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Recap: the linear Gaussian setting

Let the unknown x ∈ Rd and the data y ∈ Rk follow the relation

y = Ax + η, (1)

where
1 The forward model is linear, i.e., A ∈ Rk×d .
2 The prior distribution is Gaussian: x ∼ π = N (x0, Γpr), where Γpr is

symmetric and positive definite.
3 The noise is Gaussian: η ∼ ν = N (η0, Γn), where Γn is symmetric

and positive definite.
4 x and η are independent.

Theorem

Under assumptions 1–4, the posterior distribution corresponding to (1) is
Gaussian with x |y ∼ N (µpost, Γpost), where we have

µpost = (ATΓ−1
n A+ Γ−1

pr )
−1(ATΓ−1

n (y − η0) + Γ−1
pr x0),

Γpost = (ATΓ−1
n A+ Γ−1

pr )
−1.



Small noise limit of the posterior distribution

Now we assume that the observational noise has the distribution
η ∼ N (0, γ2Γ0) with γ > 0 and Γ0 is a fixed symmetric and positive
definite matrix, and consider the limiting behavior of the posterior mean
and covariance as γ → 0.

Substituting Γn = γ2Γ0 in the expressions for the posterior mean and
covariance yield

m(γ) :=
(
ATΓ−1

0 A+ γ2Γ−1
pr

)−1 (
ATΓ−1

0 y + γ2Γ−1
pr x0

)
, (2)

C (γ) := γ2
(
ATΓ−1

0 A+ γ2Γ−1
pr

)−1
. (3)

We distinguish between overdetermined, determined, and underdetermined
problems.



Overdetermined and determined case

Recall that x ∈ Rd and y ∈ Rk .

Theorem (Overdetermined and determined case)

Suppose in the linear Gaussian setting that Γn = γ2Γ0 with γ > 0, and
that Ker(A) = {0}.

1 If d < k, then the posterior distribution πy satisfies

πy ⇀ δm† as γ → 0,

where m† is the solution to the least squares problem

m† = argmin
u∈Rd

∥∥Γ− 1
2

0 (Au − y)
∥∥2.

2 If d = k, then we have

πy ⇀ δA−1y as γ → 0.



Proof. (i): As A has a trivial null space, Au ̸= 0, and thus

(u,ATΓ−1
0 Au) = (Au, Γ−1

0 Au) > 0

for all u ∈ Rd \ {0}. Therefore, the matrix ATΓ−1
0 A is invertible. Now we

can take γ to zero in (2) and (3) and get

m(γ) =
(
ATΓ−1

0 A+ γ2Γ−1
pr

)−1 (
ATΓ−1

0 y + γ2Γ−1
pr m0

)
γ→0→ (ATΓ−1

0 A)−1ATΓ−1
0 y =: m∗

as well as C (γ) = γ2
(
ATΓ−1

0 A+ γ2Γ−1
pr

)−1 γ → 0→ 0. This shows that
πy = N (m,C ) ⇀ N (m∗, 0) = δm∗ .

Due to the trivial null space of A, the minimizer m† of∥∥Γ− 1
2

0 (Au − y)
∥∥2

is the unique solution to the normal equation

ATΓ−1
0 Am† = ATΓ−1

0 y ,

which shows that m∗ = m†.
(ii): As in part (i), we have m(γ) → m∗ and C (γ) → 0. Since A is now
invertible, we obtain

m∗ =
(
A−1Γ0(A

T)−1
)
ATΓ−1

0 y = A−1y .



Reminder: singular value decomposition (SVD)

Let A ∈ Rk×d be any matrix. Then we can always write

A = UΛVT,

where U ∈ Rk×k , Λ ∈ Rk×d , and V ∈ Rd×d are matrices such that

UUT = UTU = Ik and VVT = VTV = Id (U and V are orthogonal matrices)

and

Λ =

 σ1

. . . Ok×(d−k)

σk

 if k < d ,

Λ =


σ1

. . .

σd

O(k−d)×d

 if k > d ,

and Λ = diag(σ1, . . . , σk) if k = d , where σ1 ≥ σ2 ≥ · · · ≥ σmin{k,d} ≥ 0 are called the
singular values of matrix A.



Underdetermined case

Both in the overdetermined and the determined case, the small noise limit
of the posterior distribution is a Dirac distribution. Note that the prior
plays no role in the limit.

This case is of particular relevance because practical inverse problems are
usually underdetermined. Here, we assume that the matrix A ∈ Rk×d has
Rank(A) = k < d and write

A
(∗)
=

(
A1 0

)
QT =

(
A1 0

) (
Q1 Q2

)T
= A1Q

T
1 (4)

with an invertible matrix A1 ∈ Rk×k and an orthogonal matrix
Q =

(
Q1 Q2

)
∈ Rd×d (i.e., QTQ = QQT = Id).

To get an idea of what is going on in the underdetermined case, we first
consider a basic example.

.(∗) To see this, consider the SVD A = UΛVT. Since k < d , we have Λ =:
(
Λ1 0

)
with Λ1 = diag(σ1, . . . , σk); thus A = UΛVT = U

(
Λ1 0

)
VT =

(
UΛ1 0

)
VT.

Finally, define A1 := UΛ1 (invertible) and Q := V (orthogonal).



Example. Assume that A =
(
A1 0

)
, η ∼ N (0, γ2Ik), and x ∼ N (0, Id).

Let

x =:

(
x1
x2

)
with x1 ∈ Rk and x2 ∈ Rd−k . Then, the data satisfies

y = Ax + η = A1x1 + η.

The posterior density is given by πy (x) = 1
Z exp(−J(x)), where

J(x) =
1

2γ2
∥y − A1x1∥2 +

1

2
∥x∥2

=

(
1

2γ2
∥y − A1x1∥2 +

1

2
∥x1∥2

)
+

1

2
∥x2∥2,

and Z is a normalization constant.



We can write it as a product

πy (x1, x2) =
1

Z̃
ν(y − A1x1)π1(x1) · π2(x2) =: πy

1 (x1)π2(x2)

where π1(x1) = N (0, Ik) and π2(x2) = N (0, Id−k) are Gaussian densities.
We can interpret the factor 1

Z̃
ν(y − A1x1)π1(x1) as posterior density πy

1

resulting from the determined problem y = A1x1 + η with prior density
x1 ∼ π1. By the small noise limit in the determined case, we know that
πy
1 ⇀ δA−1

1 y as γ → 0, whereas π2 remains constant. Since x1 and x2 are

independent, we would expect the posterior distribution to converge
weakly towards

πy (x1, x2) ⇀ δA−1
1 y (x1)π2(x2).

This means that in the limit, the data determines the posterior distribution
on a subspace of dimension k , whereas uncertainty remains in a subspace
of dimension d − k .



In order to generalize these observations, we need the following
decomposition of the identity.

Lemma

Let Γpr ∈ Rd×d be symmetric and positive definite and Q =
(
Q1 Q2

)
an

orthogonal matrix with Q1 ∈ Rd×k , Q2 ∈ Rd×(d−k). Then we have

Id = ΓprQ1(Q
T
1 ΓprQ1)

−1QT
1 + Q2(Q

T
2 Γ

−1
pr Q2)

−1QT
2 Γ

−1
pr . (5)

Proof. Let R denote the right-hand side of (5). Since Q is orthogonal, we
have QT

1 Q2 = QT
2 Q1 = 0, and thus

QT
1 (R − Id) = 0, QT

2 Γ
−1
pr (R − Id) = 0.

If B :=
(
Q1 Γ−1

pr Q2

)
has full rank, then the above identities, written as

BT(R − Id) = 0, imply R = I . B in turn is invertible, since

QTB =

(
QT

1

QT
2

)(
Q1 Γ−1

pr Q2

)
=

(
Ik QT

1 Γ
−1
pr Q2

0 QT
2 Γ

−1
pr Q2

)
is invertible and Q is orthogonal.



Theorem (Underdetermined case)

Suppose in the linear Gaussian setting that x ∼ N (x0, Γpr),
η ∼ N (0, γ2Γ0) with γ > 0, and that Rank(A) = k < d. Then

πy ⇀ N (m∗,C ∗),

where

m∗ = ΓprQ1(Q
T
1 ΓprQ1)

−1A−1
1 y + Q2(Q

T
2 Γ

−1
pr Q2)

−1QT
2 Γ

−1
pr x0,

C ∗ = Q2(Q
T
2 Γ

−1
pr Q2)

−1QT
2 .



Proof. Using the previous lemma, we can decompose x into

x = ΓprQ1(Q
T
1 ΓprQ1)

−1︸ ︷︷ ︸
=: S

QT
1 x︸︷︷︸

=: x1

+Q2(Q
T
2 Γ

−1
pr Q2)

−1︸ ︷︷ ︸
=: T

QT
2 Γ

−1
pr x︸ ︷︷ ︸

=: x2

= Sx1 + Tx2.

This way, x1 = QT
1 x and x2 = QT

2 Γ
−1
pr x are Gaussian, and†

x2 ∼ N (QT
2 Γ

−1
pr x0,Q

T
2 Γ

−1
pr Q2).

Now x1 and x2 are independent, since

Cov(x1, x2) = E[(x1 − E x1)(x2 − E x2)
T]

= QT
1 E[(x − E x)(x − E x)T]Γ−1

pr Q2

= QT
1 Q2 = 0,

where we used Cov(x , x) = E[(x − E x)(x − E x)T] = Γpr.
(∗)

.(∗) Note that, in general, uncorrelated random variables are not necessarily
independent. However, this assertion is true for jointly Gaussian random variables.

†Recall task 4 of exercise 6: if z ∼ N (m,C), then Lz + a ∼ N (Lm + a, LCLT).



By (4), we have

y = Ax + η = A1Q
T
1 x + η = A1x1 + η. (6)

As η ⊥ x , this implies x2 ⊥ y , x1 and hence P(x1, x2|y) = P(x1|y)P(x2).
The random variable x1 is Gaussian, so problem (6) satisfies the
assumptions of the linear Gaussian setting, and thus the posterior
distribution P(x1|y) is Gaussian. The small noise limit in the determined
case in turn shows that P(x1|y) ⇀ δA−1

1 y (x1) as γ → 0. As a consequence,

the limiting posterior distribution of (x1, x2)|y is

P(x1, x2|y) ⇀ δA−1
1 y (x1)P(x2).

Now, the mean and covariance of the limiting posterior distribution of x |y
are given by

m∗ = E[Sx1 + Tx2|y ] = SA−1
1 y + T E[x2]

= SA−1
1 y + TQT

2 Γ
−1
pr x0,

C ∗ = Var(Sx1 + Tx2|y) = Var(Sx1|y) + Var(Tx2)

= TQT
2 Γ

−1
pr Q2T

T = Q2(Q
T
2 Γ

−1
pr Q2)

−1QT
2 .



Q: How to interpret the limiting distribution in the underdetermined case?

A: Uncertainty remains in the subspace Ker(A) = Ran(Q2) of dimension
d − k , where the posterior is fully described by the prior.



Monte Carlo and Importance Sampling

Suppose that we are interested in estimating the integral

π(f ) := Eπ[f (x)] :=

∫
Rd

f (x)π(x) dx , (7)

where π is a probability density function and f : Rd → R is a quantity of
interest.

In the Bayesian framework, we have π(x) = 1
Z g(x)ρ(x), where Z is a

normalization constant, π is the posterior, g(x) := ν(y − F (x)) is the
likelihood, and ρ is the prior. Note that here we change the notations
slightly to improve readability.

In a non-Gaussian setting, we usually have to resort to approximating the
integral (7) by means of sampling. To this end, we will consider the
following techniques:

The Monte Carlo method (today’s lecture)

Importance sampling (today’s lecture)

Markov Chain Monte Carlo (MCMC) methods (next week’s lecture)



The Monte Carlo method

A simple technique to approximate the integral

π(f ) =

∫
Rd

f (x)π(x)dx , d ∈ Z+,

is to use a sample average. If we are able to draw the i.i.d. samples
x1, . . . , xn from the probability distribution corresponding to π, then one
can consider the Monte Carlo estimate

πMC
n (f ) :=

1

n

n∑
i=1

f (xi ).

Generally speaking, the Law of Large Numbers and the Central Limit
Theorem imply that

lim
n→∞

πMC
n (f ) = π(f ) and Var(πMC

n (f )− π(f )) ≈ Var(f (X ))

n
,

provided that f (X ) has finite mean and variance with X distributed
according to the probability distribution that corresponds to π.



Some properties of the Monte Carlo estimator

If we have the i.i.d. random samples x1, . . . , xn distributed according to π,
then π can be estimated by

πMC
n :=

1

n

n∑
i=1

δxi .

Theorem ([Theorem 5.1, Sanz-Alonso, Stuart, and Taeb 2018])

For f : Rd → R, denote ∥f ∥∞ := supx∈Rd |f (x)|. Then

sup
∥f ∥∞≤1

∣∣E[π(f )− πMC
n (f )

]∣∣ = 0 and sup
∥f ∥∞≤1

∣∣E[(π(f )− πMC
n (f ))2

]∣∣ ≤ 1

n
.

This shows that the Monte Carlo estimator πMC
n is an unbiased estimator

of π. While the convergence rate is slow with respect to n, the error is
independent of the dimension d or the properties of f , its supremum
notwithstanding.



Proof. Let x1, . . . , xn be i.i.d. according to π. Define

f̄ (x) = f (x)− π(f ).

To prove the first result, namely that the estimator is unbiased, note that

E
[
πMC
n (f )− π(f )

]
=

1

n

n∑
i=1

E[f (xi )− π(f )] =
1

n

n∑
i=1

(
π (f )− π (f )

)
=

1

n
· 0 = 0.

Therefore the supremum of its absolute value is also zero. For the second
result, which bounds the variance of the estimator, we observe that
E[f̄ ] = 0 and, then,

E
[(
πMC
n (f )− π(f )

)2]
=

1

n2

n∑
i=1

n∑
j=1

E
[
f̄ (xi ) f̄ (xj)

]
=

1

n2

n∑
i=1

E
[
f̄ (xi )

2
]
=

1

n
E
[
f̄ (x1)

2
]
=

1

n
Varπ[f ]

since xi are i.i.d.



In particular we have

E
[(
πMC
n (f )− π(f )

)2]
=

1

n
Varπ[f ] ≤

1

n
π(f 2) (8)

since
Varπ[f ] = π(f 2)− π(f )2 ≤ π(f 2).

Therefore

sup
∥f ∥∞≤1

∣∣∣E[(πMC
n (f )− π(f )

)2]∣∣∣ = sup
∥f ∥∞≤1

∣∣∣∣1nVarπ[f ]
∣∣∣∣ ≤ 1

n
.



Example

Suppose that we have the PDF π(x) := (6x − 6x2)χ(0,1)(x) and f (x) = x .
We can design the following simple scheme based on inverse transform
sampling to draw samples from this distribution.

MATLAB implementation:

n = 1e5; % sample size

x = linspace(0,1);

p = @(x) 6*x-6*x.^2; % PDF

P = cumsum(p(x)); P = P/P(end); % "empirical" CDF of p

samples = [];

for iter = 1:n

u = rand; % realization of U(0,1)

ind = find(u <= P,1,’first’); % inverse CDF rule

samples = [samples,x(ind)]; % store sample

end

histogram(samples,’Normalization’,’pdf’); % draw a histogram

hold on, plot(x,p(x),’LineWidth’,3), legend(’samples’,’pdf’);

hold off;



Python implementation:

import numpy as np

import matplotlib.pyplot as plt

n = int(1e5) # sample size

x = np.linspace(0,1,1000)

p = lambda x: 6*x-6*x**2 # PDF

P = np.cumsum(p(x)); P = P/P[-1] # "empirical" CDF of p

samples = []

for iter in range(n):

u = np.random.uniform() # realization of U(0,1)

ind = np.where(u<=P)[0][0] # inverse CDF rule

samples.append(x[ind]) # store sample

plt.hist(samples,bins=’auto’,

density=True,label=’samples’) # draw a histogram

plt.plot(x,p(x),linewidth=2,label=’pdf’)

plt.legend()

plt.show()

# Thanks to Subodh Khanger for the Python implementation!



Figure: 105 samples drawn from the distribution given on the previous page
organized as a histogram.
MATLAB:

>> mean(samples) % Monte Carlo estimate of the mean

ans =

0.5001

Python: np.mean(samples) # Monte Carlo estimate of the mean



Example

Use Monte Carlo to estimate the value of
∫
R2 χ{x2+y2<1}(x , y)dx dy .
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Figure: Left: 213 samples drawn from U((−1, 1)2). We calculate the value of the
integral as 4 · #samples inside unit disk

#samples inside unit disk+#samples outside unit disk . Right: the absolute

integration error for n = 2k , k ∈ {10, . . . , 30}.

Sample average at n = 230: 3.141725998371840.



Importance sampling

Let us focus on the setting

π(x) =
1

Z
g(x)ρ(x), (9)

where Z is a normalization constant. Unless π is some well-understood
distribution (e.g., Gaussian), the basic Monte Carlo method is generally
infeasible due to the difficulties associated with drawing samples from π
directly in the high-dimensional setting.

An alternative tactic is to use ρ as a proposal density, drawing samples
from it instead of π. By substituting the identity (9) into π(f ), we obtain

π(f ) =

∫
Rd

f (x)π(x)dx =

∫
Rd (f (x)g(x)) ρ(x) dx∫

Rd g(x) ρ(x)dx
.

If the samples x1, . . . , xn are now distributed i.i.d. according to ρ, we can
replace the numerator and denominator by their respective Monte Carlo
estimates:

πIS
n (f ) :=

n∑
i=1

wi f (xi ), wi :=
g(xi )∑n
j=1 g(xj)

(“importance weights”).

Here, the numbers w1, . . . ,wn are called the importance weights.



Similarly to the Monte Carlo estimator, we can define the particle
approximation measure

πIS
n :=

n∑
i=1

wiδxi , wi :=
g(xi )∑n
j=1 g(xj)

.

Theorem ([Theorem 5.4, Sanz-Alonso, Stuart, and Taeb 2018])

sup
∥f ∥∞≤1

∣∣E[πIS
n (f )− π(f )

]∣∣ ≤ 2
1 + dχ2(π∥ρ)

n
,

sup
∥f ∥∞≤1

∣∣E[(πIS
n (f )− π(f ))2

]∣∣ ≤ 4
1 + dχ2(π∥ρ)

n
,

where the χ2 divergence of two probability distributions π, π′ > 0 is
defined as

dχ2(π∥π′) :=

∫
Rd

(
π(x)

π′(x)
− 1

)2

π′(x) dx .

Unlike Monte Carlo, πIS
n is biased for π. The χ2 divergence between π and

ρ should not be too large for importance sampling to be accurate.



Proof. Let x1, . . . , xn be i.i.d. according to ρ. Given

π(x) =
1

Z
g(x)ρ(x) =

1

ρ(g)
g(x)ρ(x),

we obtain

dχ2(π∥ρ) =
∫
Rd

(
π(x)

ρ(x)
− 1

)2

ρ(x)dx =

∫
Rd

(
g(x)

Z
− 1

)2

ρ(x) dx

=

∫
Rd

g(x)2ρ(x)

Z 2
dx︸ ︷︷ ︸

= ρ(g2)

ρ(g)2

− 2
1

Z

∫
Rd

g(x)ρ(x) dx︸ ︷︷ ︸
=Z

+

∫
Rd

ρ(x)dx︸ ︷︷ ︸
=1

=
ρ(g2)

ρ(g)2
− 1.

Let ζ := ρ(g2)
ρ(g)2

. Noting that

π(f ) =
ρ(gf )

ρ(g)
≈ ρMC

n (gf )

ρMC
n (g)

= πIS
n (f ),

it follows that

πIS
n (f )− π(f ) = πIS

n (f )− ρ(gf )

ρ(g)

=
πIS
n (f )

(
ρ(g)− ρMC

n (g)
)

ρ(g)
−

(
ρ(gf )− ρMC

n (gf )
)

ρ(g)
.

(10)



Let us prove the second inequality first. We use the splitting of
πIS
n (f )− π(f ) into the sum of two terms from the previous slide together

with E[(ρ(f )− ρMC
n (f ))2] ≤ 1

nρ(f
2) (see (8)) and the inequality

(a− b)2 ≤ 2(a2 + b2) such that for all ∥f ∥∞ ≤ 1 we have |πIS
n (f )| ≤ 1 and∣∣∣E[(πIS

n (f )− π(f )
)2]∣∣∣

≤ 2

ρ(g)2

(
E
[(
πIS
n (f )

)2 (
ρ(g)− ρMC

n (g)
)2]

+ E
[(
ρ(gf )− ρMC

n (gf )
)2])

≤ 2

ρ(g)2

(
E
[(
ρ(g)− ρMC

n (g)
)2]

+ E
[(
ρ(gf )− ρMC

n (gf )
)2])

=
2

ρ(g)2n

(
Varρ [g ] + Varρ [gf ]

)
≤ 2

ρ(g)2n

(
ρ(g2) + ρ(g2f 2)

)
≤ 4

n

ρ(g2)

ρ(g)2
=

4ζ

n
.

Therefore, since ζ = dχ2(π∥ρ) + 1, we obtain

sup
|f |∞≤1

∣∣∣E[(πIS
n (f )− π(f )

)2]∣∣∣ ≤ 4
1 + dχ2(π∥ρ)

n
.



To prove the first inequality, we start again with the splitting (10), i.e.,

πIS
n (f )− π(f ) =

πIS
n (f )

(
ρ(g)− ρMC

n (g)
)

ρ(g)
−

(
ρ(gf )− ρMC

n (gf )
)

ρ(g)
.

The expectation of the second term vanishes since∣∣∣∣E[ρ(gf )− ρMC
n (gf )

ρ(g)

]∣∣∣∣ = 1

ρ(g)

∣∣E[ρ(gf )− ρMC
n (gf )

]∣∣ = 0.

The Cauchy–Schwarz inequality together with
E[(ρ(g)− ρMC

n (g))2] ≤ 1
nρ(g

2) (see (8)) and the previous result yield that∣∣E[πIS
n (f )− π(f )

]∣∣ = 1

ρ(g)

∣∣E[πIS
n (f )

(
ρ(g)− ρMC

n (g)
)]∣∣

≤ 1

ρ(g)

∣∣E[(πIS
n (f )− π(f )

) (
ρ(g)− ρMC

n (g)
)]

+ π(f )E
[(
ρ(g)− ρMC

n (g)
)]︸ ︷︷ ︸

=0

∣∣
≤ 1

ρ(g)

(
E
[(
πIS
n (f )− π(f )

)2])1/2 (
E
[(
ρ(g)− ρMC

n (g)
)2])1/2

≤ 1

ρ(g)

(
4ζ

n

)1/2(ρ(g2)

n

)1/2

=
2ζ

n
= 2

dχ2(π∥ρ) + 1

n
.



Case study: source localization

Suppose that a particle with unit charge is located at some (unknown)
point x∗ ∈ (0, 1) and our goal is to locate it based on measurements of
voltage at the interval end points x = 0 and x = 1. The mathematical
model for the voltage at any point x ∈ [0, 1] is given by

y(x) =
1

|x∗ − x |
.

Our noisy measurements are modeled by y1 =
1

|x∗−0| + η1 and

y2 =
1

|x∗−1| + η2, where η1 and η2 are i.i.d. realizations of N (0, σ2) with
σ = 0.2.

The likelihood is given by P(y |x) ∝ exp
(
− 1

2σ2

∑1
j=0

(
yj − 1

|x−j |
)2)

.

We consider the prior π(x) = χ(0,1)(x) =

{
1 if x ∈ (0, 1),

0 otherwise.

Then the posterior density is given by Bayes’ formula

πy (x) ∝ χ(0,1)(x) exp

(
− 1

2σ2

1∑
j=0

(
yj −

1

|x − j |

)2)
.



Computation of the CM estimate (MATLAB)

First, let us generate the measurements.
MATLAB:
format long

x_ast = 1/pi; % Fix "ground truth", i.e., particle location

sigma = .2; % Std for noise

v = 1./abs(x_ast-[0,1]); % Measurements at end points

v = v+sigma*randn(1,2); % Add noise

x = linspace(0,1); % Discretize the unit interval

% Define the (unnormalized) posterior density

p = @(x) exp(-1/(2*sigma^2)*((v(1)-1./abs(x-0)).^2+ ...

(v(2)-1./abs(x-1)).^2));



%% Monte Carlo

n = 1e5;

P = cumsum(p(x)); P = P/P(end); % "empirical" CDF

% For the Monte Carlo method, we need to sample the posterior.

% We do this using inverse transform sampling.

samples = [];

for ii = 1:n

u = rand; % realization of U(0,1)

ind = find(u <= P,1,’first’); % inverse CDF rule

samples = [samples,x(ind)]; % store sample

end

% Sanity check: plot samples in histogram.

histogram(samples,’Normalization’,’probability’, ...

’BinWidth’,.01), axis([0,1,0,.25]);

hold on;

plot(x,p(x)/sum(p(x)),’LineWidth’,2), hold off;

title([num2str(n),’ samples from the posterior density’]);

mean(samples) % Monte Carlo estimate



%% Importance sampling

n = 1e5;

samples = rand(1,n); % Sample our prior, i.e., U(0,1)

weights = p(samples); % Compute the importance weights

weights = weights/sum(weights); % Normalize the weights

% Compute the IS estimate

dot(weights,samples)



Computation of the CM estimate (Python)

First, let us generate the measurements.
Python:
import numpy as np

x_ast = 1/np.pi # Fix "ground truth", i.e., particle location

sigma = .2 # Std for noise

v = 1/np.abs(x_ast-np.array([0,1])) # Measurements at

# end points

v = v+sigma*np.random.normal(size=v.shape) # Add noise

x = np.linspace(0,1) # Discretize the unit interval

x = x[1:-1] # Drop end points to avoid numerical issues...

# Define the (unnormalized) posterior density

p = lambda x: (x > 0) * (x < 1) *\

np.exp(-1/(2*sigma**2)*((v[0]-1/np.abs(x-0))**2\

+(v[1]-1/np.abs(x-1))**2))



## Monte Carlo

n = int(1e5)

P = np.cumsum(p(x)); P = P/P[-1] # "empirical" CDF

# For the Monte Carlo method, we need to sample the posterior.

# We do this using inverse transform sampling.

samples = []

for ii in range(n):

u = np.random.uniform() # realization of U(0,1)

ind = np.where(u<=P)[0][0] # inverse CDF rule

samples.append(x[ind]) # store sample

# Compute the Monte Carlo estimate

print(np.mean(samples))



## Importance sampling

n = int(1e5)

samples = np.random.uniform(size=(1,n)) # Sample our prior,

# i.e., U(0,1)

weights = p(samples) # Compute the importance weights

weights = weights/np.sum(weights) # Normalize the weights

# Compute the IS estimate

print(np.sum(weights*samples))
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Figure: Comparison of MC and IS
estimates vs. the analytic CM estimate
and ground truth.

Monte Carlo estimate Ground truth
0.328444646464649 0.318309886183791

Importance sampling estimate Analytic CM estimate
0.328340981036045 0.328421554655529



What if we modify the problem so that we have access to only one
boundary measurement at x = 1?

Monte Carlo estimate
0.349233333333324

Importance sampling estimate
0.349743141888635

Analytic CM estimate
0.349675613936670

Ground truth
0.318309886183791

The problem becomes substantially more ill-posed!

N.B. In the implementation above, a discretized version of the inverse
transform sampling rule was used to obtain the MC estimate. The
repeating digits are an artifact of the relatively coarse discretization used
in the actual implementation.


