µ, 1) for some unknown mean parameter

µ ∈ R. The likelihood function for µ ∈ R is given by

Ln(µ) =
n∏

i=1

1√
2π

e−
1
2
(yi−µ)2 =

1

(2π)n/2
e−

1
2

∑n
i=1(yi−µ)2

and the log-likelihood is given by

ℓn(µ) = −n

2
log(2π)− 1

2

n∑
i=1

(yi − µ)2.

Differentiating this with respect to µ yields

ℓ′n(µ) =
n∑

i=1

(yi − µ) = n(yn − µ).

Setting this to 0 yields the ML estimator µ̂ML = yn. Thus the ML
estimator coincides with the empirical mean of y1, . . . , yn.
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Example

Consider n observations (pairs) (x1, y1), . . . , (xn, yn) of (x , y). Assume that
the values yi are observed values of a random variable y and assume that
the values xi are observed non-random values of x . Assume that the
values yi depend linearly on the values xi through a simple linear model

yi = b0 + b1xi + εi , i ∈ {1, . . . , n},

where the residuals are assumed to be Gaussian εi
i.i.d.∼ N (0, σ2), σ > 0.

Writing b = (b0, b1), the ML estimator b̂ = b̂ML is given by

b̂1 =

∑n
i=1(xi − x)(yi − y)∑n

i=1(xi − x)2
= ρ̂(x , y)

sy
sx
,

b̂0 = y − b̂1x .
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Example

Assume that y1, . . . , yn ∈ Rk are i.i.d. realizations of random variable y ,
which come from some mathematical model

yi = F (x) + εi ,

where x ∈ Rd is the unknown parameter, F : Rd → Rk is a function, and
ε1, . . . , εk are i.i.d. realizations of measurement noise ε with PDF ρn.

Now

P(y ∈ B) = P(F (x) + ε ∈ B) = P(ε ∈ B − F (x)) =

∫
B−F (x)

ρn(t) dt

=

∫
B
ρn(t − F (x))dt for all events B.

This means that f (x , yi ) = ρn(yi − F (x)), and the likelihood function is

Ln(x) =
n∏

i=1

ρn(yi − F (x)).
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Example

Assume that y ∈ Rk is an observation of the mathematical model

y = F (x) + ε,

where x ∈ Rd is the unknown parameter and ε ∼ N (0, σ2I ) is Gaussian
measurement noise, with σ > 0 and I is the k × k identity matrix. In this
case, the noise has the PDF

ρn(ε) =
1

(2πσ2)k/2
e−

1
2σ2 ∥ε∥2

and the likelihood function is given by

Ln(x) =
1

(2πσ2)k/2
e−

1
2σ2 ∥y−F (x)∥2 .

The ML estimator can therefore be found as the minimizer(!)

x̂ML = argmin
x∈Rd

∥y − F (x)∥2.
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Example
Assume that y ∈ Rk is an observation of the linear mathematical model

y = Ax + ε,

where x ∈ Rd is the unknown parameter, A ∈ Rk×d is a matrix, and
ε ∼ N (0, σ2I ) is Gaussian measurement noise, with σ > 0 and I is the
k × k identity matrix. This corresponds to F (x) = Ax in the previous
example, with the likelihood

Ln(x) =
1

(2πσ2)k/2
e−

1
2σ2 ∥y−Ax∥2

and ML estimator
x̂ML = argmin

x∈Rd

∥y − Ax∥2.

If ATA is invertible, then the ML estimator is precisely the least squares
solution

ATAx̂ML = ATy .

(If ATA is not invertible, then the ML estimator is not unique.)
484



Computing ML estimates

In special cases the ML estimator x̂ML can be solved analytically, but more
often, the optimization problem needs to be solved numerically. If the
log-likelihood ℓn is twice continuously differentiable, one can use, e.g., the
Newton–Raphson algorithm. Suppose that the parameter x ∈ R is
one-dimensional. If x is a good guess for x̂ML (in the sense that x ≈ x̂ML,
then Taylor’s theorem implies that

0 = ℓ′n(x̂ML) ≈ ℓ′n(x) + (x̂ML − x)ℓ′′n(x).

Solving for x̂ML yields x̂ML = x − ℓ′n(x)
ℓ′′n (x)

.

Repeating this process iteratively yields the following algorithm.

Let x0 ∈ R be an initial guess for x̂ML.

for j = 1, 2, . . ., do

Set xj = xj−1 − ℓ′n(xj−1)
ℓ′′n (xj−1)

until |ℓ′n(xj)| < TOL
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In the multiparameter case x ∈ Rd , the ML estimator x̂ML is a vector and
the method is the following:

Let x0 ∈ Rd be an initial guess for x̂ML.

for j = 1, 2, . . ., do
Set xj = xj−1 − H(xj−1)

−1∇ℓ(xj−1)

until ∥∇ℓn(xj)∥ < TOL

Here, H(x) is the d × d Hessian matrix defined by

H(x) =



∂2

∂x21
ℓn(x)

∂2

∂x1∂x2
ℓn(x) · · · ∂2

∂x1∂xd
ℓn(x)

∂2

∂x2∂x1
ℓn(x)

∂2

∂x22
ℓn(x) · · · ∂2

∂x2∂xd
ℓn(x)

...
...

. . .
...

∂2

∂xd∂x1
ℓn(x)

∂2

∂xd∂x2
ℓn(x) · · · ∂2

∂x2d
ℓn(x)

 .

Remark. Depending on the application, any other reasonable or natural
optimization procedure might also work: e.g., Gauss–Newton method,
Levenberg–Marquardt method, conjugate gradient or Krylov subspace
methods, (stochastic) gradient descent. . .
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Properties of the ML estimator

The ML estimator has many desirable qualities under somewhat relaxed
assumptions:

The ML estimator is consistent: x̂ML
P→ x⋆ as n → ∞, where x⋆

denotes the true value of the parameter x .
The ML estimator is asymptotically normal: x̂ML−x⋆

ŝe

d→ N (0, 1).
The ML estimator is asymptotically optimal: roughly, this means that
among all well-behaved estimators, the ML estimator has the smallest
variance, at least for large samples.
...

As the sample size n → ∞, the ML estimator is an ideal estimator from a
frequentist point of view.

However, in some applications one might have a limited amount of data
and/or the data generation is not repeatable, so the asymptotic properties
of the ML estimator may not be of much use. Next week, we will start
discussing the Bayesian paradigm, where the fundamental conceit is that
only a finite amount of data is available: probability is not defined as the
limit of relative frequencies, but as a (subjective) degree of belief. 487
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Frequentist methods

The statistical methods that we have discussed so far are known as
frequentist (or classical) methods. The frequentist point of view is based
on the following postulates:

F1 Probability refers to limiting relative frequencies. Probabilities are
objective properties of the real world.

F2 Parameters are fixed, unknown constants. Because they are not
fluctuating, no useful probability statements can be made about
parameters.

F3 Statistical procedures should be designed to have well-defined long
run frequency properties. For example, a 95 percent confidence
interval should contain the true value of the parameter with limiting
frequency at least 95 percent.
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Bayesian methods

There is another approach to inference called Bayesian inference. The
Bayesian approach is based on the following postulates:

B1 Probability describes degree of belief, not limiting frequency. As such,
we can make probability statements about lots of things, not just
data which are subject to random variation. For example, “the
probability that Albert Einstein drank a cup of tea on August 1,
1948” is 0.35. This does not refer to any limiting frequency; it
reflects a subjective strength of belief that the proposition is true.

B2 The parameters are modeled as random variables, not as fixed,
unknown constants. We can make probability statements about the
parameters.

B3 We can make inferences about a parameter x by producing a
probability distribution for x . Inferences, such as point estimates and
interval estimates, may then be extracted from this distribution.

Bayesian inference embraces a subjective notion of probability. In general,
Bayesian methods provide no guarantees on long run performance.
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Notation / recap on conditional and marginal PDFs

Let x and y be random variables with values in Rd and Rk , respectively. If
the random variable (x , y) has a probability density fx ,y , i.e., if

P(x ∈ A, y ∈ B) = P((x , y) ∈ A× B) =

∫
A×B

fx ,y (u, v) du dv

for all events A ⊂ Rd and B ⊂ Rk , then fx ,y is called the joint probability
density of x and y . Here, P(x ∈ A, y ∈ B) := P(x ∈ A and y ∈ B). To
simplify notation, we also write f (x , y) = fx ,y (x , y).

Now, the marginal probability density fx of x is defined by

fx(u) =

∫
Rk

fx ,y (u, v) dv for all u ∈ Rd .

Analogously, the marginal density of y is

fy (v) =

∫
Rd

fx ,y (u, v)du for all v ∈ Rk .
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The marginal density of x is indeed the probability density for x in the
situation where we have no information about the random variable y ,
because

P(x ∈ A) = P(x ∈ A, y ∈ Rk) =

∫
A×Rk

fx ,y (u, v) du dv

=

∫
A

(∫
Rk

fx ,y (u, v) dv

)
du =

∫
A
fx(u) du

for every event A ⊂ Rd .

The random variables x and y are independent (denoted by x ⊥ y) if

P(x ∈ A, y ∈ B) = P(x ∈ A)P(y ∈ B)

for all events A ⊂ Rd and B ⊂ Rk or, equivalently, if

fx ,y (u, v) = fx(u)fy (v) for all u ∈ Rd , v ∈ Rk .

To simplify notation, we will also write f (x) := fx(x) and f (y) := fy (y).
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Next, we consider the random variable x in the opposite situation where
we know everything about the random variable y : we have observed it and
know what value it has taken.

We say we consider the random variable x , given that we know the value
y0 taken by y , and denote this by x |y = y0. For y0 ∈ Rk with fy (y0) > 0,
the conditional probability density of x |y = y0, fx |y=y0 , is then defined by

fx |y=y0(u) =
fx ,y (u, y0)

fy (y0)
.

If x and y are independent and fy (y0) > 0, then

fx |y=y0(u) = fx(u).

To simplify notation, we will also write f (x |y) := fx |y (x) := fx |y=y (x).
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Bayesian inference

Bayesian inference is usually carried out in the following way.

1 We choose a probability density f (x) – called the prior distribution –
that expresses our beliefs about a parameter x before we see any data.

2 We choose a statistical model f (y |x) that reflects our beliefs about y
given x .

3 After observing data y1, . . . , yn, we update our beliefs and calculate
the posterior distribution f (x |y1, . . . , yn).

In what follows, we will consider continuous Rd -valued random variables.
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Bayes’ formula

Let (x , y) be a random variable with joint density f (x , y) on Rd × Rk . If
f (y) > 0, then the conditional probability density of x , given y , equals

f (x |y) = f (x , y)∫
Rd f (x , y) dx

.

On the other hand, the conditional probability density of y in case we
know the value of the unknown x , is the likelihood function

f (y |x) = f (x , y)

f (x)
, if f (x) > 0.

Since f (x , y) = f (y |x)f (x), this leads to Bayes’ formula

f (x |y) = f (y |x)f (x)
Z (y)

, Z (y) :=

∫
Rd

f (y |x)f (x)dx .

If we have n i.i.d. observations y1, . . . , yn, then we replace f (y |x) with

f (y1, . . . , yn|x) =
n∏

i=1

f (yi |x) = Ln(x).

Bayes’ formula presents a way to express the conditional probability
density of x , given y , assuming that the conditional density of y , given x ,
and the marginal density of x are known. 495



Example

Consider the problem of estimating an unknown parameter x ∈ Rd from
data y ∈ Rk that is connected to x via the model

y = F (x) + ε. (1)

If

A1 The noise ε has the probability density ν on Rk ;

A2 The parameter x has the probability density f on Rd ;

A3 The random variables x and ε are independent;

then the likelihood is
f (y |x) = ν(y − F (x)).

This is because

f (y |x) = fy |x(y) = fF (x)+ε|x(y) = fε|x(y − F (x)) = fε(y − F (x))

= ν(y − F (x))

due to the assumptions ε ⊥ x and ε ∼ ν.
496



Example

If assumptions A1–A3 hold and

Z (y) =

∫
Rd

ν(y − F (x))f (x) dx > 0,

then the posterior density corresponding to (1) is

f (x |y) = ν(y − F (x))f (x)

Z (y)
.

Remarks.

The condition that the marginal density f (y) of the observed data y
is positive means that the observed data is assumed to be consistent
with the probabilistic assumptions A1–A3.

An event cannot have positive probability under the posterior
distribution if it does not have positive probability under the prior
distribution.
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Case study: source localization

Suppose that a particle with unit charge is located at some (unknown)
point x∗ ∈ (0, 1) and our goal is to locate it based on measurements of
voltage at the interval end points x = 0 and x = 1. The mathematical
model for the voltage at any point x ∈ [0, 1] is given by

y(x) =
1

|x∗ − x |
.

Our noisy measurements are modeled by y1 =
1

|x∗−0| + ε1 and

y2 =
1

|x∗−1| + ε2, where ε1 and ε2 are i.i.d. realizations of N (0, σ2). We

take x∗ = 1/π (ground truth) and σ = 0.2 in the numerical experiments.

The likelihood is given by f (y |x) ∝ exp(− 1
2σ2

∑1
j=0(yj+1 − 1

|x−j |)
2).

We consider the prior f (x) = 1(0,1)(x) =

{
1 if x ∈ (0, 1),

0 otherwise.

Then the posterior density is given by Bayes’ formula

f (x |y) ∝ 1(0,1)(x) exp

(
− 1

2σ2

1∑
j=0

(
yj+1 −

1

|x − j |

)2)
.
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Let us visualize the posterior density against the ground truth solution.
(See also the file source.py on the course website!)
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We see that the posterior is localized around the true parameter value
(“ground truth”). Note that in this case, the prior hardly plays any role.

We could take, e.g., the mean or mode of the posterior density as a point
estimate for the unknown location of the point charge.
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What if we modify the problem so that we have access to only one
boundary measurement at x = 1?
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The resulting posterior distribution carries substantially more uncertainty
since we now have less measurement data!

Note that the posterior will generally be high-dimensional, meaning that it
is usually not possible to visually inspect the posterior density.
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Let x ∈ Rd , y ∈ Rk be random variables (the unknown parameter and the
measurement, respectively). Bayes’ formula:

f (x |y) = f (y |x)f (x)
Z (y)

, Z (y) :=

∫
Rd

f (y |x)f (x)dx > 0.

The prior model f (x) describes a priori information. It should assign
high probability to objects x which are typical in light of a priori
information, and low probability to unexpected x .
The likelihood model f (y |x) processes measurement information. It
gives low probability to objects that produce simulated data which is
very different from the measured data.
The number Z (y) can be treated as a normalization constant. It is
often not of significant interest. If needed, we can recover it by
computing the value of the integral Z (y) =

∫
Rd f (y |x)f (x) dx .

The posterior distribution f (x |y) represents the updated knowledge
about the parameter of interest x , given the evidence y .

Since the normalization constant Z (y) is often not of interest, we write

f (x |y) ∝ f (y |x)f (x),
where ∝ means equality up to a constant factor (not depending on x).
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Bayesian estimators

The posterior distribution can be used to define estimators for the
conditional random variable x |y ∼ f (x , y), where y = (y1, . . . , yn). In
general, an estimator x̂ is any function of the data y . The estimate
x̂ = x̂(y) is itself an Rd -valued random variable whose properties give
information about the usefulness and quality of the estimator.

Bayesian estimators are those defined via the posterior distribution f (x |y).
We present the two most prominent ones. The conditional mean (CM)
estimator is defined as the mean of the posterior distribution

x̂CM = E[x |y ] =
∫
Rd

x f (x |y) dx

This is a high-dimensional integration problem.

The maximum a posteriori (MAP) estimator is defined as the mode

x̂MAP = argmax
x∈Rd

f (x |y)

of the posterior distribution (if a unique mode exists). This is a
high-dimensional optimization problem.
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One way to estimate spread are Bayesian credible sets. A level 1− α
credible set Cα with α ∈ (0, 1) satisfies

P(x ∈ Cα|y) =
∫
Cα

f (x |y) dx = 1− α.

For small α, it is a region that contains a large fraction of the posterior
mass.
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Example. Assume that x ∈ R and that the posterior density is given by

f (x |y) = c

σ1
ϕ

(
x

σ1

)
+

1− c

σ2
ϕ

(
x − 1

σ2

)
,

where c ∈ (0, 1), σ1, σ2 > 0, and ϕ is the density of the standard normal

distribution, ϕ(x) = 1√
2π

exp
(
− x2

2

)
. In this case,

x̂CM = 1− c and x̂MAP =

{
0 if c/σ1 > (1− c)/σ2,

1 if c/σ1 < (1− c)/σ2.

If c = 1
2 and σ1, σ2 are small, the probability that x takes values near x̂CM

is small. On the other hand, if σ1 = cσ2, then c/σ1 = 1/σ2 > (1− c)/σ2,
so that x̂MAP = 0. If c is small, this is, however, a bad estimate for x ,
since the probability for x to take values near 0 is small. Last of all, we
notice that when the conditional mean gives a poor estimate, this is
reflected in a larger posterior variance

σ2 =

∫ ∞

−∞
(x − x̂CM)2f (x |y)dx .
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We cannot say that one estimator is better than the other in all
applications.

Left: the density with σ1 = 0.08, σ = 0.04, and c = 1
2
. The CM estimate represents the

distribution poorly. Notice that when the CM gives a poor estimate, this is reflected in wider
variance (1 standard deviation is depicted as a red line). Right: the density with σ1 = 0.001,
σ2 = 0.1, and c = 0.01. The MAP gives a poor estimate since it is in an unlikely part of the
computational domain. 505



The maximum likelihood estimate

x̂ML = argmax
x∈Rd

f (y |x)

answers the question: “which value of the unknown is the most likely to
produce the measured data?”

The ML estimate is a non-Bayesian estimate, and if the sample size is not
large, it is not considered very useful by Bayesian statisticians.

506



Prior modeling

The prior density should reflect our beliefs on the unknown variable of
interest before taking the measurements into account.

Often, the prior knowledge is qualitative in nature, and transferring the
information into quantitative form expressed through a prior density can
be challenging.

The prior probability distribution should be concentrated on those values
of x we expect to see and assign a clearly higher probability to them than
to the unexpected ones.
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Gaussian priors

Gaussian densities

f (x) =
1

(2π)d/2
√
detC

exp

(
−1

2
(x −m)C−1(x −m)

)
are easy to construct and form a versatile class of distributions. They also
often lead to explicit estimators.

Random samples from a standard normal distribution N (0, I ) can be
generated directly, for example via numpy.random.normal in Python.
Samples from a general normal distribution N (m,C ) and from a wide
class of other distributions can then be derived from those, so that it is
often not necessary to employ the inverse transform method.
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Case study: signal recovery

Suppose that we want to estimate a one-dimensional signal
g : [0, 1] → R from indirect observations. We discretize the interval [0, 1]
by points tj = j/d , j ∈ {1, . . . , d}, and write xj = g(tj). In what follows,
we consider some priors we could place for the unknown signal x ∈ Rd .
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Gaussian priors with covariance C = α2I , α > 0, are often called
(Gaussian) white noise priors. The variance α2 controls the magnitude of
the realizations, but the values at t1, . . . , td are independent.
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Figure: Top: 5 realizations of the Gaussian white noise prior with α = 0.1.
Bottom: 5 realizations of the Gaussian white noise prior with α = 2.
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Gaussian priors with covariance C = α2(LTL)−1, where α > 0 and
L = tridiag(−1, 2,−1) (we will discuss the construction of this prior next
week), are often called (Gaussian) smoothness priors. The parameter
α2 controls the variability of the realizations. Note that this prior enforces
the Dirichlet boundary condition g(0) = g(1) = 0.
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Figure: Top: 5 realizations of the Gaussian smoothness prior with α = 0.001.
Bottom: 5 realizations of the Gaussian smoothness prior with α = 0.02. 511



Impulse priors

Assume that our prior information is that the signal contains small and
well localized features in an almost constant background.

In such a case we could assume an impulse prior density, which means that
it gives a low average amplitude but allows outliers. The tail of such a
prior distribution is long, although the expected value is small.

Let x ∈ Rd represent the signal, where the component xj = f (tj) is the
values at the j th coordinate. In what follows, xi and xj are assumed to be
independent for i ̸= j .

One example of an impulse prior is the ℓ1 prior. It has the density

f (x) =
(α
2

)d
exp(−α∥x∥1)

with α > 0, where the ℓ1-norm is defined as

∥x∥1 =
d∑

j=1

|xj |.
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The impulse effect can be enhanced by choosing an even smaller power
p ∈ (0, 1) of the components of x , that is, using

∑d
j=1 |xj |p instead of the

ℓ1-norm.

Another choice that produces images with few distinctly different function
values and a low-amplitude background is the Cauchy density

f (x) =
(α
π

)d
d∏

j=1

1

1 + α2x2j

with α > 0.

Since we assumed that each component is independent of the others,
random draws can be performed componentwise using, e.g., inverse
transform sampling.
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Figure: Top: 5 realizations of the ℓ1 prior with α = 1. Bottom: 5 realizations of
the Cauchy prior with α = 1.
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Discontinuities

Assume still that we want to estimate a one-dimensional signal
g : [0, 1] → R with g(0) = 0 from indirect observations. Our prior
knowledge is that the signal is usually relatively stable but can have large
jumps every now and then. We may also have information on the size of
the jumps or the rate of their occurrence.

We obtain one possible prior by taking the finite difference approximation
of the derivative of g and assigning an impulsive noise distribution to it.
Let us discretize the interval [0, 1] by points tj = j/d and write xj = g(tj).
Consider the density

f (x) =
(α
π

)d
d∏

j=1

1

1 + α2(xj − xj−1)2
. (2)

To draw samples from the above distribution we define new random
variables for the jumps

uj = xj − xj−1, j = 1, . . . , d .
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These each have the density

f (u) =
(α
π

)d
d∏

j=1

1

1 + α2u2j
.

In particular, the uj are independent from each other, so that they can be
drawn from a one-dimensional Cauchy density. Also note that
x = (x1, . . . , xd)

T ∈ Rd satisfies x = Lu, where L ∈ Rd×d is a lower
triangular matrix with Lij = 1 for i ≥ j .† Generalizing the idea behind the
above prior leads, e.g., to total variation priors.

†Note that in Python, it is more efficient to implement this as x = numpy.cumsum(u).
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Example: drawing realizations from the prior (2)

import numpy as np

import matplotlib.pyplot as plt

d = 1200

t = np.arange(1,d+1)/d

alpha = 1

quantile = lambda t: 1/alpha * np.tan(np.pi * (t-1/2))

unif = np.random.uniform(size=d)

draw = quantile(unif)

y = np.cumsum(draw)

plt.plot(t,y)

plt.xlabel(’$t$’,fontsize=14)

plt.ylabel(’$g(t)$’,fontsize=14)

plt.show()

517



Example: drawing realizations from the prior (2)

Figure: Four realizations drawn from the prior (2)
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Hierarchical models

The prior density may depend on some parameter, such as variance or
mean. So far we have assumed that these parameters are known.
However, we often do not know how to choose them. If a parameter is not
known, it can be estimated as a part of the statistical inference problem on
the data. This leads to hierarchical models that include hypermodels for
the parameters defining the prior density.

Assume that the prior distribution depends on a parameter α, which is
assumed to be unknown. We then write the prior as a conditional density

f (x |α).

We model the unknown α with a hyperprior fh(α) and write the joint
distribution of x and α as

f (x , α) = f (x |α)fh(α).
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Assuming we have a likelihood model f (y |x) for the measurement y , we
get the posterior density for x and α, given y , using Bayes’ formula

f (x , α|y) ∝ f (y |x , α)f (x , α) = f (y |x , α)f (x |α)fh(α).

The hyperprior density fh may again depend on some hyperparameter α0.
The main reason for the use of a hyperprior model is that the construction
of the posterior is considered to be more robust with respect to fixing a
value for the hyperparameter α0 than fixing a value for α.
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Case study: parallel-beam X-ray tomography
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Case study: parallel-beam X-ray tomography
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Case study: parallel-beam X-ray tomography
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Case study: parallel-beam X-ray tomography
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Case study: parallel-beam X-ray tomography
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Case study: parallel-beam X-ray tomography
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An object (left) is illuminated using a beam front of X-rays and the
intensities of the X-rays are recorded after passing through the object. The
measurements can be represented as a sinogram (right). In this case, the
beam front consists of 2 240 parallel X-rays (arranged as rows) taken at
180 equally spaced angles at 1◦ increments (arranged as columns).

The goal is to reconstruct the interior density of the object based on the
sinogram measurements.

CT
measurements→

b
b
b
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2200

Formation of a CT sinogram (by Samuli Siltanen):
https://www.youtube.com/watch?v=q7Rt_OY_7tU
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Let us consider the inference problem of recovering the attenuation
coefficient (density) of an object given a set of X-ray measurements. The
mathematical model can be expressed as

y = Ax ,

where y ∈ RQ denotes the (noisy) measurements for Q X-rays, A ∈ RQ×n2

is the projection matrix subject to an n × n pixel discretization of the
computational domain, and x ∈ Rn2 denotes the (piecewise constant)
discretization of the unknown attenuation inside the object of interest.

The data y can be reshaped into an n × n array, which is a graphical
representation of the X-ray measurements (sinogram). The unknown can
be reshaped into an n × n image of the density of the imaged object.
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We use the FIPS open dataset of carved cheese available at
https://doi.org/10.5281/zenodo.1254210

The files DataFull 128x15.mat and DataLimited 128x15.mat contain
sparse angle and limited angle tomography measurements, respectively.
The data has been collected using 15 projections spanning either the full
360◦ circle in the first dataset, and 15 projections spanning a limited 90◦

angle of view in the second dataset. The computational domain is a
128× 128 pixel grid in both cases. Each file contains a projection matrix A

and a sinogram measurement matrix m.

By defining y = m.reshape((m.size,1)), our näıve maximum likelihood
(ML) reconstruction of the unknown x is precisely the least squares
solution of the problem

y = Ax.

The reconstruction is the image x.reshape((128,128)).

In addition, we also consider the MAP estimators of the unknown x

corresponding to a Gaussian white noise prior and a total variation prior
(which gives a high probability to piecewise constant signals).
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Maximum likelihood (ML) estimator

Sparse angle tomography data:
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Left: the actual object. Middle: sinogram data for sparse angle tomography. Right: ML
estimator of the unknown density.

Limited angle tomography data:
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Left: the actual object. Middle: sinogram data for limited angle tomography. Right: ML
estimator of the unknown density.
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MAP estimator (Gaussian prior)

Sparse angle tomography data:
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Left: the actual object. Middle: sinogram data for sparse angle tomography. Right: MAP
estimator with a Gaussian prior.

Limited angle tomography data:
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Left: the actual object. Middle: sinogram data for limited angle tomography. Right: MAP
estimator with a Gaussian prior.
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MAP estimator (total variation prior)

Sparse angle tomography data:
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Left: the actual object. Middle: sinogram data for sparse angle tomography. Right: MAP
estimator with a total variation prior.

Limited angle tomography data:
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Left: the actual object. Middle: sinogram data for limited angle tomography. Right: MAP
estimator with a total variation prior.
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In the previous example, using sparse or limited angle measurements
means that the matrix system y = Ax is underdetermined. Since we
have very little data in the sparse or limited angle measurement
settings, the ML estimator is useless in practice.

In the Bayesian approach even a fairly weak Gaussian prior can
produce a reconstruction. Using a more sophisticated prior such as a
total variation prior improves the reconstruction quality even further
(in this case, the density of the object can be well approximated using
piecewise constant functions).

The prior essentially compensates for the lack of data in the Bayesian
approach to parameter recovery problems
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Solution strategies

Bayes’ formula produces an expression for the (in general high-dimensional)
posterior distribution of the unknown parameter x ∈ Rd , given the
available data y ∈ Rk . The main Bayesian estimators of the unknown
parameter x are the MAP estimate x̂MAP (high-dimensional optimization
problem) and the CM estimate x̂CM (high-dimensional integration
problem). One may also be interested in quantifying the uncertainty in
these estimates by computing the (co)variance of the posterior distribution
or Bayesian credible sets (high-dimensional numerical integration problems).
Typical solution strategies include the following.

Conjugate inference: for a given likelihood, the prior is chosen such
that the posterior is in the same probability distribution family as the
prior (for example, if the likelihood and prior are both Gaussian, then
the posterior is also Gaussian with known mean and covariance). In
these cases, the MAP, CM, and (co)variance of the posterior have
closed form solutions. This is an algebraic convenience, which avoids
numerical difficulties otherwise associated with the computation of
the MAP, CM, or other statistics of the posterior distribution.
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Numerical methods:
– The computation of the MAP estimate is a high-dimensional

optimization problem. It is often convenient to work with the negative
log-posterior

x̂MAP = argmin
x∈Rd

(− log f (x |y)).

In some cases, the MAP estimator can be expressed as the solution to
a Tikhonov functional. For example, consider the problem

y = F (x) + ε, ε ∼ N (0, σ2I ),

where x ∈ Rd is the unknown parameter, y ∈ Rk is the data, and
σ > 0 is the noise level. If we endow x with a Gaussian prior, e.g.,
x ∼ N (x0, γ

2I ), γ > 0, then the MAP estimator can be found as the
minimizer of the Tikhonov functional

x̂MAP = argmin
x∈Rd

(
∥y − F (x)∥2 + λ2∥x − x0∥2

)
,

where λ = σ
γ . If F : Rd → Rk is linear, i.e., F (x) = Ax for some matrix

A ∈ Rk×d , then we can solve x̂MAP from the (invertible) linear system

(ATA+ λ2I )x̂MAP = ATy + λ2x0. (exercise)
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Numerical methods:
– The computation of the CM estimate is a high-dimensional numerical

integration problem:

x̂CM =

∫
Rd

x f (x |y)dx . (3)

Typical solution strategies involve using high-dimensional cubatures or
sampling-based methods. We will discuss the latter. Namely, if we are
able to draw an i.i.d. sample x1, . . . , xn from the posterior f (x |y), then
we can in principle use the Monte Carlo method to approximate (3) as

x̂CM ≈ 1

n

n∑
i=1

xi = xn

and likewise for the posterior variance Var(x |y) ≈ 1
n

∑n
i=1(xi − xn)

2.

The difficulty with this approach lies in drawing a sample from a
high-dimensional posterior distribution. To this end, we will discuss
Markov Chain Monte Carlo (MCMC), which is an algorithm that can
be used to draw a sample from a high-dimensional distribution with a
known (unnormalized) density function.

Another approach is to use, e.g., importance sampling to obtain a
(biased) estimate of the integral (3).
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Appendix: Remark on Bayesian hypothesis testing
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Remark on Bayesian hypothesis testing

It is possible to perform statistical hypothesis testing from a Bayesian
point of view. We will only give a brief sketch of the main idea here.

The Bayesian approach to testing involves putting a prior on H0 and on
the parameter x and then computing P(H0|y). Consider the case where
x is a vector and we are testing

H0 : x = x0 versus H1 : x ̸= x0.

It is usually reasonable to use the prior P(H0) = P(H1) = 1/2 (although
this is not essential in what follows). Under H1, we need a prior for x ; let
us denote this prior density by f (x). From Bayes’ theorem,

P(H0|y) =
f (y |H0)P(H0)

f (y |H0)P(H0) + f (y |H1)P(H1)
=

1
2 f (y |x0)

1
2 f (y |x0) +

1
2 f (y |H1)

=
f (y |x0)

f (y |x0) +
∫
Rd f (y |x)f (x) dx

=
L(x0)

L(x0) +
∫
Rd L(x)f (x)dx

.
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The linear Gaussian setting

In these notes we study the linear Gaussian setting, where the forward map
F is linear and both the prior distribution and the distribution of the
observational noise ε are Gaussian.

It arises frequently in applications, either directly or in the form of
posterior distributions that are asymptotically Gaussian in the large data
limit. It also allows computing explicit solutions which can be used to gain
a general understanding. Apart from that, many methods employed in a
nonlinear or non-Gaussian setting build on ideas from the linear Gaussian
case by performing linearization or Gaussian approximation.

540



Let us suppose that the unknown x ∈ Rd and the data y ∈ Rk follow the
relation

y = Ax + ε, (1)

where

1. The forward model is linear, i.e., A ∈ Rk×d .
2. The prior distribution is Gaussian: x ∼ N (x0, Γpr), where x0 ∈ Rd

and Γpr ∈ Rd×d is symmetric and positive definite.
3. The noise is Gaussian: ε ∼ N (ε0, Γn), where ε0 ∈ Rk and Γn ∈ Rk×k

is symmetric and positive definite.
4. x and ε are independent.

Theorem

Under assumptions 1–4, the posterior distribution corresponding to (1) is
Gaussian with x |y ∼ N (µpost, Γpost), where we have the posterior mean

µpost = (Γ−1
pr + ATΓ−1

n A)−1(ATΓ−1
n (y − ε0) + Γ−1

pr x0)

and covariance
Γpost = (Γ−1

pr + ATΓ−1
n A)−1.
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Proof. Noting that Γpost = (Γ−1
pr + ATΓ−1

n A)−1 and
µpost = Γpost(A

TΓ−1
n (y − ε0) + Γ−1

pr x0), we obtain

f (x |y) ∝ exp

(
− 1

2
(y − Ax − ε0)

TΓ−1
n (y − Ax − ε0)

)
exp

(
− 1

2
(x − x0)

TΓ−1
pr (x − x0)

)
= exp

(
− 1

2

(
yTΓ−1

n y − yTΓ−1
n Ax − yTΓ−1

n ε0

− xTATΓ−1
n y + xTATΓ−1

n Ax + xTATΓ−1
n ε0

− εT0 Γ
−1
n y + εT0 Γ

−1
n Ax + εT0 Γ

−1
n ε0

+ xTΓ−1
pr x − 2xTΓ−1

pr x0 + xT
0 Γ−1

pr x0
))

= exp

(
− 1

2

(
xT(Γ−1

pr + ATΓ−1
n A)︸ ︷︷ ︸

=Γ−1
post

x − 2xT(ATΓ−1
n (y − ε0) + Γ−1

pr x0)︸ ︷︷ ︸
=Γ−1

postµpost

))
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Proof. Noting that Γpost = (Γ−1
pr + ATΓ−1

n A)−1 and
µpost = Γpost(A

TΓ−1
n (y − ε0) + Γ−1

pr x0), we obtain

f (x |y) ∝ exp

(
− 1

2
(y − Ax − ε0)

TΓ−1
n (y − Ax − ε0)

)
exp

(
− 1

2
(x − x0)

TΓ−1
pr (x − x0)

)
∝ exp

(
− 1

2

(
yTΓ−1

n y − xTATΓ−1
n y−yTΓ−1

n ε0

− xTATΓ−1
n y + xTATΓ−1

n Ax + xTATΓ−1
n ε0

−εT0 Γ−1
n y + xTATΓ−1

n ε0ε
T
0 Γ

−1
n ε0

+ xTΓ−1
pr x − 2xTΓ−1

pr x0+xT
0 Γ−1

pr x0
))

= exp

(
− 1

2

(
xT(Γ−1

pr + ATΓ−1
n A)︸ ︷︷ ︸

=Γ−1
post

x − 2xT(ATΓ−1
n (y − ε0) + Γ−1

pr x0)︸ ︷︷ ︸
=Γ−1

postµpost

))
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Proof. Noting that Γpost = (Γ−1
pr + ATΓ−1

n A)−1 and
µpost = Γpost(A

TΓ−1
n (y − ε0) + Γ−1

pr x0), we obtain

f (x |y) ∝ exp

(
− 1

2
(y − Ax − ε0)

TΓ−1
n (y − Ax − ε0)

)
exp

(
− 1

2
(x − x0)

TΓ−1
pr (x − x0)

)
∝ exp

(
− 1

2

(
yTΓ−1

n y − xTATΓ−1
n y−yTΓ−1

n ε0

− xTATΓ−1
n y + xTATΓ−1

n Ax + xTATΓ−1
n ε0

−εT0 Γ−1
n y + xTATΓ−1

n ε0ε
T
0 Γ

−1
n ε0

+ xTΓ−1
pr x − 2xTΓ−1

pr x0+xT
0 Γ−1

pr x0
))

= exp

(
− 1

2

(
xT(Γ−1

pr + ATΓ−1
n A)︸ ︷︷ ︸

=Γ−1
post

x − 2xT(ATΓ−1
n (y − ε0) + Γ−1

pr x0)︸ ︷︷ ︸
=Γ−1

postµpost

))
.

544



On the previous slide, we arrived at

f (x |y) ∝ exp

(
− 1

2

(
xTΓ−1

postx − 2xTΓ−1
postµpost

))
.

To finish the proof, we “complete the square” by multiplying and dividing by
exp(− 1

2
µT
postΓ

−1
postµpost). Since this term does not depend on x , we can absorb the

denominator into the implied coefficient to obtain

f (x |y) ∝ exp

(
− 1

2

(
xTΓ−1

postx − 2xTΓ−1
postµpost

))
exp

(
− 1

2
µT
postΓ

−1
postµpost

)
= exp

(
− 1

2

(
xTΓ−1

postx − 2xTΓ−1
postµpost + µT

postΓ
−1
postµpost

))
= exp

(
− 1

2

(
(x − µpost)

TΓ−1
post(x − µpost) + 2xTΓ−1

postµpost − 2xTΓ−1
postµpost

))
= exp

(
− 1

2

(
(x − µpost)

TΓ−1
post(x − µpost)

))
,

as desired.
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Remark: The previous proof shows that if x ∼ N (x0, Γpr) and
ε ∼ N (ε0, Γn), then

x |y ∼ N (µpost, Γpost),

where

Γpost = (Γ−1
pr + ATΓ−1

n A)−1 (2)

µpost = Γpost(A
TΓ−1

n (y − ε0) + Γ−1
pr x0). (3)

One also has the following alternative representations for the posterior
mean

µpost = x0 + ΓprA
T(AΓprA

T + Γn)
−1(y − Ax0 − ε0) (4)

and the posterior covariance

Γpost = Γpr − ΓprA
T(AΓprA

T + Γn)
−1AΓpr. (5)

Formula (5) can be proved, e.g., by using the
Sherman–Morrison–Woodbury formula on (2). Formula (4) can be proved
by plugging the formula (5) into (3) and simplifying the expression.
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As the posterior distribution is Gaussian, its mean and its mode coincide.
This means that the conditional mean estimator and the MAP estimator
coincide in the linear Gaussian setting.

Corollary

The conditional mean estimator and the maximum a posteriori estimator
coincide in the linear Gaussian setting and are given by
xCM = xMAP = µpost.
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Example

Let Γn = σ2I , ε0 = 0, Γpr = γ2I , x0 = 0, and set λ = σ
γ . Then µpost

minimizes
Jλ(x) := ∥y − Ax∥2 + λ2∥x∥2.

and therefore satisfies

(ATA+ λ2I )µpost = ATy . (6)

This example provides a connection between Bayesian inference and
variational regularization: Jλ can be interpreted as the objective functional
in a linear regression model with a regularization term λ2∥x∥2. Equation
(6) for µpost is then exactly the normal equation.

In the general case, the formula

µpost = (Γ−1
pr + ATΓ−1

n A)−1(ATΓ−1
n (y − ε0) + Γ−1

pr x0)

can thus be viewed as the solution to a generalized normal equation. This
point of view helps to understand the structure of Bayesian inference by
linking it to well-understood optimization approaches.
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Numerical example: one-dimensional deconvolution

Suppose that we are interested in estimating a signal g : [0, 1]→ R from
noisy, blurred observations modeled as

yi = y(si ) =

∫ 1

0
K (si , t)g(t) dt + εi , i ∈ {1, . . . , k},

where the blurring kernel is

K (s, t) = exp

(
− 1

2ω2
(s − t)2

)
, ω = 0.5,

and we have Gaussian measurement noise ε ∼ N (0, Γnoise) with a
symmetric, positive definite covariance matrix Γnoise.
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Discrete model

Midpoint rule:

yi =

∫ 1

0
K (si , t)g(t) dt + εi ≈

1

d

d∑
j=1

K (si , tj)xj + εi ,

where tj =
j
d −

1
2d and xj = g(tj) for j ∈ {1, . . . , d}.

If we have si =
i
k −

1
2k for i ∈ {1, . . . , k}, then we have the discrete linear

model

y = Ax + ε, where Ai ,j =
1

d
K (si , tj).

To employ the Bayesian approach, we treat y , ε, and x as random
variables. We assume that ε is Gaussian noise with variance σ2I ,

ε ∼ N (0, σ2I ), ν(ε) ∝ exp
(
− 1

2σ2
∥ε∥2

)
.

The likelihood is then given by

f (y |x) = ν(y − Ax) ∝ exp
(
− 1

2σ2
∥y − Ax∥2

)
.
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Next, we have to choose a prior distribution for the unknown. Assume
that we know that g(0) = g(1) = 0 and that g is quite smooth, that is,
the value of g(t) in a point is more or less the same as in its neighbor. We
will then model the unknown as

xj =
1

2
(xj−1 + xj+1) +Wj , j = 1, . . . , k , (7)

where the term Wj follows a Gaussian distribution N (0, γ2).

The variance γ2 determines how much the reconstructed function x
departs from the smoothness model xj =

1
2(xj−1 + xj+1). We can write (7)

as

Lx = W , where L :=
1

2



2 −1
−1 2 −1

−1 2 −1
. . .

. . .
. . .

−1 2 −1
−1 2


.

This leads to the so-called smoothness prior

f (x) ∝ exp
(
− 1

2γ2
∥Lx∥2

)
.
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Let L = tridiag(−1, 2,−1) and consider the following priors

fpr,1(x) ∝ exp

(
− 1

2γ2
∥x − x0∥2

)
with covariance Γpr,1 = γ2I ;

fpr,2(x) ∝ exp

(
− 1

2γ2
∥L(x − x0)∥2

)
= exp

(
− 1

2γ2
(x − x0)

T(LTL)(x − x0)

) with covariance
Γpr,2 = γ2(LTL)−1,

where x0 ∈ Rd is the prior mean (assumed to be the same in both cases).
Hence

xj = x0 + Γpr,jA
TG−1

j (y − Ax0 − ε0),

Γpost,j = Γpr,j − Γpr,jA
TG−1

j AΓpr,j ,

where Gj = AΓpr,jA
T + Γnoise and Γnoise = σ2I .
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For the numerical experiment, we simulate measurements using the
(smooth) ground truth signal

g(t) = 8t3 − 16t2 + 8t,

which satisfies g(0) = g(1) = 0. The measurements are contaminated
with zero-mean 10% relative noise (σ ≈ 0.0618) and we set d = k = 120.

Remark: We use a higher resolution model to simulate the measurement
data. To achieve this, we generate the measurement data using a denser
grid and then interpolate the forward solution onto a coarser
computational grid, which is actually used to compute the reconstruction.
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Since both the prior and the posterior are now Gaussian, we can use the
coloring transformation to draw samples from the prior and posterior.

We also draw the posterior mean and the 2σ credibility envelopes.

See the script deconv.py on the course webpage.
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Samples drawn from the white noise prior and the smoothness prior for several values of γ.
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A note on marginal Gaussian distributions

Let
f (x) ∝ exp(−1

2(x − µ)TΓ−1(x − µ))

be a multivariate Gaussian PDF with mean µ and positive definite and
symmetric covariance matrix Γ.

Q: What is Γii?
A: σ2

i := Γii is the variance of the marginal distribution with PDF

f (xi ) =

∫
Rn−1

f (x1, . . . , xi , . . . , xn) dx1 · · · dxi−1 dxi+1 · · · dxn,

which is itself a (univariate) Gaussian PDF with mean µi .

This is why we can obtain the credibility envelopes by taking the square
roots of the diagonal values of Γpost,j .

557



Relation to conjugate priors

The linear Gaussian setting is a special case of a more general technique,
where the prior is chosen in such a way that, together with the likelihood
function, the resulting posterior density belongs to the same probability
distribution family as the prior. In this case, the prior and posterior are
then called conjugate distributions, and the prior is called a conjugate prior
for the likelihood function.

A conjugate prior is an algebraic convenience, giving a closed form
expression for the posterior. In consequence, the CM estimator, MAP
estimator, and variance typically also have closed form expressions and it is
not necessary to use numerical integration or optimization to characterize
the statistics of the posterior.

A list of the most commonly used conjugate priors can be found, e.g., at
https://en.wikipedia.org/wiki/Conjugate_prior
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Kalman filter
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So far we have discussed measurement models with a static target:

yj = F (x) + εj , εj
i.i.d.∼ N (0, γ2I ).

Examples where the condition may not be valid:

EEG

Target tracking

Weather forecasting
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Dynamic observation models

More general observation model:

yj = F (xj) + εj , j = 1, 2, . . . , J.

The observations cannot be integrated unless we have a dynamic prior
model.

One of the simplest dynamic prior models is a 1-Markov evolution model

xj+1 = G (xj) + ξj+1, j = 0, 1, . . . , J − 1,

where G : Rd → Rd is presumably known and ξj+1 is an innovation
process.
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Examples

Static measurement: G (x) = x , ξj+1 = 0.
Random walk model (often used in lack of anything more
sophisticated):

xj+1 = xj + ξj+1, ξj+1 ∼ N (0, σ2I ).

First order differential equation: assume that the unknown is a
time-dependent vector x(t) ∈ Rd satisfying ideally the differential
equation

x ′(t) = f (x(t), t).

Time discretization: let tj = jh, j = 0, 1, . . ., and write xj = x(tj).
Then we can use finite differences, e.g., forward Euler method

xj+1 = xj + hf (xj , tj) + ξj+1

or backward Euler method

xj+1 = xj + hf (xj+1, tj+1) + ξj+1,

where ξj+1 accounts for discretization errors as well as possible
deviations from the ideal. 562



Basic form of Bayes filtering

Evolution-observation model:

xj+1 = G (xj) + ξj+1, j = 0, 1, . . . , J − 1,

yj+1 = F (xj+1) + εj+1, j = 0, 1, . . . , J − 1.

The observations y1, . . . , yJ and the prior probability density of x0 are
given.
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Adaptive algorithm

The goal is an algorithm which works as follows:

Given the density of x0, predict the density of x1 using the prior
evolution model.

Using the predicted density of x1 as prior, calculate the posterior
density of x1|y1.
Using the posterior density of x1|y1, predict the density of x2.

Using the predicted density of x2 as prior, calculate the posterior
density of x2|y1, y2.
Continue similarly.
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f (x0)
↓

f (x1|x0)→ evolution updating
↓

f (x1)
↓

observation updating ← f (y1|x1)
↓

f (x1|y1)
↓

f (x2|x1)→ evolution updating
↓

f (x2|y1)
↓

observation updating ← f (y2|x2)
↓

f (x2|y1, y2)
↓
...
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Prediction step: Given the density of xj , calculate the density of
xj+1 from

xj+1 = G (xj) + ξj+1. (propagation problem)

Correction step: Given the prior density of xj+1, calculate the
posterior density of xj+1|yj+1 using the observational model

yj+1 = F (xj+1) + εj+1. (inference problem)
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Particular approaches

Linear model, Gaussian innovation and error: classical Kalman
filtering.

Linearization of non-linear evolution (or observation) model: extended
Kalman filtering.

Nonlinear and/or non-Gaussian models: particle filtering.
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Kalman filter

Consider the linear (G (·) = M·, F (·) = H·) evolution-observation system

xj+1 = Mxj + ξj+1, ξj+1
i.i.d.∼ N (0,Σ),

yj+1 = Hxj+1 + εj+1, εj+1
i.i.d.∼ N (0, Γ).

Prediction: Suppose xj ∼ N (mj ,Cj). Then

xj+1 = Mxj + ξj+1 ∼ N (m̂j+1, Ĉj+1),

where m̂j+1 = Mmj and Ĉj+1 = MCjM
T +Σ.

Correction: Linear Gaussian setting implies xj+1|yj+1 ∼ N (mj+1,Cj+1),
where

mj+1 = m̂j+1 + Ĉj+1H
T(HĈj+1H

T + Γ)−1(yj+1 − Hm̂j+1),

Cj+1 = Ĉj+1 − Ĉj+1H
T(HĈj+1H

T + Γ)−1HĈj+1.

Remark: The expensive step in Kalman filtering is the computation of the
so-called Kalman gain matrix:

Kj+1 = Ĉj+1H
T(HĈj+1H

T + Γ)−1.
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Kalman filter algorithm

Given: Initial distribution for x0 ∼ N (m0,C0), where m0 ∈ Rd and
C0 ∈ Rd×d is symmetric and positive definite.

for j = 0, 1, 2, . . . , J − 1, do

Prediction step:

m̂j+1 = Mmj

Ĉj+1 = MCjM
T +Σ

Correction step:

Kj+1 = Ĉj+1H
T(HĈj+1H

T + Γ)−1

mj+1 = m̂j+1 + Kj+1(yj+1 − Hm̂j+1)

Cj+1 = Ĉj+1 − Kj+1HĈj+1

end for

Output: Predicted distributions N (m̂j+1, Ĉj+1) and filtering distributions
for xj+1|y1, . . . , yj+1 ∼ N (mj+1,Cj+1), j = 0, . . . , J − 1.
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Extended Kalman filter (non-linear evolution model)

Consider non-linear G : Rd → Rd and linear F (·) = H· with

xj+1 = G (xj) + ξj+1, ξj+1
i.i.d.∼ N (0,Σ),

yj+1 = Hxj+1 + εj+1, εj+1
i.i.d.∼ N (0, Γ),

with x0 ∼ N (m0,C0).

Prediction: Suppose xj ∼ N (mj ,Cj). We can linearize

xj+1 = G (xj) + ξj+1 ≈ G (mj) + DG (mj)(xj −mj) + ξj+1.

An affine transformation is still Gaussian, so we obtain the approximations

m̂j+1 = G (mj), Ĉj+1 = DG (mj)CjDG (mj)
T +Σ.

Correction: Now that xj+1 ∼ N (m̂j+1, Ĉj+1), we can use the linear
Gaussian setting to obtain xj+1|yj+1 ∼ N (mj+1,Cj+1) with

mj+1 = m̂j+1 + Ĉj+1H
T(HĈj+1H

T + Γ)−1(yj+1 − Bm̂j+1),

Cj+1 = Ĉj+1 − Ĉj+1H
T(HĈj+1H

T + Γ)−1HĈj+1.
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Ensemble Kalman filter (non-linear evolution model)

Consider

xj+1 = G (xj) + ξj+1, ξj+1
i.i.d.∼ N (0,Σ),

yj+1 = Hxj+1 + εj+1, εj+1
i.i.d.∼ N (0, Γ),

with x0 ∼ N (m0,C0).

The computation of the analytical predictive covariances and (in the
non-linear setting) the Jacobi matrix become computationally inefficient
and expensive for high-dimensional systems. The basic idea of ensemble
Kalman filter is as follows:

1 Draw a sample from the initial distribution of x0 (“initial ensemble”)

2 Replace the predictive mean m̂j+1 and covariance Ĉj+1 as well as the
filtering mean mj+1 and covariance Cj+1 with their corresponding
sample means and covariances by propagating the initial ensemble
through the evolution-observation model.
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Ensemble Kalman filter algorithm

Given: Ensemble size N. Initial ensemble {x (i)
0 }

N
i=1 drawn from the initial distribution of

x0 ∼ N (m0,C0), where m0 ∈ Rd and C0 ∈ Rd×d is symmetric and positive definite.
Parameter s ∈ {0, 1}.
for j = 0, 1, 2, . . . , J − 1, do

Prediction step:

draw ξ
(i)
j+1

i.i.d.∼ N (0,Σ), i = 1, . . . ,N,

x̂
(i)
j+1 = G(x

(i)
j ) + ξ

(i)
j+1, i = 1, . . . ,N,

m̂j+1 =
1

N

N∑
i=1

x̂
(i)
j+1 and Ĉj+1 =

1

N

N∑
i=1

(x̂
(i)
j+1 − m̂j+1)(x̂

(i)
j+1 − m̂j+1)

T.

Correction step:

draw ε
(i)
j+1

i.i.d.∼ N (0, Γ), i = 1, . . . ,N,

y
(i)
j+1 = yj+1 + sε

(i)
j+1, i = 1, . . . ,N,

Kj+1 = Ĉj+1H
T(HĈj+1H

T + Γ)−1,

x
(i)
j+1 = x̂

(i)
j+1 + Kj+1(y

(i)
j+1 − Hx̂

(i)
j+1), i = 1, . . . ,N.

end for

Output: Ensembles {x (i)
j }

N
i=1, j = 0, . . . , J.
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Remark:

Setting the parameter s = 1 is suitable at approximating the Kalman

filter in linear Gaussian settings: if each prediction particle x̃
(i)
j+1 is

distributed according to a non-degenerate Gaussian distribution, then

in the linear Gaussian setting the “corrected” particle x
(i)
j+1 will be

Gaussian with mean and covariance that agree with the usual Kalman
filter formulae.

Setting the parameter s = 0 is natural if viewing the algorithm as a
sequential optimizer in problems where the filtering distributions are
not well approximated by Gaussians.
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Numerical example

We wish to track the state xk =

[
pk
vk

]
∈ R2 of a moving particle at

discrete times tk = k∆t, k = 0, 1, 2, . . .. The first component pk
corresponds to the position of the particle while the second component
vk = ṗk is its velocity at time k = 0, 1, 2, . . .. Let us also denote the
unknown acceleration of the particle as ak = v̇k = p̈k for k = 0, 1, 2, . . ..
We have the following dynamics:{
pk = pk−1 + vk−1∆t + 1

2ak−1(∆t)2

vk = vk−1 + ak−1∆t
⇔ xk =

[
1 ∆t
0 1

]
︸ ︷︷ ︸

=:M

xk−1+

[
1
2(∆t)2

∆t

]
ak−1.

If we assume that ak−1
i.i.d.∼ N (0, 1), then the innovation process is

ξk :=

[
1
2(∆t)2

∆t

]
ak−1 ∼ N (0,Σ), where Σ :=

[
1
2(∆t)2

∆t

] [
1
2(∆t)2 ∆t

]
=

[
1
4(∆t)4 1

2(∆t)3
1
2(∆t)3 (∆t)2

]
. This yields the evolution model

xk = Mxk−1 + ξk , ξk
i.i.d.∼ N (0,Σ).
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Meanwhile, we can only measure the location of the particle, so the
observation model is given by

yk = Hxk + εk , εk
i.i.d.∼ N (0, γ2),

where H :=
[
1 0

]
and yk is a noisy measurement of the particle’s

location at time k, with the noise level assumed to be γ := 1.

We can now implement the Kalman filter for this model problem. We can
assume that the initial position of the particle is perfectly known:

x0 = E[x0] =
[
0
0

]
and C0 =

[
0 0
0 0

]
∈ R2×2.

The Kalman filter can be used to obtain the mean and covariance of the
(Gaussian) filtering distribution (pk , vk)|y1, . . . , yk for k = 1, 2, 3, . . .. We
can plot the means of the filtered positions (tk ,E[pk |y1, . . . , yk ]) and
velocities (tk ,E[vk |y1, . . . , yk ]).

The implementation is left as an exercise.
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The true trajectory of the particle was x(t) = 0.1(t2 − t) (left figure) with
velocity ẋ(t) = 0.2t − 0.1 (right figure). The observations at time points
tk = k∆t, with ∆t = 0.01 and k = 1, 2, . . ., were contaminated with centered,
unit-variance Gaussian noise (left figure). The red graphs correspond to the
means of the filtered positions (tk ,E[pk |y1, . . . , yk ]) (left figure) and velocities
(tk ,E[vk |y1, . . . , yk ]) (right figure).
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Remarks:

The Kalman filter is optimal in the sense that it gives the best
estimator of the mean in an online setting.

In the linear case (G (·) = M·), the ensemble Kalman filter converges
to the Kalman filter. When applicable, the ensemble Kalman filter is
much more efficient than particle filters. A primary advantage of
ensemble methods is that they can provide good state estimation
even when the number of particles is not large.
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Appendix: General evolution-observation model and particle filters
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General evolution-observation model and particle filters

Consider the more general model

xj+1 = G (xj , ξj+1), j = 0, 1, . . . , J − 1,

yj+1 = F (xj+1, εj+1), j = 0, 1, . . . , J − 1.

The functions F and G are assumed to be known. We also assume that
ξj+1 ⊥ xj and εj+1 ⊥ xj+1.

Observation and evolution models may be cumbersome or impossible to
linearize (e.g., non-differentiable or no closed form). One may try Monte
Carlo methods to simulate the distributions by random samples.

The goal in particle filter methods is to produce sequentially an ensemble

of random samples {x (1)j , . . . , x
(N)
j } distributed according to the

conditional probability distributions f (xj+1|y1, . . . , yj) (prediction) or
f (xj |y1, . . . , yj) (filtering). The vectors x

(i)
j are called particles of the

sample, hence the name particle filter.

One straightforward particle filter method is known as the sampling
importance resampling filter (also known as SIR or bootstrap filter).
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Sampling importance resampling

1 Set j = 0 and generate an initial sample S0 = {x (i)
0 }

N
i=1 by drawing from the

density f (x0). (This may require MCMC if the initial density is complicated, e.g.,
non-Gaussian.)

2 Prediction: Draw ξ
(i)
j+1 from the distribution of ξj+1 and set x̂

(i)
j+1 = G(x

(i)
j , ξ

(i)
j+1) for

1 ≤ i ≤ N. Let Ŝj+1 = {x̂ (i)
j+1}

N
i=1.

3 Correction: Assume that from the observational model yj = F (xj , εj), we can
calculate the likelihood density Cf (yj |xj), j = 1, 2, . . . , J, up to a multiplicative
constant C > 0.† Calculate the importance of each propagated particle

ŵ
(i)
j+1 = Cf (yj+1|x̂ (i)

j+1), 1 ≤ i ≤ N,

and compute their relative importance

w
(i)
j+1 =

ŵ
(i)
j+1

W
, W =

N∑
i=1

ŵ
(i)
j+1.

Resampling: draw a new sample Sj+1 = {x (1)
j+1, . . . , x

(N)
j+1} from the sample Ŝj+1,

with the probability of drawing x̂
(i)
j+1 set equal to w

(i)
j+1. Set j ← j + 1 and return to

step 2.
†E.g., if yj = F (xj) + εj , εj ∼ N (0, γ2I ), then f (yj |xj) ∝ exp(− 1

2γ2 ∥yj − F (xj)∥2).
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Why is sampling needed?

Recall that the CM estimator and the conditional covariance require
solving integration problems involving the posterior density:

x̂CM = E[x |y ] =
∫
Rd

x f (x |y) dx

Cov(x |y) =
∫
Rd

(x − x̂CM)(x − x̂CM)Tf (x |y) dx .

In a non-Gaussian case, these integrals cannot typically be expressed in
closed form. Therefore one must resort to numerical integration.
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Suppose that our goal is to estimate some quantity of the form

I = E[G (X )] =

∫
Rd

G (x)p(x)dx ,

where p : Rd → R≥0 is a probability density function and G is a quantity
of interest.

For example, if p is a posterior density and G (x) = x , then I would be
precisely the CM estimator.

In principle, we could use a quadrature rule

I =

∫
Rd

G (x)p(x) dx ≈
N∑
j=1

wjG (xj)p(xj)

with some suitable weights {wj}Nj=1 and nodes {xj}Nj=1. However, the
design of efficient quadrature rules for high-dimensional problems is
challenging. Moreover, the implementation of a quadrature rule would
require reliable information about the location of the support of the
probability density p.
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Often it is more advisable to resort to sampling: draw a large enough
sample {xj}Nj=1 from the probability distribution corresponding to p, and
use these points to approximate the integral as

I =

∫
Rd

G (x)p(x) dx = E[G (x)] ≈ 1

N

N∑
j=1

G (xj) = IN .

According to the Law of Large Numbers, for any integrable G there holds

lim
N→∞

1

N

N∑
j=1

G (xj) = I almost surely.

Furthermore, if G is square-integrable, then the Central Limit Theorem
states that

Var(I − IN) ≈
Var(G (X ))

N
,

i.e., the discrepancy between I and IN should go to zero like 1/
√
N.
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Markov Chain Monte Carlo
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Discrete time Markov chains

A sequence {Xk}∞k=0 of random variables is called a discrete time Markov
chain if the probability distribution of any Xk+1 depends only on the
previous state Xk :

π(xk+1 | x0, . . . , xk) = π(xk+1 | xk).

Here, π(xk+1|x0, . . . , xk) (resp. π(xk+1|xk)) denotes the PDF of Xk+1

conditioned on the previous states X0, . . . ,Xk (resp. Xk). Suppose in
addition that there exists a probability transition kernel q(x , y) such that

π(xk+1 | xk) = q(xk , xk+1).

Then the Markov chain is called time invariant (or time homogeneous)
since the kernel q is independent of the time k.

Remark. We assume that transition kernels satisfy the following:

for each fixed x ∈ Rd , the function y 7→ q(x , y) is a probability
density. In particular, P(Y ∈ B | X = x) =

∫
B q(x , y)dy and∫

Rd q(x , y)dy = 1.
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Example (Random walk in Rd)

A random walk in Rd is a process of moving around by taking random
steps. Elementary random walk:

1. Choose a starting point x0 ∈ Rd and a “step size” σ > 0. Set k = 0.

2. Draw a random vector wk+1 ∼ N (0, I ) and set xk+1 = xk + σwk+1.

3. Set k ← k + 1 and return to step 2, unless your stopping criterion is
satisfied.

The location of a random walk at time k is a realization of the random
variable Xk , and we have an evolution model

Xk+1 = Xk + σWk+1, Wk+1 ∼ N (0, I ).

The conditional density of Xk+1, given Xk = xk , is

π(xk+1|xk) =
1

(2πσ2)d/2
exp

(
− 1

2σ2
∥xk − xx+1∥2

)
= q(xk , xk+1),

where q is the (time invariant) transition kernel.
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Let X be a random variable with probability density p(x).

Let q(x , y) be an arbitrary transition kernel used to generate a new
random variable Y given X = x , i.e.,

π(y | x) = q(x , y).

By the law of total probability, the probability density of Y is

π(y) =

∫
Rd

π(y | x)p(x) dx =

∫
Rd

q(x , y)p(x) dx .

If the probability density of Y is equal to the probability density of X ,∫
Rd

q(x , y)p(x)dx = p(y),

then we call p an invariant density of the transition kernel q.
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Definition (Irreducible transition kernel)

The transition kernel q is irreducible if, regardless of the starting point, the
Markov chain generated by q can visit any set of positive measure with
positive probability.

Definition (Periodic transition kernel)

The transition kernel q is periodic if, for some integer m ≥ 2, there is a set
of disjoint nonempty sets {E1, . . . ,Em} ⊂ Rd such that for all
j ∈ {1, . . . ,m} and for all x ∈ Ej :

P(Y ∈ Emod(j ,m)+1|X = x) =

∫
Emod(j,m)+1

q(x , y) dy = 1.

That is, the Markov chain generated by q remains in a periodic loop
forever.

Definition (Aperiodic transition kernel)

The transition kernel q is aperiodic if it is not periodic.
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Theorem

Let {Xk}∞k=0 be a time invariant Markov chain with the transition kernel
q, i.e.,

π(xk+1 | xk) = q(xk , xk+1).

Assume that p is an invariant density of q and the following technical
conditions hold:

q is irreducible;

q is aperiodic.

Then for all x0 ∈ Rd and any (measurable) B ⊆ Rd , there holds

lim
N→∞

P(XN ∈ B | X0 = x0) =

∫
B
p(x) dx .

Moreover, for any integrable G : Rd → R,

lim
N→∞

1

N

N∑
j=1

G (Xj) =

∫
Rd

G (x)p(x) dx a.s.
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Suppose we want to sample some probability density p and we know that
it is invariant with respect to transition kernel q. Then we can proceed as
follows:

1 Select starting point x0 and set k = 0.

2 Draw xk+1 from q(xk , xk+1).

3 Set k ← k + 1 and return to step 2.

The previous theorem implies that the sample {xk}Nk=0 is asymptotically
distributed according to p as N →∞.

This raises the question: given a probability density p, how do you find a
kernel q such that p is its invariant density?

The Metropolis–Hastings algorithm is a method to construct such a kernel!
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Derivation of the Metropolis–Hastings algorithm

We are interested in obtaining samples from the probability density p.
Consider the following Markov process: if you are currently situated at
some x ∈ Rd , either

1 stay put at x with the probability r(x), 0 ≤ r(x) ≤ 1, or
2 move away from x using a transition kernel R(x , y) otherwise.

Here, both R(x , y) and r(x) are as yet undetermined—the trick will be to
calibrate these in order to find a kernel such that p is its invariant density
as discussed on the previous slide.

Since R is a transition kernel, y 7→ R(x , y) is a probability density and
hence ∫

Rd

R(x , y) dy = 1 for all x ∈ Rd .

Denote by A the event of moving away from x and by ¬A the event of
not moving. Clearly

P(A) = 1− r(x) and P(¬A) = r(x).
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Given a current state X = x , we want to know what is the probability
density of Y generated by the aforementioned strategy. Let B ⊆ Rd and
consider the probability of the event Y ∈ B. Then

P(Y ∈ B | X = x) = P(Y ∈ B | X = x ,A)P(A) (move away from x)

+ P(Y ∈ B | X = x ,¬A)P(¬A). (stay put at x)

The probability of arriving in B through a move is

P(Y ∈ B | X = x ,A) =
∫
B
R(x , y) dy .

The only way to arrive in B without moving is if x is already in B:

P(Y ∈ B | X = x ,¬A) = 1B(x) =

{
1 if x ∈ B,

0 if x ̸∈ B.

Hence

P(Y ∈ B | X = x) =

∫
B

=:K(x ,y)︷ ︸︸ ︷
(1− r(x))R(x , y)dy + r(x)1B(x)

=

∫
B
K (x , y) dy + r(x)1B(x).
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The probability of Y ∈ B can be obtained by marginalizing over x :

P(Y ∈ B) =

∫
Rd

P(Y ∈ B | X = x)p(x)dx

=

∫
Rd

(∫
B
K (x , y) dy

)
p(x)dx +

∫
Rd

r(x)1B(x)p(x)dx

=

∫
B

(∫
Rd

K (x , y)p(x) dx

)
dy +

∫
B
r(x)p(x)dx

=

∫
B

(∫
Rd

K (x , y)p(x) dx + r(y)p(y)

)
dy

=

∫
B

(∫
Rd

K (x , y)p(x) dx −
∫
Rd

K (y , x)p(y) dx + p(y)

)
dy ,

where we used
∫
Rd K (y , x) dx = (1− r(y))

∫
Rd R(y , x) dx = 1− r(y).

If the balance equation∫
Rd

p(y)K (y , x)dx =

∫
Rd

p(x)K (x , y) dx (1)

holds, then

P(Y ∈ B) =

∫
B
p(y) dy as desired.
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The Metropolis–Hastings algorithm is a technique for finding a kernel K
that satisfies the detailed balance equation

p(y)K (y , x) = p(x)K (x , y),

which implies (1). Let us start with a proposal density q(x , y), chosen so
that generating a Markov chain with it is easy. (For this reason, a
Gaussian kernel is a very popular choice.) There are three separate cases:

1 If p(y)q(y , x) = p(x)q(x , y), then set r(x) = 0,
R(x , y) = K (x , y) = q(x , y) and the previous analysis ensures that p
is an invariant density for kernel q.

2 If p(y)q(y , x) < p(x)q(x , y), then define the kernel K to be

K (x , y) = α(x , y)q(x , y),

where α is chosen s.t. p(y)α(y , x)q(y , x) = p(x)α(x , y)q(x , y). We
can make the selection

α(y , x) = 1 and α(x , y) =
p(y)q(y , x)

p(x)q(x , y)
< 1.

3 If p(y)q(y , x) > p(x)q(x , y), then in complete analogy to the above:

α(x , y) = 1 and α(y , x) =
p(x)q(x , y)

p(y)q(y , x)
< 1.
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In summary, we define K as

K (x , y) = α(x , y)q(x , y), α(x , y) = min

{
1,

p(y)q(y , x)

p(x)q(x , y)

}
.

Even though the expression for K seems complicated, it turns out that the
drawing can be performed according to the following procedure.
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Metropolis–Hastings algorithm

1 Choose x (0) ∈ Rd and set k = 0.

2 Given x = x (k), draw y using the transition kernel q(x , y) of your
choosing.

3 Calculate the acceptance ratio

α(x , y) = min

{
1,

p(y)q(y , x)

p(x)q(x , y)

}
.

4 Flip the α-coin: draw t ∼ U([0, 1]). If α > t, set x (k+1) = y ,
otherwise stay put at x and set x (k+1) = x (k).

5 Set k ← k + 1 and return to step 2.

Remark. Note that due to the form of α
’
both the target p and the

proposal density q can be unnormalized within the Metropolis–Hastings
algorithm.
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Why does this work?

Let us focus on the main loop of the Metropolis–Hastings algorithm:

Given x , draw y using the transition kernel q(x , y).

Calculate the acceptance ratio α(x , y) = min
{
1, p(y)q(x ,y)p(x)q(x ,y)

}
.

Draw t ∼ U([0, 1]). If α > t, accept y , otherwise stay put at x .

Recall that A was the event of moving in the Markov chain. Then

P(A|y , x) = “probability of accepting transition” = α(x , y),

P(y |x) = “probability of drawing y” = q(x , y).

Then

“probability of accepted y” = P(A, y |x)
= P(A|y , x)P(y |x)
= α(x , y)q(x , y) = K (x , y),

as desired.
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Example

Let us consider sampling from the density

p(x1, x2) ∝ exp(−10(x21 − x2)
2 − (x2 − 1

4)
4).

As the proposal distribution, we use the random walk model Y = X +W ,
W ∼ N (0, γ2I ), with the kernel

q(x , y) ∝ exp

(
− 1

2γ2
∥x − y∥2

)
.

We draw 5000 samples from the probability distribution with density p
using three different step sizes: γ = 0.1, γ = 0.5, and γ = 2.
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Random walk Metropolis-Hastings with 5000 samples,  = 0.1, acceptance ratio 0.7764
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Random walk Metropolis-Hastings with 5000 samples,  = 0.5, acceptance ratio 0.3272
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Random walk Metropolis-Hastings with 5000 samples,  = 2, acceptance ratio 0.058
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Derivation of the single component Gibbs sampler

We continue to be interested in sampling the distribution with density
p(x). The single component Gibbs sampler is based on the same Markov
process that was introduced in the derivation of Metropolis–Hastings: if
you are currently situated at some x ∈ Rd , either

1 stay put at x with the probability r(x), 0 ≤ r(x) ≤ 1, or
2 move away from x using a transition kernel R(x , y) otherwise.

Recall also the definition we made in the Metropolis–Hastings derivation:

K (x , y) = (1− r(x))R(x , y).

Suppose that x is a d-variate random variable. For the single component
Gibbs sampler, we set r(x) = 0 (moving is obligatory) and define the
transition kernel

K (x , y) = R(x , y) =
d∏

i=1

p(yi | y1, . . . , yi−1, xi+1, . . . , xd),

where p(yi | y1, . . . , yi−1, xi+1, . . . , xd) =
p(y1, . . . , yi , xi+1, . . . , xd)∫

R p(y1, . . . , yi , xi+1, . . . , xd) dyi
.
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This transition kernel K does not in general satisfy the detailed balance
equation, but it does satisfy the standard balance equation, which is
sufficient to ensure that p is the invariant density of the Markov chain (see
derivation of the Metropolis–Hastings method).

Theorem

The transition kernel

K (x , y) =
d∏

i=1

p(yi | y1, . . . , yi−1, xi+1, . . . , xd),

where p(yi | y1, . . . , yi−1, xi+1, . . . , xd) =
p(y1, . . . , yi , xi+1, . . . , xd)∫

R p(y1, . . . , yi , xi+1, . . . , xd) dyi
,

satisfies ∫
Rd

p(y)K (y , x)dx =

∫
Rd

p(x)K (x , y) dx .
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Proof. We begin with the left-hand side of the balance equation and consider∫
Rd K(y , x)dx . We integrate inductively over the variables in the order xd , xd−1, . . . , x1:∫

R
K(y , x)dxd =

∫
R

( d∏
i=1

p(xi |x1, . . . , xi−1, yi+1, . . . , yd)

)
dxd

=

( d−1∏
i=1

p(xi |x1, . . . , xi−1, yi+1, . . . , yd)

)∫
R
p(xd |x1, . . . , xd−1) dxd︸ ︷︷ ︸

=1

=
d−1∏
i=1

p(xi |x1, . . . , xi−1, yi+1, . . . , yd)

⇒
∫
R

∫
R
K(y , x)dxd dxd−1 =

∫
R

( d−1∏
i=1

p(xi |x1, . . . , xi−1, yi+1, . . . , yd)

)
dxd−1

=

( d−2∏
i=1

p(xi |x1, . . . , xi−1, yi+1, . . . , yd)

)∫
R
p(xd−1|x1, . . . , xd−1, yd)dxd−1︸ ︷︷ ︸

=1

=
d−2∏
i=1

p(xi |x1, . . . , xi−1, yi+1, . . . , yd) ⇒ . . .

Proceeding by inductively integrating over xd−2, xd−3, . . . , x1, we obtain∫
Rd K(y , x) dx = 1 and thus

∫
Rd p(y)K(y , x) dx = p(y)

∫
Rd K(y , x) dx = p(y).
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Next we consider the right-hand side of the balance equation. Recall that
K(x , y) =

∏d
i=1 p(yi |y1, . . . , yi−1, xi+1 . . . , xd). We integrate inductively over the

variables, this time in the order x1, . . . , xd :∫
R
p(x)K(x , y)dx1 = K(x , y)

∫
R
p(x1, x2, . . . , xd) dx1 (K is independent of x1)

=

( d∏
i=2

p(yi |y1, . . . , yi−1, xi+1, . . . , xd)

)
p(y1|x2, . . . , xd)︸ ︷︷ ︸
=

p(y1,x2,...,xd )∫
R p(x1,x2,...,xd ) dx1

∫
R
p(x1, x2, . . . , xd) dx1

=

( d∏
i=2

p(yi |y1, . . . , yi−1, xi+1, . . . , xd)

)
p(y1, x2, . . . , xd)

⇒
∫
R

∫
R
p(x)K(x , y) dx1 dx2 =

∫
R

( d∏
i=2

p(yi |y1, . . . , yi−1, xi+1, . . . , xd)

)
p(y1, x2, . . . , xd) dx2

=

( d∏
i=3

p(yi |y1, . . . , yi−1, xi+1, . . . , xd)

)
p(y2|y1, x3, . . . , xd)︸ ︷︷ ︸
=

p(y1,y2,x3,...,xd )∫
R p(y1,x2,x3,...,xd ) dx2

∫
R
p(y1, x2, . . . , xd)dx2

=

( d∏
i=3

p(yi |y1, . . . , yi−1, xi+1, . . . , xd)

)
p(y1, y2, x3, . . . , xd) ⇒ . . .

Proceeding by inductively integrating over x3, . . . , xd , we eventually obtain∫
Rd p(x)K(x , y)dx = p(y). Therefore the balance equation holds.
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Single component Gibbs sampler

1 Choose the initial value x (0) ∈ Rd and set k = 0.
2 Draw the next sample as follows:

(i) Set x = x (k) and j = 1.
(ii) Draw t ∈ R from the one-dimensional distribution

p(t | y1, . . . , yj−1, xj+1, . . . , xd) ∝ p(y1, . . . , yj−1, t, xj+1, . . . , xd)

and set yj = t.
(iii) If j = d , set y = (y1, . . . , yd) and terminate the inner loop. Otherwise,

set j ← j + 1 and return to step (ii).

3 Set x (k+1) = y , increase k ← k + 1 and return to step 2.
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Example

Let us consider the density from before

p(x1, x2) =
1

Z
exp(−10(x21 − x2)

2 − (x2 − 1
4)

4),

where the normalizing constant is Z = 1.1813 . . .

This time we use the Gibbs sampler. To sample the univariate densities
that arise in the process, we use inverse transform sampling. In this case,
the explicit algorithm we use is written below.

Fix x (0) ∈ R2 and set x = x (0);

For k = 1, . . . ,N, do

Calculate Φ1(t) =
∫ t

−∞ p(x1, x2)dx1;

Draw u ∼ U([0, 1]), set x1 = Φ−1
1 (u);

Calculate Φ2(t) =
∫ t

−∞ p(x1, x2)dx2;

Draw u ∼ U([0, 1]), set x2 = Φ−1
2 (u);

Set x (k) = x .

End
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Single component Gibbs sampler with 5000 samples
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Computational remarks about MCMC
As a general rule of thumb, one should aim at roughly 30%
acceptance rates when using Gaussian (or close to Gaussian) proposal
and target densities with MH.
It usually takes the Markov chain a number of iterations to reach the
steady state. To this end, it is usually advisable to discard the first
N0 obtained samples since they may not be representative of the
target distribution—this is the so-called “burn-in” period. The length
of the burn-in period varies depending on the application, but one
might consider throwing away the first ∼ 5− 10% steps for a
sufficiently large sample size as an example.
In MH, using a Gaussian kernel (e.g., random walk
Metropolis–Hastings) is a popular choice due to the ease of
implementation. While it is a safe choice, it does not take into
account the form of the posterior density. To increase efficiency, it is
advisable to take the shape of the density into account when
designing the proposal density. In the high-dimensional setting, this is
especially useful if the posterior density is anisotropic (stretched in
some directions). 608



Computational remarks about MCMC

The proposal distribution in MH can also be updated while the
sampling algorithm moves around the posterior density. This process
is called adaptation.

Visual assessment: we are aiming for independent sample points,
where the sample histories look like a “fuzzy worm”. One could aim
at something like the Gaussian white noise signal below:
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More quantitatively, the independence of consecutive draws can be
estimated from the sample itself by computing its (sample-based)
autocovariance.
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A note on convergence

The convergence of the Metropolis–Hastings and Gibbs sampler algorithms
depends on whether they satisfy the ergodicity conditions from before.
There are known sufficient conditions concerning the density p that
guarantee the ergodicity of these methods. For example, the following
proposition gives some relatively general conditions.

Proposition

(a) Let p : Rd → R+ and let q : Rd × Rd → R+ be a candidate-generating
kernel. If the Markov chain corresponding to q is aperiodic, then the
Metropolis–Hastings chain is also aperiodic. Further, if the Markov chain
corresponding to q is irreducible and α(x , y) > 0 for all (x , y) ∈ E+ × E+,
where E+ := {x ∈ Rd | p(x) > 0}, then the Metropolis–Hastings chain is
irreducible.
(b) Let p be a lower semicontinuous density and E+ as above. The Gibbs
sampler defines an irreducible and aperiodic transition kernel if E+ is
connected and each (d − 1)-dimensional marginal
p(x1, . . . , xj−1, xj+1, . . . , xd) =

∫
R p(x) dxj is locally bounded.
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Autocovariance and correlation length

The independence of consecutive draws can be estimated from the sample
itself. Suppose that we are interested in the convergence of the integral of
G (x) with respect to the probability density p(x). Let us denote
zj = G (xj), where {x1, . . . , xN} ⊂ Rd is a MCMC sample and let

z = N−1
∑N

j=1 zj . Then we define the normalized autocovariance of the
sample as

γk =
1

(N − k)γ0

N−k∑
j=1

(zj − z)(zj+k − z), k ≥ 1,

where γ0 = N−1
∑N

j=1 z
2
j .

The correlation length of the sample {zj}Nj=1 can be estimated based on
the decay of the normalized autocovariance sequence of the sample.

If every kth sample point is independent, one might expect the discrepancy
to behave as 1/

√
N/k =

√
k/N instead of 1/

√
N. In consequence, one

should try to choose the proposal distribution so that the correlation
length is as small as possible.
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Normalized autocovariance sequences for the Metropolis–Hastings example
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Normalized autocovariance sequences for the Gibbs example
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Preconditioned Crank–Nicolson algorithm

The preconditioned Crank–Nicolson (pCN) algorithm is an instance of
the Metropolis–Hastings algorithm with a specially chosen proposal
density.

The proposal is drawn using the model Y =
√
1− β2X + βW , where

W ∼ N (0,C0), C0 is a symmetric and positive definite matrix, with
the (non-symmetric!) kernel

q(x , y) ∝ exp

(
− 1

2β2
(y −

√
1− β2x)TC−1

0 (y −
√
1− β2x)

)
.

Here, the step size 0 < β < 1 is a free parameter (which can be
optimized for statistical efficiency).

The pCN method is dimension robust: the acceptance probability
does not degenerate to zero as the dimension d →∞. Contrast this
with, e.g., random walk Metropolis, whose acceptance probability
degenerates to zero as the dimension d →∞.
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Further variations of MCMC

We have only scratched the surface of some basic ideas surrounding
MCMC methods. In the literature and practical applications, one can find
many variations of these ideas to boost the performance of MCMC for
“difficult”/“high-dimensional” problems. To list a couple of notable ones:

Adaptive Metropolis: as the proposal density q(x , y), use a random walk model
Y = X +W with W ∼ N (0, Γ), where the covariance Γ is replaced by the sample
covariance (plus some small perturbation of identity) computed using the sample
history. The updating can happen either at every step or after every M steps of
the Metropolis iteration. The main theoretical challenge is proving the ergodicity
of the chain—this was proved by Haario, Saksman, and Tamminen (2001).
Computationally, stable updating formulae for the sample means and covariances
are needed in practice.

Independence Metropolis: as the proposal density q(x , y), use a probability density
that is independent of the previous sample x , i.e., q(x , y) = q(y). The proposal
density should be similar to the target density.

Metropolis-within-Gibbs, Delayed rejection adaptive Metropolis, . . .

Software: https://mjlaine.github.io/mcmcstat/
https://mc-stan.org/
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