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Tikhonov regularization



Tikhonov regularization

The sequence of TSVD solutions {xk} minimizes the norm of the residual

∥Ax − y∥

as k tends to rank(A). Unfortunately, when inverse/ill-posed problems are
considered, it may also happen that

∥xk∥ → ∞ as k → rank(A).

In consequence, it appears reasonable to try minimizing the residual and
the norm of the solution simultaneously.



Definition

A Tikhonov regularized solution xδ ∈ H1 is a minimizer of the Tikhonov
functional

Fδ(x) := ∥Ax − y∥2 + δ∥x∥2,

where δ > 0 is called the regularization parameter.

Theorem

Let A : H1 → H2 be a compact linear operator with the singular
system (λn, vn, un). Then the Tikhonov regularized solution exists, is
unique, and is given by the formula

xδ = (A∗A+ δI )−1A∗y =

p∑
n=1

λn

λ2
n + δ

⟨y , un⟩vn,

where p = rank(A).

Remark. The Tikhonov regularized solution can be obtained without
knowing the SVD of A by solving xδ from (A∗A+ δI )xδ = A∗y .



Proof. We make use of the Lax–Milgram lemma:
Lemma (Lax–Milgram)

Let H be a Hilbert space, and let B : H × H → R be a bilinear quadratic
form such that

|B(x , y)| ≤ C∥x∥∥y∥ for all x , y ∈ H,

B(x , x) ≥ c∥x∥2 for all x ∈ H

for some constants 0 < c ≤ C <∞. Then there exists a unique linear
boundedly invertible operator T : H → H such that

B(x , y) = ⟨x ,Ty⟩ for all y ∈ H,

∥T∥ ≤ C and ∥T−1∥ ≤ 1

c
.

In our case, we define the bilinear operator B(x , y) := ⟨x , (A∗A+ δI )y⟩
and observe that |B(x , y)| ≤ (∥A∥2 + δ)∥x∥∥y∥ (boundedness) and
B(x , x) = ⟨x , (A∗A+ δI )x⟩ = ∥Ax∥2 + δ∥x∥2 ≥ δ∥x∥2 (coercivity).
∴ (A∗A+ δI )−1 exists such that ∥(A∗A+ δI )−1∥ ≤ 1

δ . In particular,
xδ = (A∗A+ δI )−1A∗y is well-defined.



Recall that Ax =
∑

n λn⟨x , vn⟩un and A∗y =
∑

n λn⟨y , un⟩vn. Especially,

A∗Ax =
∑
n

λ2
n⟨x , vn⟩vn.

Since H1 = Ker(A)⊕Ker(A)⊥, we can write

xδ = Pxδ + Qxδ =
∑
n

⟨xδ, vn⟩vn + Qxδ,

where P : H1 → Ker(A)⊥ = span{vn} and Q : H1 → Ker(A) are
orthogonal projections. Thus

(A∗A+ δI )xδ = A∗y ⇔
∑
n

(λ2
n + δ)⟨xδ, vn⟩vn + Qxδ =

∑
n

λn⟨y , un⟩vn.

Equating terms yields that Qxδ = 0 and

(λ2
n + δ)⟨xδ, vn⟩ = λn⟨y , un⟩ ⇔ ⟨xδ, vn⟩ =

λn

λ2
n + δ

⟨y , un⟩,

as desired.



Finally, to show that xδ minimizes the quadratic functional
Fδ(x) = ∥Ax − y∥2 + δ∥x∥2, consider

x = xδ + z ,

where z ∈ H1 is arbitrary. Now

Fδ(x) = Fδ(xδ + z) = Fδ(xδ) + ⟨z , (A∗A+ δI )xδ − A∗y⟩+ ⟨z , (A∗A+ δI )z⟩
= Fδ(xδ) + ⟨z , (A∗A+ δI )z⟩,

by definition of xδ.The last term is nonnegative and vanishes only if z = 0.
This proves the claim.



Morozov discrepancy principle for Tikhonov regularization

Suppose that the measurement y ∈ H2 is a noisy version of some
underlying “exact” data y0 ∈ H2, and that

∥y − y0∥ ≈ ε > 0.

In the framework of Tikhonov regularization, the Morozov discrepancy
principle tells us to choose the regularization parameter δ > 0 so that the
residual satisfies

∥y − Axδ∥ = ε.

It turns out that there is a unique regularization parameter satisfying this
condition if

∥y − Py∥ < ε < ∥y∥,

where P : H2 → Ran(A) is an orthogonal projection.



Properties of the Tikhonov regularized solution

Theorem
Let A : H1 → H2 be a compact linear operator with the singular system
(λn, vn, un). Let P : H2 → Ran(A) be an orthogonal projection. Then we
have the following:

(i) δ 7→ ∥Axδ − y∥ is a strictly increasing function of δ > 0.

(ii) ∥Py − y∥ = lim
δ→0+

∥Axδ − y∥ ≤ ∥Axδ − y∥ ≤ lim
δ→∞
∥Axδ − y∥ = ∥y∥.

(iii) If Py ∈ Ran(A), then xδ converges to the solution of the problem

Ax = Py and x ⊥ Ker(A)

as δ → 0+.

Corollary

The equation ∥Axδ − y∥ = ε has a unique solution δ = δ(ε) iff
∥(I − P)y∥ < ε < ∥y∥.
Interpretation: ∥(I − P)y∥ < ε means that any component in the data y orthogonal to

the range of A must be due to noise; ε < ∥y∥ means that the error level should not

exceed the signal level.



Proof. Suppose that the operator A has the SVD

Ax =
∑
n

λn⟨x , vn⟩un.

Then Avn = λnun, the orthogonal projection P : H2 → Ran(A) is

Py =
∑
n

⟨y , un⟩un,

and the Tikhonov regularized solution xδ and its image under A are

xδ =
∑
n

λn

λ2
n + δ

⟨y , un⟩vn ⇒ Axδ =
∑
n

λ2
n

λ2
n + δ

⟨y , un⟩un.

(i) It follows that

∥Axδ − y∥2 = ∥Axδ − Py∥2 + ∥(I − P)y∥2

=
∑
n

(
λ2
n

λ2
n + δ

− 1

)2

|⟨y , un⟩|2 + ∥(I − P)y∥2

=
∑
n

(
δ

λ2
n + δ

)2

|⟨y , un⟩|2 + ∥(I − P)y∥2.



We arrived at

∥Axδ − y∥2 =
∑
n

(
δ

λ2
n + δ

)2

|⟨y , un⟩|2 + ∥(I − P)y∥2.

For each term of the sum,

d

dδ

(
δ

λ2
n + δ

)2

=
2δλ2

n

(λ2
n + δ)3

> 0,

implying that the mapping δ 7→ ∥Axδ − y∥2 is strictly increasing.

(ii) It is easy to see that

∥Axδ − y∥2 =
∑
n

(
δ

λ2
n + δ

)2

|⟨y , un⟩|2 + ∥(I − P)y∥2 δ→0+−−−−→ ∥(I − P)y∥2,

∥Axδ − y∥2 =
∑
n

(
δ

λ2
n + δ

)2

|⟨y , un⟩|2 + ∥(I − P)y∥2

δ→∞−−−→ ∥Py∥2 + ∥(I − P)y∥2 = ∥y∥2.



(iii) Let Py ∈ Ran(A). This implies that there exists x ∈ Ker(A)⊥ such
that Ax = Py ; this is the minimum norm solution

x =
∑
n

1

λn
⟨y , un⟩vn,

for which it can be shown that

xδ =
∑
n

λn

λ2
n + δ

⟨y , un⟩vn
δ→0+−−−−→

∑
n

1

λn
⟨y , un⟩vn = x .

Remark. In parts (ii) and (iii), one should take care when interchanging
the order of the limit and the summation, i.e., justifying the steps

lim
λ→0+

∑
n

=
∑
n

lim
λ→0+

and lim
λ→∞

∑
n

=
∑
n

lim
λ→∞

.

Standard techniques involve the monotone convergence theorem and the
dominated convergence theorem (note that these apply to infinite series as

well as integrals). In part (iii), it is helpful to observe that xδ
δ→0+−−−−→ x iff

⟨xδ, ϕ⟩
δ→0+−−−−→ ⟨x , ϕ⟩ for all ϕ ∈ H1 and ∥xδ∥

δ→0+−−−−→ ∥x∥.



Tikhonov regularization with matrices
Consider the special case H1 = Rn and H2 = Rm corresponding to the
matrix equation y = Ax . The Tikhonov functional takes the special form

Fδ(x) =

∥∥∥∥ [ A√
δI

]
x −

[
y
0

] ∥∥∥∥2, I ∈ Rn×n, 0 ∈ Rn.

The minimizer can be found by solving the least squares problem[
A√
δI

]T [
A√
δI

]
x =

[
A√
δI

]T [
y
0

]
or, equivalently,

(ATA+ δI )x = ATy .

In MATLAB, this can be implemented simply as follows:

K = [A;sqrt(delta)*eye(n)];

z = [y; zeros(n,1)];

xdelta = K\z;

In Python, e.g., scipy.linalg.lstsq can be used to obtain the least
squares solution. For sparse matrices, e.g.,
xdelta =

scipy.sparse.linalg.lsqr(A,y,damp=numpy.sqrt(delta))[0].



Numerical example: backward heat equation

Let us revisit the backward heat equation from earlier:
∂tu(x , t) = ∂2

xu(x , t) for (x , t) ∈ (0, π)× R+,

u(0, ·) = u(π, ·) = 0 on R+,

u(·, 0) = f on (0, π),

where f : (0, π)→ R is the initial heat distribution.

We reconstruct the initial state f based on noisy measurements of
u(·,T ) at time T > 0 using Tikhonov regularization.

We assume that the data U(T ) ∈ R99 at time T = 0.1 is contaminated
with mean-zero Gaussian noise with standard deviation 0.01, and that the
discrepancy between the measured data and the underlying “exact” data
equals the square root of the expected value of the squared norm of the
noise vector, i.e.,

ε =
√
99 · 0.012 ≈ 0.0995.
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See the files heateq tikhonov.py / heateq tikhonov.m on the course
webpage!



Tikhonov regularization for nonlinear problems

Unlike the TSVD, Tikhonov regularization can be generalized to nonlinear
problems as well. Consider a nonlinear operator A : H1 → H2 and the
problem

y = A(x).

A standard way of solving such a problem is via sequential linearizations,
which leads to solving a set of linear problems involving the Fréchet
derivative of operator A.

Definition

The function A : H1 → H2 is called Fréchet differentiable at x0 ∈ H1 if
there exists a continuous linear operator A′

x0 : H1 → H2 such that

A(x + h) = A(x) + A′
x0h +Wx0(z),

where ∥Wx0(z)∥ ≤ ε(x0, z)∥z∥ and the functional z 7→ ε(x0, z) tends to
zero as z → 0.

The linear operator A′
x0 is called the Fréchet derivative of A at x0.



We are interested in minimizing

Fδ(x) = ∥A(x)− y∥2 + δ∥x∥2, δ > 0.

Since Fδ is no longer quadratic, it is unclear whether a unique minimizer
exists and typically the minimizer cannot be given by an explicit formula
even it exists.

Let A be Fréchet differentiable. The linearization of A around a given
point x0 leads to the approximation of the functional Fδ,

Fδ(x) ≈ F̃δ(x ; x0) = ∥A(x0) + A′
x0(x − x0)− y∥2 + δ∥x∥2

= ∥A′
x0(x)− g(y , x0)∥2 + δ∥x∥2,

where g(y , x0) := y − A(x0) + A′
x0(x0).

From the previous discussion on the linear case, we know that the
minimizer of F̃δ(x ; x0) is given by

x = ((A′
x0)

∗Ax0 + δI )−1(A′
x0)

∗g(y , x0).



Minimization strategy with step size control

It may happen that the solution of the linearized problem does not reflect
adequately the nonlinearities of the original function. A better strategy is
to implement some form of step size control. For example, we might
design the following iterative method.

1. Pick an initial guess x0 and set k = 0.

Repeat:

2. Calculate the Fréchet derivative A′
x0 .

3. Determine

x = ((A′
xk )

∗A′
xk + δI )−1(A′

xk )
∗g(y , xk), g(y , xk) = y −A(xk) +A′

xk xk ,

and define ∆x = x − xk .
4. Find step size s > 0 by minimizing the function

f (s) = ∥A(xk + s∆x)− y∥2 + ∥xk + s∆x∥2.

5. Set xk+1 = xk + s∆x and increase k ← k + 1.

until convergence.



Remarks on nonlinear Tikhonov regularization

In practice, evaluating A′
xk

is often the most difficult part.

For finite-dimensional operators, the Fréchet derivative is simply the
Jacobi matrix.

Depending on the nature of the nonlinearity, one might also consider
more “specialized” optimization methods (e.g., Gauss–Newton
algorithm, Levenberg–Marquardt algorithm...).



More general penalty terms

A more general way of defining the Tikhonov functional is

Fδ(x) = ∥Ax − y∥2 + δG (x),

where G : H1 → R≥0 takes non-negative values. The existence of a unique
minimizer for this kind of functional depends on the properties of G , as
does the workload needed for finding it.

One typical way of defining G is

G (x) = ∥L(x − x0)∥2,

where x0 ∈ H1 is a given reference vector and L is some linear operator.
The choice of x0 and L reflects our prior knowledge about “feasible”
solutions: Lx is some property that is known to be relatively close to the
reference value Lx0 for all reasonable solutions. (In the standard case
x0 = 0 and L = I , the solutions are “known” to lie relatively close to the
origin.)



The numerical implementation of Tikhonov regularization
with G (x) = ∥L(x − x0)∥2 is approximately as easy as for the standard
penalty term.

In the case where H1 = Rn and H2 = Rm, the operator L is some matrix in
Rℓ+n and the Tikhonov functional can be given as

Fδ(x) =

∥∥∥∥ [ A√
δL

]
x −

[
y√
δLx0

] ∥∥∥∥2.
Assuming that the singular values of K are bounded suitably far away from
zero, the Tikhonov solution can be computed in MATLAB as

K = [A; sqrt(delta)*L];

z = [y; sqrt(delta)*L*x0];

xdelta = K\z;

In Python, e.g., scipy.linalg.lstsq can be used to solve the equivalent

least squares problem

[
A√
δL

]
x =

[
y√
δLx0

]
. For sparse matrices, e.g.,

K = scipy.sparse.vstack((A,np.sqrt(delta)*L))

z = np.hstack((y,np.sqrt(delta)*L@x0))

xdelta = scipy.sparse.linalg.lsqr(K,z)[0]


