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The setting

We work in the inverse problem setting of finding x ∈ Rd from y ∈ Rk

given by
y = F (x) + η

with noise η ∼ ν and prior x ∼ π such that η ⊥ x . The posterior density
πy of x |y is given by Bayes’ theorem

πy (x) =
1

Z
ν(y − F (x))π(x).

We have the negative log-likelihood:

L(x) = − log ν
(
y − F (x)

)
,

and a regularizer
R(x) = − log π(x).



So far we have mainly discussed point estimators: the MAP estimate

x̂MAP = arg max
x∈Rd

πy (x) = arg min
x∈Rd

(L(x) + R(x))

requires solving an optimization problem, and the CM estimate

x̂CM =

∫
Rd

xπy (x)dx

requires solving a high-dimensional integral. Recall that the latter can be
achieved, e.g, by using MCMC to draw a sufficiently large sample from the
posterior and computing the sample average. If we have a sample drawn
from the posterior, we can use the sample to estimate other statistics such
as the variance or credibility regions as well. Some alternatives to MCMC
include importance sampling, high-dimensional cubature rules, etc.

Using point estimators reduces the complexity of Bayesian inference from
determination of an entire distribution to determination of a single point.
However, the approach has some limitations, in particular for noisy,
multi-peaked or high-dimensional posterior distributions, where a point
estimator may not capture enough information about the density.



Unimodal distributions
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Figure: If the posterior is single-peaked, the MAP estimator reasonably
summarizes the most likely value of the unknown parameter.



Problems with uneven distributions

Figure: If the posterior is unevenly distributed, then it is less clear that the MAP
or CM estimators usefully summarize the posterior.



Problems with rough distributions
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Figure: If the objective function J(x) is very rough (here it is a quadratic function
contaminated with white noise), then the resulting posterior density is very rough.

The objective function has small-scale roughness, but it has a larger
pattern. The MAP estimator cannot capture this larger pattern as it is
found by minimizing the objective function. Arguably, x = 0 might be a
better point estimate.



Problems with high dimension

Gaussian Annulus Theorem: Nearly all the probability of a d-dimensional
spherical Gaussian distribution with unit variance is concentrated in a thin
annulus of width O(1) at radius

√
d .

For example, if x ∼ N (0, Id), then

d P(∥x∥ < 5)

10 0.99465
50 0.00119
100 1.135e-15

A point estimator may not capture enough information about the density.
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Gaussian approximation

Instead of seeking a point estimator, we can try seeking a Gaussian
distribution p = N (µ,Σ) that minimizes the Kullback–Leibler divergence
from the posterior πy (x). Since the Kullback–Leibler divergence is not
symmetric this leads to two distinct problems, which we will consider
separately.



The Kullback–Leibler divergence

Definition

Let π, π′ > 0 be two probability distributions on Rd . The Kullback–Leibler
(KL) divergence, or relative entropy, of π with respect to π′ is defined by

dKL(π∥π′) :=

∫
Rd

log

(
π(x)

π′(x)

)
π(x)dx

= Eπ
[
log
( π

π′

)]
= Eπ′

[
log
( π

π′

) π

π′

]
.

Kullback–Leibler is a divergence in that dKL(π∥π′) ≥ 0, with equality if and
only if π = π′ a.e. However, unlike Hellinger and total variation, it is not a
distance. In particular, the KL divergence is not symmetric: in general

dKL(π∥π′) ̸= dKL(π
′∥π).



The KL divergence is useful for at least the following reasons:

it provides an upper bound for many distances;

its logarithmic structure allows explicit computations that are difficult
using actual distances;

it satisfies many convenient analytical properties such as being convex
in both arguments and lower-semicontinuous in the topology of weak
convergence;

it has an information-theoretic and physical interpretation.

Lemma

The KL divergence provides the following upper bounds for Hellinger and
total variation distance:

dH(π, π
′)2 ≤ 1

2
dKL(π∥π′), dTV(π, π

′)2 ≤ dKL(π∥π′).

Proof. Recall from Week 9 that 1√
2
dTV(π, π

′) ≤ dH(π, π
′)

⇔ dTV(π, π
′)2 ≤ 2dH(π, π

′)2. Thus the second inequality follows from the
first one. We prove only the first inequality.



Consider the function ϕ : R+ → R defined by

ϕ(x) = x − 1− log x .

Note that

ϕ′(x) = 1− 1

x
,

ϕ′′(x) =
1

x2
,

lim
x→+∞

ϕ(x) = ∞ = lim
x→0+

ϕ(x).

Thus the function is convex on its domain. As the minimum of ϕ is
attained at x = 1, and as ϕ(1) = 0, we deduce that ϕ(x) ≥ 0 for all
x ∈ (0,∞). Hence,

x − 1 ≥ log x for all x > 0,

√
x − 1 ≥ 1

2
log x for all x > 0.



We can use this last inequality to bound the Hellinger distance:

dH(π, π
′)2 =

1

2

∫
Rd

(
1−

√
π′

π

)2

π dx

=
1

2

∫
Rd

(
1 +

π′

π
− 2

√
π′

π

)
π dx

= 1−
∫
Rd

√
π′

π
π dx

=

∫
Rd

(
1−

√
π′

π

)
π dx

≤ −1

2

∫
Rd

log
(π′

π

)
π dx =

1

2

∫
Rd

log
( π

π′

)
π dx =

1

2
dKL(π∥π′).



Lemma

dKL(π∥π′) = 0 if and only if π = π′ a.e.

Proof. The sufficient direction is trivial. For the necessary direction,
suppose that dKL(π∥π′) = 0. From the previous lemma, we deduce that

0 ≤ dTV(π, π
′)2 ≤ dKL(π∥π′) = 0

and therefore

dTV(π, π
′) =

1

2

∫
Rd

|π(x)− π′(x)| dx = 0,

which can only hold if π = π′ a.e.



Best Gaussian approximation

Let π be the target distribution, e.g., the posterior. We consider two
different minimization problems, both leading to a “best Gaussian”:

inf
p∈A

dKL(p∥π) (“Mode-seeking Gaussian approximation”)

and

inf
p∈A

dKL(π∥p), (“Mean-seeking Gaussian approximation”)

where the minimization is performed over the set of Gaussian distributions
on Rd with positive definite covariance, i.e.,

A := {N (µ,Σ) | µ ∈ Rd , Σ ∈ Rd×d positive definite}.



(a) Minimizing dKL(p∥π) (b) Minimizing dKL(π∥p)

Fig. (a): Minimizing dKL(p∥π) may miss out components of π – we
want log

( p
π

)
p to be small, which can happen when p ≈ π or p ≪ π.

Minimizing dKL(p∥π) over Gaussians p can only give a single mode
approximation which is achieved by matching one of the modes; we
may think of this as “mode-seeking”.
Fig. (b): Minimizing dKL(π∥p) over Gaussians p we want log π

p to be
small where p appears as the denominator. Wherever π has some
mass we must let p also have some mass there in order to keep π

p as
close as possible to one. The mass of p is allocated in a way such
that on average the divergence between p and π attains its minimum;
hence, it can be thought of as “mean-seeking”.

Different applications will favor different choices between the mean and
mode seeking approaches to Gaussian approximation.



Best Gaussian fit by minimizing dKL(p∥π) (“mode-seeking”)

Theorem (Best Gaussian approximation / “mode-seeking”)

Suppose that the loss function L(x) := − log ν
(
y − F (x)

)
is non-negative

and bounded above and that the prior π ∼ N (0, λ−1I ). Then there exists
at least one probability distribution p ∈ A at which the infimum

inf
p∈A

dKL(p∥πy )

is attained.

Proof. Let p(x) = 1
(2π)d/2(detΣ)1/2

e−
1
2
∥x−µ∥2

Σ−1 , πy (x) = 1
Z e

−L(x)−λ
2
∥x∥2 .

Then

dKL(p∥πy )=Ep

[
log

(
1

(2π)d/2(detΣ)1/2
e−

1
2
∥x−µ∥2

Σ−1

)
−log

(
1

Z
e−L(x)−λ

2
∥x∥2

)]
= −d

2
log(2π)− 1

2
log detΣ + logZ + Ep

[
− 1

2
∥x − µ∥2Σ−1 + L(x) +

λ

2
∥x∥2

]
.



.

dKL(p∥πy ) = −
d

2
log(2π)−

1

2
log detΣ + logZ + Ep

[
−

1

2
∥x − µ∥2

Σ−1 + L(x) +
λ

2
∥x∥2

]
.

Note that Z is the normalization constant for π and is independent of p
and hence of µ and Σ. We can represent a given random variable x ∼ p by
writing x = µ+Σ1/2ξ, where ξ ∼ N (0, I ), and hence

∥x − µ∥2
Σ−1 = ∥Σ1/2ξ∥2

Σ−1 = ∥ξ∥2 ⇒ Ep

[
−

1

2
∥x − µ∥2

Σ−1

]
= −

d

2
.

Moreover,

Ep [∥x∥2] =
∫
Rd

∥x − µ+ µ∥2p(x)dx

=

∫
Rd

∥x − µ∥2p(x)dx + 2⟨µ,
∫
Rd

xp(x)dx⟩ − 2⟨µ,
∫
Rd

µp(x) dx⟩+
∫
Rd

∥µ∥2p(x) dx

= tr(Σ) + 2⟨µ, µ⟩ − 2⟨µ, µ⟩+ ∥µ∥2 = tr(Σ) + ∥µ∥2.



We obtain

dKL(p∥πy ) = −d

2
− d

2
log(2π)− 1

2
log detΣ + EpL(x) +

λ

2
∥µ∥2 + λ

2
tr(Σ) + logZ .

Define I(µ,Σ) = EpL(x) + λ
2∥µ∥

2 + λ
2 tr(Σ)−

1
2 log detΣ. Note that there

is a correspondence between minimizing dKL(p∥πy ) over p ∈ A and
minimizing I(µ,Σ) over µ ∈ Rd and positive definite Σ. Moreover:

I(0, I ) < ∞.

For any Σ, I(µ,Σ) → ∞ as ∥µ∥ → ∞.

For any µ, I(µ,Σ) → ∞ as tr(Σ) → 0 or tr(Σ) → ∞.

Therefore, there are M, r ,R > 0 such that the infimum of I(µ,Σ) over
µ ∈ Rd and positive definite Σ is equal to the infimum of I(µ,Σ) over

Ã := {(µ,Σ) : µ ∈ Rd ,Σ ∈ Rd×d positive-definite symmetric, ∥µ∥ ≤ M, r ≤ tr(Σ) ≤ R}.

Since I is continuous in Ã it achieves its infimum and the proof is
complete.

We remark that the theorem establishes the existence of a best Gaussian
approximation. However, minimizers need not be unique.



Best Gaussian fit by minimizing dKL(π∥p) (“mean-seeking”)

The best Gaussian approximation in Kullback–Leibler with respect to its
second argument is unique and given by moment matching.

Theorem (Best Gaussian by moment matching / “mean-seeking”)

Assume that µ̄ := Eπ[x ] is finite and that Σ̄ := Eπ[(x − µ̄)(x − µ̄)T] is
positive definite. (Here, π denotes the target distribution, e.g., the
posterior.) Then the infimum

inf
p∈A

dKL(π∥p)

is attained by p = N (µ̄, Σ̄).

Proof. Note that dKL(π∥p) = −Eπ[log p] +

independent of p︷ ︸︸ ︷
Eπ[log π] . Since we want

a Gaussian minimizer, write p(x) = ((2π)d | detΣ|)−1/2 exp
(
− 1

2∥x − µ∥2Σ−1

)
⇒ −Eπ[log p] = −Eπ[log

(
(2π)−d/2(detΣ)−1/2e−

1
2
∥x−µ∥2

Σ−1
)
]

= 1
2E

π[∥x − µ∥2Σ−1 ] +
1
2 log detΣ + d

2 log(2π).
Note that the final term is irrelevant for the optimization problem.



Let Λ := Σ−1. Our task is equivalent to finding the minimizer of

I (µ,Λ) :=
1

2
Eπ[(x − µ)Λ(x − µ)T]− 1

2
log det Λ.

Let Λ = (Λij)
d
i ,j=1. We can view the above functional as the d + d2 variate

function I (µ1, . . . , µd ,Λ11,Λ12, . . . ,Λdd). Thus, we only need to show that

∇I (µ̄, Σ̄−1) = 0 and ∇2I (µ,Σ−1) > 0 for all µ,Σ.

((µ̄, Σ̄−1) is the critical point and the objective function is convex.)

By defining the notations ∂µf :=
(
∂f
∂µi

)d
i=1

(gradient w.r.t. vector µ) and

∂Λf :=
(

∂f
∂Λji

)d
i ,j=1

(gradient w.r.t. vector (Λ11,Λ12, . . . ,Λdd), reshaped into

a d × d matrix), we easily see that ∇I = 0 can be expressed as the pair
0 = ∂µI = −Eπ[Λ(x − µ)] = 0

0 = ∂ΛI = 1
2∂Λ(E

π[(x − µ)Λ(x − µ)T])− 1
2 det Λ∂Λ det Λ

= 1
2E

π[(x − µ)(x − µ)T]− 1
2Λ

−1,

where we used a special case of Jacobi’s formula ∂Λ det Λ = det Λ · Λ−1.
Clearly, (x ,Λ) = (µ̄, Σ̄−1) is the critical point satisfying the above
condition.

https://en.wikipedia.org/wiki/Jacobi%27s_formula


Finally, we need to show that ∇2I (µ,Σ−1) is positive definite. To this end,
we note that

p(x) =

√
det Λ

(2π)d
e−

1
2
(x−µ)TΛ(x−µ) =

√
det Λ

(2π)d
e−

1
2
xTΛx+µTΛx− 1

2
µTΛµ

=

√
det Λ

(2π)d
e−

1
2
µTΛµe−

1
2
xTΛx+µTΛx =

e−
1
2
xTΛx+µTΛx∫

Rd e
− 1

2
xTΛx+µTΛx dx

.

Noting that xTΛx =
∑d

i ,j=1 Λijxixj =
∑d

i ,j=1 Λij(xx
T)ij , we can write

xTΛx = vec(Λ) · vec(xxT), where we define

vec(M) := (M11,M12, . . . ,Mdd)
T for M ∈ Rd×d .

In particular,

−1

2
xTΛx + µTΛx =

[
Λµ

−1
2vec(Λ)

]
︸ ︷︷ ︸

=:θ

T[
x

vec(xxT)

]
︸ ︷︷ ︸

=:T (x)

and we can write pθ(x) := p(x) = 1
Z(θ)e

θTT (x), Z (θ) :=
∫
Rd e

θTT (x) dx .



The importance of the characterization

pθ(x) =
1

Z (θ)
eθ

TT (x), Z (θ) :=

∫
Rd

eθ
TT (x) dx ,

lies in the fact that every possible Gaussian PDF can be parameterized by
the vector θ = (θ1, . . . , θd+d2)T. Thus, the KL divergence dKL(π∥pθ) that
we are interested in can be recast as

H(θ) :=dKL(π∥pθ) = −Eπ[log pθ] + Eπ[log π]

=− θTEπ[T (x)] + logZ (θ) + Eπ[log π].

Noting that ∇2
θ(θ

TEπ[T (x)]) = 0 and ∂ logZ(θ)
∂θi

= 1
Z(θ)

∫
Rd

∂
∂θi

eθ
TT (x) dx

= 1
Z(θ)

∫
Rd Ti (x)e

θTT (x) dx , we compute

[∇2
θH(θ)]ij =

∂2 logZ(θ)

∂θi∂θj
=

∂

∂θj

(
1

Z(θ)

∫
Rd

Ti (x)e
θTT (x) dx

)
= −

1

Z(θ)2

(∫
Rd

Ti (x)e
θTT (x) dx

)(∫
Rd

Tj (x)e
θTT (x) dx

)
+

1

Z(θ)

∫
Rd

Ti (x)Tj (x)e
θTT (x) dx

= Epθ [TiTj ]− Epθ [Ti ]Epθ [Tj ] = [Covpθ (T )]ij ,

which is positive definite.



Remark. Notice that the preceding proof of convexity holds for any
distribution p that can be parameterized by the following more general
expression:

pθ(x) = h(x)exp
(
θTT (x)− A(θ)

)
(1)

with A(θ) = log

[∫
Rd

h(x)exp
(
θTT (x)

)
dx

]
.

Since h(x) is independent of θ, the conclusion of the previous theorem
carries over to distributions with the form of (1). Such distributions
belong to the exponential family in the statistics literature. Here, θ is
called the natural parameter, T (x) the sufficient statistic, h(x) the base
measure, and A(θ) the log-partition.

The Gaussian distribution is a special case in which h(x) is constant with
respect to x .



Variational formulation of Bayes’ theorem

We have been concerned with finding the best Gaussian approximations to
a measure with respect to KL divergences. Bayes’ theorem itself can be
formulated through a closely related minimization principle. Consider a
posterior πy (x) in the following form:

πy (x) =
1

Z
exp
(
−L(x)

)
π(x),

where π(x) is the prior, L(x) is the negative log-likelihood, and Z the
normalization constant. We assume here for exposition that all densities
are positive. Let p be an arbitrary PDF. Then we can express dKL(p∥πy ) as

dKL(p∥πy ) =

∫
Rd

log
( p

πy

)
p dx =

∫
Rd

log
(p
π

π

πy

)
p dx

=

∫
Rd

log
(p
π
exp
(
L(x)

)
Z
)
p dx

= dKL(p∥π) + Ep[L(x)] + logZ .



If we define
J (p) = dKL(p∥π) + Ep[L(x)]

then we have the following:

Theorem (Bayes’ theorem as an optimization principle)

The posterior distribution πy is given by the following minimization
principle:

πy = argminp∈PJ (p),

where P contains all probability densities on Rd .

Proof.
Since Z is the normalization constant for πy and is independent of p, the
minimizer of dKL(p∥πy ) will also be the minimizer of J (p). Since the
global minimizer of dKL(p∥πy ) is attained at p = πy the result follows.



Why is it useful to view the posterior as the minimizer of an energy?

The variational formulation provides a natural way to approximate the
posterior by restricting the minimization problem to distributions
satisfying some computationally desirable property.

For instance, variational Bayes methods often restrict the minimization
to densities with product structure and in this chapter we have studied
restriction to the class of Gaussian distributions.

Variational formulations provide natural paths, defined by a gradient
flow, towards the posterior. Understanding these flows and their rates
of convergence is helpful in the choice of sampling algorithms.



Appendix

The material on slides 28–33 was not considered during
the 2023 course and it is not part of the course exam.



Consider still the problem of finding x ∈ Rd from y ∈ Rk given by

y = F (x) + η

with noise η ∼ ν and prior x ∼ π such that η ⊥ x . The posterior density
πy of x |y is given by Bayes’ theorem

πy (x) =
1

Z
ν(y − F (x))π(x).

We have the negative log-likelihood:

L(x) = − log ν
(
y − F (x)

)
,

and a regularizer
R(x) = − log π(x).



When added together these two functions of x comprise an objective
function of the form

J(x) = L(x) + R(x).

Furthermore

πy (x) =
1

Z
ν
(
y − F (x)

)
π(x) ∝ e−J(x).

We see that minimizing the objective function J is equivalent to
maximizing the posterior πy . Therefore, the MAP estimator can be
rewritten in terms of J as follows:

x̂MAP = arg max
x∈Rd

πy (x) = arg min
x∈Rd

J(x).

Let us consider conditions under which the MAP estimator is attained, and
characterize the MAP estimator in terms of small ball probabilities – this
interpretation generalizes the definition of MAP estimators to measures
that do not possess a Lebesgue density.



For any optimization problem for an objective function with a finite
infimum, it is of interest to determine whether the infimum is attained.

Theorem (Attainable MAP estimator)

Assume that J is non-negative, continuous and that J(x) → ∞ as
|x | → ∞. Then J attains its infimum. Therefore, the MAP estimator of x
based on the posterior πy (x) ∝ exp

(
−J(x)

)
is attained.

Proof.
By the assumed growth and non-negativity of J, there is R such that
infx∈Rd J(x) = infx∈B̄(0,R) J(x) where B̄(0,R) denotes the closed ball of
radius R around the origin. Since J is assumed to be continuous, its
infimum over B̄(0,R) is attained and the proof is complete.

Remark. The assumption that J(x) → ∞ is not restrictive: this condition
needs to hold in order to be able to normalize πy (x) ∝ exp

(
−J(x)

)
into a

PDF, which is implicitly assumed in the second part of the theorem
statement.



Example. Suppose that

1 F : Rd → Rk is continuous and η ∼ N (0, Γ);

2 the objective function J(x) = L(x) + R(x) has Γ-weighted L2 loss

L(x) =
1

2
∥y − F (x)∥2Γ−1

and Lp regularizer

R(x) =
λ

p
∥u∥pp, p ∈ (0,∞).

Then the assumptions on J in the previous theorem are satisfied, and the
infimum of J is attained at the MAP estimator of the corresponding
Bayesian problem with posterior PDF proportional to exp

(
−J(u)

)
.

Intuitively the MAP estimator maximizes posterior probability. We make
this precise in the following theorem which links the objective function J to
small ball probabilities.



Theorem (Objective function and posterior probability)

Assume that J is non-negative, continuous and that J(x) → ∞ as
|x | → ∞. Let

α(x , δ) :=

∫
B(x ,δ)

πy (v) dv = Pπy (
B(x , δ)

)
,

be the posterior probability of a ball with radius δ centered at x. Then, for
all x1, x2 ∈ Rd , we have

lim
δ→0

α(x1, δ)

α(x2, δ)
= eJ(x2)−J(x1).

Remark: For fixed x2, the right-hand side is maximized at point x1 that
minimizes J. Independently of the choice of any fixed x2, the above result
shows that the probability of a small ball of radius δ centered at x1 is,
approximately, maximized by choosing the centre at a minimizer of J.

This result essentially characterizes the MAP estimate and, since it makes
no reference to Lebesgue density, it can be generalized to infinite
dimensions.



Proof. Let x1, x2 ∈ Rd , ε > 0. By continuity of J, for all sufficiently small
δ:

x ∈ B̄(xj , δ) ⇒ |J(x)− J(xj)| ≤ ε, j ∈ {1, 2},
and therefore

e−J(x1)−ε ≤ e−J(v) ≤ e−J(x1)+ε for all v ∈ B(x1, δ),

e−J(x2)−ε ≤ e−J(v) ≤ e−J(x2)+ε for all v ∈ B(x2, δ).

It follows, for all δ sufficiently small, that

Bδe
−J(x1)−ε ≤

∫
B(x1,δ)

e−J(v) dv ≤ Bδe
−J(x1)+ε,

Bδe
−J(x2)−ε ≤

∫
B(x2,δ)

e−J(v) dv ≤ Bδe
−J(x2)+ε,

where Bδ is the Lebesgue measure of a ball with radius δ. Taking the ratio
of α’s and using the above bounds we obtain that, for all δ sufficiently
small,

eJ(x2)−J(x1)−2ε ≤ α(x1, δ)

α(x2, δ)
≤ eJ(x2)−J(x1)+2ε.

Since ε was arbitrary, the desired result follows.


