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Practical matters

Lectures on Mondays at 10:15-12:00 in A6/025/026 by Vesa
Kaarnioja.

Exercises on Tuesdays at 10:15-12:00 in A6/007/008 by Vesa
Kaarnioja starting next week.

Weekly exercises published after each lecture. Please return your
written solutions to Vesa either by email (vesa.kaarnioja@fu-berlin.de)
or at the beginning of the exercise session in the following week.

The conditions for completing this course are successfully completing
and submitting at least 60% of the course’s exercises and successfully
passing the course exam.



Course contents

The first part of the course will cover classical variational
regularization methods. We will follow Chapters 1–4 in

J. Kaipio and E. Somersalo (2005). Statistical and Computational
Inverse Problems. Springer, New York, NY.

Second part of the course will cover Bayesian inverse problems. We
will follow the texts

D. Sanz-Alonso, A. M. Stuart, and A. Taeb (2018). Inverse Problems
and Data Assimilation. https://arxiv.org/abs/1810.06191
J. Kaipio and E. Somersalo (2005). Statistical and Computational
Inverse Problems. Springer, New York, NY.
D. Calvetti and E. Somersalo (2007). Introduction to Bayesian
Scientific Computing: Ten Lectures on Subjective Computing.
Springer, New York, NY.



What is an inverse problem?

Forward problem: Given known causes (initial conditions, material
properties, other model parameters), determine the effects (data,
measurements).

Inverse problem: Observing the effects (noisy data), recover the
cause.

Forward problem
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←−
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Figure: Computerized tomography (CT)



Forward problem
−→

Inverse problem
←−
b
b
b
b

Figure: Image deblurring (deconvolution)

y = (K ∗ f )(x) =
∫
R2

K (x − x ′)f (x ′)dx ′



Introduction: What is an inverse problem?

We consider the indirect measurement of an unknown physical quantity
x ∈ X . The measurement y ∈ Y is related to the unknown by a physical
or mathematical model

y = F (x), (1)

where F : X → Y is called the forward mapping.

Computing y for a given x is called the forward problem.

Finding x for a given measurement y (the data) is called the inverse
problem.

The inverse problem is often ill-posed, making it more difficult than the
corresponding direct problem.



A problem is called well-posed (in the sense of Hadamard), if

(a) a solution exists,

(b) the solution is unique, and

(c) the solution depends continuously on the data.

If one or more of these conditions are violated, the problem is called
ill-posed.

Some examples of ill-posed inverse problems are X-ray tomography, image
deblurring, the inverse heat equation, and electrical impedance
tomography (EIT).

The ill-posedness of an inverse problem poses a challenge because usually,
errors are present in the measurements. Incorporating these into model (1)
in the form of additive noise η leads to a more realistic model

y = F (x) + η.



The violation of the above conditions leads to various difficulties.

If condition (a) is violated, i.e., if the image Ran(F ) of F does not
cover the whole space Y , then there may not exist a solution to
F (x) = y for noisy data y = F (x†) + η created by a ground truth x†,
although a solution exists for noise free data y = F (x†), since η does
not need to lie in Ran(F ).

If condition (c) is violated, then the solution to F (x) = y for noisy
data y = F (x†) + η may be far away from the solution for noise free
data y = F (x†), even if F is invertible and the noise η is small, due to
the discontinuity of F−1.



Example.
The deblurring (or deconvolution) problem of recovering an input signal x
from an observed signal y (possibly contaminated by noise) occurs in
many imaging as well as image and signal processing applications. The
mathematical model is

y(t) =

∫ ∞
−∞

a(t − s)x(s)ds︸ ︷︷ ︸
=:(a∗x)(t)

,

where the function a is known as the blurring kernel.

If â is “nice”, we can use the Fourier transform together with the
convolution theorem to solve the problem analytically:

y(t) = (a ∗ xexact)(t) ⇔ ŷ(ξ) = â(ξ)x̂exact(ξ) ⇔ x̂exact(ξ) =
ŷ(ξ)

â(ξ)

⇔ xexact(t) = F−1
{
ŷ

â

}
(t) =

1

2π

∫ ∞
−∞

eitξ
ŷ(ξ)

â(ξ)
dξ.

Here, xexact denotes the solution to this problem with exact, noiseless data.



However, if we can only observe noisy measurements, we must consider

y(t) = (a ∗ x)(t) + η(t) ⇔ ŷ(ξ) = â(ξ)x̂(ξ) + η̂(ξ).

The solution formula from the previous slide gives (in the Fourier side)

x̂(ξ) =
ŷ(ξ)

â(ξ)
= x̂exact(ξ) +

η̂(ξ)

â(ξ)
;

then we apply the inverse Fourier transform on both sides. However, this
reconstruction might not be well-defined and it is typically not stable, i.e.,
it does not depend continuously on the data y . The kernel a usually
decreases exponentially (or has compact support). A typical example is a
Gaussian kernel

a(t) =
1

2πα2
exp

(
− t2

2α2

)
for some α > 0.



By the Plancherel theorem, â ∈ L2(R) and∫ ∞
−∞

|a(t)|2dt =
∫ ∞
−∞

|â(ξ)|2dξ

if a ∈ L2(R). This implies in particular that â(ξ) → 0 as |ξ| → ∞. As a
consequence, high frequencies η̂(ξ) of the noise get amplified arbitrarily
strong in x̂ . Thus, even the presence of small noise can lead to large
changes in the reconstruction.



Case study: parallel-beam X-ray tomography



Case study: parallel-beam X-ray tomography



Case study: parallel-beam X-ray tomography



Case study: parallel-beam X-ray tomography



Case study: parallel-beam X-ray tomography



Case study: parallel-beam X-ray tomography



Let us consider the following phantom (botton left), which we use to
simulate measurements taken from 60 angles contaminated with 5 %
Gaussian noise (sinogram on the bottom right). Inverse problem: use the
sinogram data (X-ray images taken from the different directions) to
reconstruct the internal structure of the physical body (i.e., the phantom).
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Technical (but important) note: to avoid the so-called inverse crime, the
measurements for the inversion on the following page were generated using
a higher resolution phantom.

Formation of a CT sinogram (Samuli Siltanen):
https://www.youtube.com/watch?v=q7Rt_OY_7tU

https://www.youtube.com/watch?v=q7Rt_OY_7tU


Reconstructions argmin
x

{∥Ax −m∥2 +R(x)} from noisy measurements m

with some selected penalty terms R are given immediately below.
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Left: reconstruction with total variation regularization. Right: same with Tikhonov regularization.

Some other reconstructions for comparison (and the target phantom).
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Left: filtered back projection. Middle: unfiltered back projection. Right: ground truth.



Electrical impedance tomography

Use measurements of current and voltage collected at electrodes covering
part of the boundary to infer the interior conductivity of an object/body.


∇ · (σ∇u) = 0 in D,

σ ∂u
∂n = 0 on ∂D \

⋃L
k=1 Ek ,

u + zkσ
∂u
∂n = Uk on Ek , k ∈ {1, . . . , L},∫

Ek
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Successful solution of inverse problems requires specially designed
algorithms that can tolerate errors in measured data.

How to incorporate all possible prior and expert knowledge about the
possible solutions when solving inverse problems?

The statistical approach to inverse problems aims to quantify how
uncertainty in the data or model affects the solutions obtained in
problems.



Preliminary functional analysis



Inner product space

A real vector space X is an inner product space if there exists a mapping
⟨·, ·⟩ : X × X → R satisfying

⟨ax1 + bx2, y⟩ = a⟨x1, y⟩+ b⟨x2, y⟩ for all x1, x2, y ∈ X and a, b ∈ R;
⟨x , y⟩ = ⟨y , x⟩ for all x , y ∈ X ;

⟨x , x⟩ ≥ 0 for all x ∈ X , where equality holds iff x = 0.

A mapping ⟨·, ·⟩ satisfying these conditions is called an inner product.

Example

i) Rn = {(x1, . . . , xn) | xk ∈ R}. Then the inner product is the Euclidean dot product

⟨x , y⟩ =
n∑

k=1

xkyk , x = (x1, . . . , xn), y = (y1, . . . , yn).

ii) Let X = C([a, b]) = {f | f : [a, b]→ R is continuous} and define

⟨f , g⟩ =
∫ b

a
f (x)g(x)dx .

Then this is an inner product on C([a, b]).
iii) Let X = ℓ2(R) =

{
(zk )

∞
k=1 |

∑∞
k=1 |zk |2 <∞

}
. Then ℓ2(R) is an inner product space when

⟨x , y⟩ =
∞∑
k=1

xkyk , x = (x1, x2, . . .), y = (y1, y2, . . .).



Definition

A real vector space X is a normed space if there exists a mapping
∥ · ∥ : X → R satisfying

∥ax∥ = |a|∥x∥ for all a ∈ R and x ∈ X ;

∥x∥ ≥ 0 for all x ∈ X , where equality holds iff x = 0.

∥x + y∥ ≤ ∥x∥+ ∥y∥ for all x , y ∈ X (triangle inequality).

If X is an inner product space, then it is a normed space in a canonical
way with the induced norm ∥ · ∥ : X → R defined by

∥x∥ =
√

⟨x , x⟩, x ∈ X .

The first two postulates follow immediately from the properties of inner
product spaces, the triangle inequality follows from the Cauchy–Schwarz
inequality.

Proposition (Cauchy–Schwarz inequality)

If (X , ⟨·, ·⟩) is an inner product space, then

|⟨x , y⟩| ≤ ∥x∥∥y∥ for all x , y ∈ X .



Proof. Let x , y ∈ X and t ∈ R. If x = 0 or y = 0, then the claim is trivial.
Suppose that x ̸= 0 ̸= y . Then

0 ≤ ⟨x + ty , x + ty⟩ = ∥x∥2 + 2t⟨x , y⟩+ t2∥y∥2.

This is a second degree polynomial w.r.t. t with at most 1 real root.
Hence,

discriminant ≤ 0 ⇔ 4|⟨x , y⟩|2 − 4∥x∥2∥y∥2 ≤ 0

⇔ |⟨x , y⟩|2 ≤ ∥x∥2∥y∥2.

Note that if y = ax , a ∈ R, then discriminant= 0 and Cauchy–Schwarz
holds with equality.

The triangle inequality is an immediate consequence of Cauchy–Schwarz:

∥x + y∥2 = ⟨x + y , x + y⟩ = ∥x∥2 + ∥y∥2 + 2⟨x , y⟩
≤ ∥x∥2 + ∥y∥2 + 2|⟨x , y⟩| ≤ ∥x∥2 + ∥y∥2 + 2∥x∥∥y∥
= (∥x∥+ ∥y∥)2 for all x , y ∈ X .



For our purposes, having an inner product is not enough. We need to
know that these spaces are also complete normed spaces.

Definition (Cauchy sequence)

A sequence (xk)
∞
k=1 of elements of (X , ∥ · ∥) is called a Cauchy sequence if

for all ε > 0, there exists N ∈ N such that

m, n > N ⇒ ∥xm − xn∥ < ε.

Definition (Complete space)

A normed space (X , ∥ · ∥) is complete if all Cauchy sequences in X
converge to an element of X .

Definition (Banach space)

A normed space (X , ∥ · ∥) which is complete with respect to ∥ · ∥ is a
Banach space.

Definition (Hilbert space)

An inner product space (H, ⟨·, ·⟩) which is complete with respect to
∥ · ∥ =

√
⟨·, ·⟩ defined by the inner product is a Hilbert space.



Example
i) Rn and ℓ2(R) are complete.
ii) C([a, b]) is not complete w.r.t. the norm

∥f ∥2 =
∫ b

a

|f (x)|2 dx .

Let a = −1, b = 1, and define

fn(x) :=


0, −1 ≤ x < 0,

nx , 0 ≤ x ≤ 1
n
,

1, 1
n
< x ≤ 1.

Then fn is continuous, and if H(x) = χ[0,1](x) =

{
0, −1 ≤ x ≤ 0,

1, 0 < x ≤ 1,
we have

∫ 1

−1

|fn(x)− H(x)|2 dx =

∫ 1/n

0

|nx − 1|2 dx =

∫ 1/n

0

(n2x2 − 2nx + 1) dx

=

[
n2x3

3
− nx2 + x

]x=1/n

x=0

=
1

3n
− 1

n
+

1

n
=

1

3n
n→∞−−−→ 0.

We have ∥fn − H∥ → 0, but H ̸∈ C([−1, 1]).

However, note that C([a, b]) is complete w.r.t. the sup-norm ∥f ∥∞ = supa≤x≤b |f (x)|,
but ∥ · ∥∞ ̸= ∥ · ∥ and there is no inner product inducing ∥ · ∥∞-norm.



Bounded linear operators in Hilbert spaces

Definition

Let X and Y be normed spaces with norms ∥ · ∥X and ∥ · ∥Y . A linear operator
A : X → Y is said to be bounded if there exists C > 0 such that

∥Ax∥Y ≤ C∥x∥X for all x ∈ X .

Lemma

Let (X , ∥ · ∥X ) and (Y , ∥ · ∥Y ) be normed spaces. Then a linear operator A : X → Y is
bounded iff

∥A∥ := ∥A∥X→Y := sup
∥x∥X≤1

∥Ax∥Y <∞. (operator norm)

Proof. “⇒” If there is C > 0 s.t. ∥Ax∥Y ≤ C∥x∥X for all x ∈ X , then clearly
∥A∥ = sup∥x∥X≤1 ∥Ax∥Y ≤ C .
“⇐” Let ∥A∥ <∞. Since ∥ x

∥x∥X
∥X = 1 for all x ̸= 0, from the linearity of A we infer

∥Ax∥Y
∥x∥X

= ∥A( x
∥x∥X

)∥Y ≤ ∥A∥ for all x ∈ X .

This implies the important estimate

∥Ax∥Y ≤ ∥A∥∥x∥X for all x ∈ X .



A linear operator is continuous precisely when it is bounded.

Proposition

Let (X , ∥ · ∥X ) and (Y , ∥ · ∥Y ) be normed spaces and A : X → Y a linear operator. Then
the following are equivalent:

(i) A is a bounded operator;

(ii) A is continuous (in X );

(iii) A is continuous at one point x0 ∈ X .

Proof. (i) ⇒ (ii): if x , y ∈ X and ε > 0, then

∥x − y∥X ≤
ε

∥A∥ =: δ ⇒ ∥Ax − Ay∥Y
A linear
= ∥A(x − y)∥Y ≤ ∥A∥∥x − y∥X ≤ ε.

(ii) ⇒ (iii): trivial.
(iii) ⇒ (i): let A be continuous at x0 ∈ X . By definition, there exists δ > 0 such that

∥y − x0∥X ≤ δ ⇒ ∥Ay − Ax0∥Y ≤ 1.

If x ∈ X is such that ∥x∥X ≤ δ, then by taking y = x + x0:

∥Ax∥Y = ∥A(x + x0)− Ax0∥Y ≤ 1.

On the other hand, for any ∥x∥X ≤ 1, there holds ∥δx∥X = δ∥x∥X ≤ δ and thus

δ∥Ax∥Y = ∥A(δx)∥Y ≤ 1, i.e., ∥Ax∥Y ≤
1

δ
for all ∥x∥X ≤ 1.

Therefore ∥A∥ ≤ 1
δ
, meaning that A is bounded.



Let H be a real Hilbert space.

Definition

Two elements x , y ∈ H are said to be orthogonal if ⟨x , y⟩ = 0.

Let M ⊂ H be a subset. The orthogonal complement of M in H is defined
as

M⊥ := {y ∈ H | ⟨x , y⟩ = 0 for all x ∈ M}.

We state the following easy consequences.

Lemma

For any subset M ⊂ H, M⊥ is a closed subspace of H and M ⊂ (M⊥)⊥.

Lemma

If M is a subspace of H, then (M⊥)⊥ = M.
If M is a closed subspace of H, then (M⊥)⊥ = M.



Proposition (Hilbert projection theorem)

Let M be a nonempty, closed, and convex† subset of a real Hilbert space H. Then there
exists a unique element x0 ∈ M satisfying

∥x0∥ ≤ ∥x∥ for all x ∈ M.

Proof. Let δ = inf{∥x∥ | x ∈ M}. We use the parallelogram identity
∥u + v∥2 + ∥u − v∥2 = 2∥u∥2 + 2∥v∥2 applied to vectors u = 1

2
x and v = 1

2
y , x , y ∈ M,

to obtain
1

4
∥x − y∥2 = 1

2
∥x∥2 + 1

2
∥y∥2 −

∥∥∥∥x + y

2

∥∥∥∥2

.

Due to convexity 1
2
(x + y) ∈ M, so

∥x − y∥2 ≤ 2∥x∥2 + 2∥y∥2 − 4δ2 for all x , y ∈ M. (2)

Existence: let (xk)
∞
k=1 ⊂ M s.t. ∥xk∥

k→∞−−−→ δ. Substituting x ← xn and y ← xm in (2)
yields ∥xn − xm∥2 ≤ 2∥xn∥2 + 2∥xm∥2 − 4δ2, since 1

2
(xn + xm) ∈ M for all n,m. Thus

∥xn − xm∥ → 0 as n,m→∞. (xk)
∞
k=1 is Cauchy in the Hilbert space H, so there exists

x0 := limk→∞ xk ∈ H. Since ∥ · ∥ is continuous, ∥x0∥ = limk→∞ ∥xk∥ = δ. Since M is
closed and (xk)

∞
k=1 ⊂ M, the limit x0 ∈ M.

Uniqueness: If ∥x∥ = ∥y∥ = δ ⇒ ∥x − y∥2 ≤ 0 by (2) and so x = y .

†tx + (1− t)y ∈ M for all x , y ∈ M, t ∈ (0, 1).



Corollary

Let H be a real Hilbert space, M a nonempty, closed, and convex subset of
H, and x ∈ H. Then there exists a unique element y0 ∈ M such that

∥x − y0∥ ≤ ∥x − y∥ for all y ∈ M.

Proof. The set x −M := {x − y | y ∈ M} is closed and convex, and
min{∥x − y∥ | x − y ∈ x −M} = min{∥x − y∥ | y ∈ M}. The claim
follows from the previous result.

Proposition (Orthogonal decomposition)

If M is a closed subspace of a real Hilbert space H, then

H = M ⊕M⊥,

which means that every element y ∈ H can be uniquely represented as

y = x + x⊥, x ∈ M, x⊥ ∈ M⊥.



Proof. It suffices to prove that M ∩M⊥ = {0} and M +M⊥ = H.
• If x ∈ M ∩M⊥, then 0 = ⟨x , x⟩ = ∥x∥2 (i.e., x ⊥ x) so x = 0.
∴ M ∩M⊥ = {0}.
• Let x ∈ H. The Hilbert projection theorem guarantees that there exists
a unique y0 ∈ M such that

∥x − y0∥ ≤ ∥x − y∥ for all y ∈ M. (3)

Let x0 = x − y0 so that x = y0 + x0 ∈ M + x0. It remains to show that
x0 ∈ M⊥.
The inequality (3) can be written as

∥x0∥ ≤ ∥z∥ for all z ∈ x −M.

Since y0 ∈ M and M is a vector space, y0 +M = M and M = −M which
implies x −M = x +M = y0 + x0 +M = x0 +M. The previous inequality
can be recast as

∥x0∥ ≤ ∥z∥ for all z ∈ x0 +M ⇔ ∥x0∥ ≤ ∥x0 + z∥ for all z ∈ M.

This statement is true if and only if ⟨x0, z⟩ = 0 for all z ∈ M. Therefore
x0 ∈ M⊥.



Let M be a closed subspace. The orthogonal decomposition implies that
every element y ∈ H can be uniquely represented as

y = x + x⊥, x ∈ M, x⊥ ∈ M⊥.

Lemma

Let M ⊂ H be a closed subspace. The mapping PM : H → M, y 7→ x , is
an orthogonal projection, i.e., P2

M = PM and Ran(PM) ⊥ Ran(I − PM). It
satisfies the following properties:

PM is linear;

∥PM∥ = 1 if M ̸= {0};
I − PM = PM⊥ ;

∥y − PMy∥ ≤ ∥y − z∥ for all z ∈ M;

y ∈ M ⇒ PMy = y , (I − PM)y = 0;
y ∈ M⊥ ⇒ PMy = 0, (I − PM)y = y ;

∥y∥2 = ∥PMy∥2 + ∥(I − PM)y∥2 (Pythagoras).

Proof. Omitted; see for example [Rudin, Real and Complex Analysis, pp.
34–35].



Example

Let H1 and H2 be real Hilbert spaces and let A : H1 → H2 be a continuous
linear operator.

The kernel (or null space) of operator A is defined as

Ker(A) := {x ∈ H1 | Ax = 0}.

The range (or image) of operator A is defined as

Ran(A) := {y ∈ H2 | y = Ax , x ∈ H1}.

Then we have the following:

Ker(A) is a closed subspace of H1, and Ran(A) is a subspace of H2.

H1 = Ker(A)⊕ (Ker(A))⊥.

H2 = Ran(A)⊕ (Ran(A))⊥.



Proposition (Riesz representation theorem)

Let H be a real Hilbert space. If A : H → R is a bounded linear functional,
i.e., A is linear and there exists C > 0 such that

|A(x)| ≤ C∥x∥ for all x ∈ H,

then there exists a unique y ∈ H such that

A(x) = ⟨x , y⟩ for all x ∈ H.

Proof. If A ≡ 0, then y = 0 and this is unique. Suppose A ̸= 0 and let

M := Ker(A) = {x ∈ H | A(x) = 0}.

Since A is continuous, M is a closed subspace of H. Furthermore, by the
orthogonal decomposition H = M ⊕M⊥, our assumption A ̸= 0 implies
that M ̸= H ⇒ M⊥ ̸= {0}.



Let x ∈ H and z ∈ M⊥ with ∥z∥ = 1. Define

u := A(x)z − A(z)x .

Then
A(u) = A(x)A(z)− A(z)A(x) = 0.

meaning that u ∈ M. In particular ⟨u, z⟩ = ⟨A(x)z − A(z)x , z⟩ = 0 and

A(x) = A(x) ⟨z , z⟩︸ ︷︷ ︸
=∥z∥2=1

= ⟨A(x)z , z⟩

= ⟨A(z)x , z⟩ = A(z)⟨x , z⟩ = ⟨x , zA(z)⟩.

∴ The element y = zA(z) satisfies A(x) = ⟨x , y⟩.
To prove uniqueness, suppose that there exist y1, y2 ∈ H such that

A(x) = ⟨x , y1⟩ = ⟨x , y2⟩.

Then ⟨x , y1 − y2⟩ = 0 for all x ∈ H. Choose x = y1 − y2. Then

0 = ⟨y1 − y2, y1 − y2⟩ = ∥y1 − y2∥2 ⇔ y1 = y2.



Adjoint operator

Proposition

Let H1 and H2 be real Hilbert spaces and suppose that A : H1 → H2 is a bounded linear
operator. Then there exists a unique bounded linear operator A∗ : H2 → H1, called the
adjoint of A, satisfying ⟨Ax , y⟩H2 = ⟨x ,A∗y⟩H1 . Moreover, ∥A∥H1→H2 = ∥A∗∥H2→H1 .

Proof. Let y ∈ H2 and consider Ty : H1 → R, x 7→ ⟨Ax , y⟩H2 . Clearly, Ty is linear and
bounded so by the Riesz representation theorem there exists a unique z ∈ H1 s.t.

⟨Ax , y⟩H2 = Ty (x) = ⟨x , z⟩H1 for all x ∈ H1.

Define A∗y := z .

Let a, b ∈ R and y1, y2 ∈ H2. Linearity follows from
⟨x ,A∗(ay1 + by2)⟩ = ⟨Ax , ay1 + by2⟩ = a⟨Ax , y1⟩+ b⟨Ax , y2⟩ =
a⟨x ,A∗y1⟩+ b⟨x ,A∗y2⟩ = ⟨x , aA∗y1 + bA∗y2⟩. Since x ∈ H1 was arbitrary,
A∗(ay1 + by2) = aA∗y1 + bA∗y2.

∥A∗∥H2→H1 = sup∥y∥H2
≤1 ∥A∗y∥H1

(∗)
= sup∥y∥H2

≤1 sup∥x∥H1
≤1 |⟨A∗y , x⟩|

= sup∥y∥H2
≤1 sup∥x∥H1

≤1 |⟨y ,Ax⟩|
(∗)
= sup∥x∥H1

≤1 ∥Ax∥H2 = ∥A∥H1→H2 <∞.

.(∗)Let Λ ∈ L(H,K),H,K Hilbert spaces. Cauchy–Schwarz: sup∥y∥K≤1 |⟨Λx , y⟩K | ≤ ∥Λx∥K .
Other direction: sup∥y∥K≤1 |⟨Λx , y⟩K | ≥ |⟨Λx , 1

∥Λx∥K
Λx⟩|K = ∥Λx∥K .

∴ ∥Λx∥K = sup∥y∥K≤1 |⟨Λx , y⟩K |.



Some properties of the adjoint operator

Proposition

Let H1 and H2 be real Hilbert spaces and suppose that A,B : H1 → H2 are bounded
linear operators. Then

(i) ∥A∗A∥H1→H1 = ∥A∥2H1→H2
,

(ii) A∗∗ = A, where A∗∗ = (A∗)∗;

(iii) (c1A+ c2B)∗ = c1A
∗ + c2B

∗, c1, c2 ∈ R.

Proof. (i) Let x ∈ H1, ∥x∥H1 = 1. By the Cauchy–Schwarz inequality,

∥Ax∥2H2
= ⟨Ax ,Ax⟩H2 = ⟨x ,A

∗Ax⟩H1 ≤ ∥A
∗Ax∥H1 ⇒ ∥A∥2H1→H2

≤ ∥A∗A∥H1→H1 .

Other direction: ∥A∗A∥ ≤ ∥A∗∥ · ∥A∥ = ∥A∥2 (previous slide and exercise of week 1).
(ii) If x ∈ H1 and y ∈ H2, then

⟨A∗∗x , y⟩H2 = ⟨x ,A
∗y⟩H1 = ⟨A

∗y , x⟩H1 = ⟨y ,Ax⟩H2 = ⟨Ax , y⟩H2 .

Hence ⟨A∗∗x − Ax , y⟩H2 = 0 for all y ∈ H2 ⇒ A∗∗x = Ax for all x ∈ H1 ⇒ A∗∗ = A.
(iii) Let x ∈ H1 and y ∈ H2. Then

⟨(c1A+ c2B)∗y , x⟩H1 = ⟨y , (c1A+ c2B)x⟩H2 = c1⟨y ,Ax⟩H2 + c2⟨y ,Bx⟩H2

= c1⟨A∗y , x⟩H1 + c2⟨B∗y , x⟩H1 = ⟨(c1A
∗ + c2B

∗)y , x⟩H1 .

Similarly to the previous part, we conclude that (c1A+ c2B)∗ = c1A
∗ + c2B

∗.



Self-adjoint operators

Definition

Let H be a Hilbert space. A bounded, linear operator A : H → H is called self-adjoint if
A∗ = A, i.e.,

⟨Ax , y⟩ = ⟨x ,Ay⟩ for all x , y ∈ H.

Example

Let H be a Hilbert space and let A,B : H → H be bounded, linear, self-adjoint
operators. Then

(i) A+ B is self-adjoint.

(ii) if c ∈ R, then cA is self-adjoint.

(iii) if AB = BA, then AB is self-adjoint.

Parts (i) and (ii) follow immediately from part (iii) on the previous slide. If x , y ∈ H,
then

⟨ABx , y⟩ = ⟨BAx , y⟩ = ⟨Ax ,By⟩ = ⟨x ,ABy⟩ ⇒ (AB)∗ = AB.

Example

Let H be a real Hilbert space and M ⊂ H a closed subspace. Then the orthogonal
projections PM : H → M and I − PM =: PM⊥ : H → M⊥ are self-adjoint.



Compact operators

Definition

Let H1 and H2 be real Hilbert spaces. A bounded linear operator K : H1 → H2 is
compact if the sets K(U) ⊂ H2 are compact for every bounded set U ⊂ H1.

The following characterization will be useful.

Characterization

Let H1 and H2 be real Hilbert spaces. A bounded linear operator K : H1 → H2 is
compact if and only if (Kxj)

∞
j=1 ⊂ H2 contains a convergent subsequence for every

bounded sequence (xj)
∞
j=1 ⊂ H1.

Let H, H1, and H2 be Hilbert spaces. We have the following properties:

All linear maps to finite-dimensional spaces are compact.

If A,B : H1 → H2 are compact, then A+ B is compact.

If K : H1 → H2 is compact, then

AK is compact for all bounded and linear A : H2 → H.
KB is compact for all bounded and linear B : H → H1.

If Kn : H1 → H2 are compact operators and K : H1 → H2 is a bounded, linear

operator such that ∥Kn − K∥ n→∞0−−−−→ 0, then K is compact.

If K : H1 → H2 is compact, then so is K∗ : H2 → H1.



Proposition
Let H1 and H2 be real Hilbert spaces and A : H1 → H2 a continuous linear
operator. Then

H1 = Ker(A)⊕ (Ker(A))⊥ = Ker(A)⊕ Ran(A∗),

H2 = Ran(A)⊕ (Ran(A))⊥ = Ran(A)⊕Ker(A∗).

Proof. H1 = Ker(A)⊕ (Ker(A))⊥ and
H2 = Ran(A)⊕ (Ran(A))⊥ = Ran(A)⊕ (Ran(A))⊥ follow immediately
from the previous discussion.† The claim

(Ran(A))⊥ = Ker(A∗) (4)

follows immediately by observing that x ∈ Ker(A∗) iff

0 = ⟨A∗x , y⟩ = ⟨x ,Ay⟩ for all y ∈ H1.

The claim (Ker(A))⊥ = Ran(A∗) follows by applying (4) with A replaced
by A∗.

†Here we use the fact that X
⊥

= X⊥ for any subspace X of H; see exercise 1.



Appendix: some auxiliary results



Let X and Y be normed spaces. We denote

L(X ,Y ) := {A | A : X → Y is bounded and linear}.

Proposition

If Y is complete, then L(X ,Y ) is complete w.r.t. operator norm (i.e., it is
a Banach space).

Proof. Let x ∈ X and assume that Ak ∈ L(X ,Y ), k ∈ N, is a Cauchy
sequence. Then for all ε > 0, there exists N ∈ N such that

m, n > N ⇒ ∥Am − An∥ <
ε

∥x∥X
.

Especially,

∥Amx − Anx∥Y ≤ ∥Am − An∥∥x∥X < ε when m, n > N,

so (Akx) is a Cauchy sequence in Y and therefore the limit

A(x) := lim
k→∞

Akx

exists.



It is easy to see that A(x) := limk→∞ Akx is linear. It is also bounded:
there exists N ∈ N such that

m, n > N ⇒ ∥Am − An∥ < 1.

Fix m > N. Then for all n > m,

∥An∥ < 1 + ∥Am∥

and thus
∥Anx∥Y ≤ (1 + ∥Am∥)∥x∥X .

But ∥Ax∥Y = limn→∞ ∥Anx∥Y ≤ (1 + ∥Am∥)∥x∥X . Therefore A is
bounded.
Finally, we need to show that ∥An −A∥ → 0 as n → ∞. Since we assumed
(Ak)

∞
k=1 to be Cauchy, let ε > 0 be s.t. for m, n > N, there holds

∥Am − An∥ < ε. Then

∥(A− An)x∥Y = lim
m→∞

∥Amx − Anx∥Y ≤ ε∥x∥X for all x ∈ X

⇒ ∥A− An∥ < ε.

Hence ∥A− An∥ → 0 as n → ∞.



If X = H1 and Y = H2 are Hilbert spaces, then L(H1,H2) is a complete
normed space.

In general, L(H1,H2) is not a Hilbert space even when both H1 and H2

are. However, in the special case L(H,R) it turns out that indeed one can
associate an inner product that induces the operator norm ∥ · ∥ – meaning
that L(H,R) is a Hilbert space! This is a consequence of the Riesz
representation theorem (details omitted).



Basic properties of vector-valued series

Definition

Let E be a normed space and (xk ) ⊂ E . Define the nth partial sum Sn :=
∑n

k=1 xk . If there
exists an element S ∈ E such that limn→∞ ∥S − Sn∥ = 0, then we say that the series

∑∞
k=1 xk

is convergent (in E) and denote

S =
∞∑
k=1

xk .

Moreover, we say that the series
∑∞

k=1 xk is absolutely convergent if
∑∞

k=1 ∥xk∥ <∞.

Proposition

The normed space E is a Banach space iff every absolutely convergent series
∑∞

k=1 xk is
convergent in E .

Theorem (Generalized Pythagorean theorem)

Let (ek ) be an orthonormal sequence in Hilbert space H and let (λk ) ⊂ R. Then

∞∑
k=1

λkek is convergent iff
∞∑
k=1

|λk |2 <∞.

In this case, we have ∥∥∥∥ ∞∑
k=1

λkek

∥∥∥∥2 =
∞∑
k=1

|λk |2.



Neumann series: “Sufficiently small perturbations of the
identity are still invertible”

The following result is a well-known generalization of the geometric series
formula, named after 19th century mathematician Carl Neumann.

Theorem (Neumann series)

Let H be a real Hilbert space and let A ∈ L(H) := L(H,H) be such that
∥A∥ < 1. Then I − A is invertible in L(H) with

(I − A)−1 = I + A+ · · ·+ An + · · · =
∞∑
k=0

Ak ,

and this series converges in operator norm.

Proof. Let Bm,n :=
∑n

k=m Ak , m < n. Since ∥A∥ < 1, we have

∥Bm,n∥ ≤
n∑

k=m

∥A∥k = ∥A∥m
m−n∑
k=0

∥A∥k = ∥A∥m 1− ∥A∥n−m+1

1− ∥A∥
m,n→∞−−−−−→ 0.

∴ The partial sums
∑n

k=0 A
k form a Cauchy sequence in L(H).



Since H is a Hilbert space, L(H) is a Banach space and the limit

B := lim
n→∞

n∑
k=0

Ak ∈ L(H)

exists. We need to prove that (I − A)B = I = B(I − A). Let

Bn := I + A+ · · ·+ An.

Then

(I − A)Bn = I − An+1,

Bn(I − A) = I − An+1,

and since ∥A∥ < 1, ∥An+1∥ ≤ ∥A∥n+1 n→∞−−−→ 0, we thus obtain

I − An+1 n→∞−−−→ I in L(H)

and

(I − A)B = lim
n→∞

(I − A)Bn = I = lim
n→∞

Bn(I − A) = B(I − A).



Theorem (Bessel’s inequality)

Let H be a real Hilbert space and let (en) be an orthonormal sequence in
H. Then

∞∑
n=1

|⟨x , en⟩|2 ≤ ∥x∥2 for all x ∈ H.

Especially limn→∞⟨x , en⟩ = 0.

Proof. Let k ∈ N. Noting that〈
x −

k∑
n=1

⟨x , en⟩en, ej
〉

= ⟨x , ej⟩ −
k∑

n=1

⟨x , en⟩⟨en, ej⟩ = ⟨x , ej⟩ − ⟨x , ej⟩ = 0

for all j ∈ {1, . . . , k}, we deduce that x −
∑k

n=1⟨x , en⟩en ⊥
∑k

n=1⟨x , en⟩en (recall that
the orthogonal complement is a subspace). By the Pythagorean theorem,

∥x∥2 =
∥∥∥∥x − k∑

n=1

⟨x , en⟩en
∥∥∥∥2

+

∥∥∥∥ k∑
n=1

⟨x , en⟩en
∥∥∥∥2

≥
∥∥∥∥ k∑

n=1

⟨x , en⟩en
∥∥∥∥2

=
k∑

n=1

|⟨x , en⟩|2.

Letting k →∞ yields the assertion.



Lax–Milgram lemma

Proposition (Lax–Milgram lemma)

Let H be a real Hilbert space and let B : H × H → R be a bilinear
mapping† with C , c > 0 such that

|B(u, v)| ≤ C∥u∥ · ∥v∥ for all u, v ∈ H, (boundedness)

B(u, u) ≥ c∥u∥2 for all u ∈ H. (coercivity)

Let F : H → R be a bounded linear mapping. Then there exists a unique
element u ∈ H satisfying

B(u, v) = F (v) for all v ∈ H.

and

∥u∥ ≤ 1

c
∥F∥.

†B(u + v ,w) = B(u,w) + B(v ,w), B(au, v) = aB(u, v),
B(u, v + w) = B(u, v) + B(u,w), B(u, av) = aB(u, v)
for all u, v ,w ∈ H and a ∈ R.



Proof. 1) Let v ∈ H be fixed. Then the mapping

T : w 7→ B(v ,w), H → R,

is bounded and linear. It follows from the Riesz representation theorem
that there exists a unique element a ∈ H with

Tw = ⟨a,w⟩ for all w ∈ H.

Let us define the mapping A : H → H by setting

Av = a.

Then
B(v ,w) = ⟨Av ,w⟩ for all v ,w ∈ H.



2) We show that the mapping A : H → H is linear and bounded. Clearly,

⟨A(c1v1 + c2v2),w⟩ = B(c1v1 + c2v2,w)

= c1B(v1,w) + c2B(v2,w)

= ⟨c1Av1 + c2Av2,w⟩

for all w ∈ H, so A(c1v1 + c2v2) = c1Av1 + c2Av2. Moreover,

∥Av∥2 = ⟨Av ,Av⟩
= B(v ,Av)

≤ C∥v∥∥Av∥

which implies that
∥Av∥ ≤ C∥v∥.



3) We show that {
A is one-to-one,

Ran(A) = AH is closed in H.

We begin by noting that

c∥v∥2 ≤ B(v , v) = ⟨Av , v⟩ ≤ ∥Av∥∥v∥

and thus

∥Av∥ ≥ c∥v∥ for all v ∈ H. (5)

Especially
Av = Aw ⇒ A(v − w) = 0 ⇒ 0 = ∥A(v − w)∥ ≥ c∥v − w∥ ≥ 0 ⇒ v = w

so A is one-to-one.
To see that Ran(A) is closed, let yj = Axj ∈ Ran(A). The goal is to show that
y := limj→∞ yj ∈ Ran(A). We observe that

lim
j,k→∞

∥xj − xk∥
(5)

≤ lim
j,k→∞

1

c
∥yj − yk∥ = 0,

i.e., (xj)
∞
j=1 is Cauchy and x := limj→∞ xj ∈ H exists by completeness. Moreover,

lim
j→∞
∥Axj − Ax∥ ≤ lim

j→∞
∥A∥∥xj − x∥ ≤ C lim

j→∞
∥xj − x∥ = 0

and therefore
y = lim

j→∞
Axj = Ax ∈ Ran(A).



4) We show that Ran(A) = H. We prove this by contradiction: suppose
that Ran(A) = Ran(A) ̸= H. Then there exists w ∈ Ran(A)⊥, w ̸= 0.†

This implies that

∥w∥2 ≤ 1

c
B(w ,w) =

1

c
⟨Aw ,w⟩ = 0,

i.e., w = 0. This contradiction shows that Ran(A) = H. Therefore
A : H → H is a continuous bijection.
5) Existence of a solution. We use the Riesz representation theorem: since
F : H → R is linear and continuous, there exists b ∈ H such that

F (v) = ⟨b, v⟩ for all v ∈ H.

Define u := A−1b. Hence

Au = b ⇔ ⟨Au, v⟩ = ⟨b, v⟩ for all v ∈ H

⇔ B(u, v) = F (v) for all v ∈ H.

†Since (Ran(A)⊥)⊥ = Ran(A) ̸= H ⇒ (Ran(A))⊥ ̸= {0}.



6) Uniqueness. Suppose that

B(u1,w) = F (w) for all w ∈ H,

B(u2,w) = F (w) for all w ∈ H.

Let u := u1 − u2. By linearity,

B(u,w) = 0 for all w ∈ H.

The coercivity of B implies that

∥u∥2 ≤ 1

c
B(u, u) = 0

so that u = 0, i.e., u1 = u2.
7) A priori bound. If B(u,w) = F (w) for all w ∈ H, then by setting
w = u we obtain

∥u∥2 ≤ 1

c
B(u, u) =

1

c
F (u) ≤ 1

c
∥F∥∥u∥

which immediately yields

∥u∥ ≤ 1

c
∥F∥.



Density argument

Lemma
Let X ,Y be Banach spaces and let Z ⊂ X be a dense subspace. If
T : Z → Y is a linear mapping such that

∥Tx∥Y ≤ C∥x∥X , x ∈ Z , (6)

then there exists a unique extension T̃ : X → Y with T̃ |Z = T and

∥T̃ x∥Y ≤ C∥x∥X , x ∈ X . (7)

Moreover, if (6) holds with equality, then so does (7).

Proof. Let x ∈ X . Because Z ⊂ X is dense, there exists a sequence (zk)
∞
k=1 ⊂ Z

s.t. ∥zk − x∥X
k→∞−−−→ 0. Let ε > 0. Since (zk)

∞
k=1 is a Cauchy sequence, there exists

N ∈ N s.t.
m, n ≥ N ⇒ ∥zm − zn∥X <

ε

C
.

Then there holds

∥Tzm − Tzn∥Y = ∥T (zm − zn)∥Y ≤ C∥zm − zn∥X < ε,

which means that (Tzk)
∞
k=1 is a Cauchy sequence in Y . Since Y is complete, there

exists y := limk→∞ Tzk . Hence we may define T̃ : X → Y by setting T̃ (x) = y .



We begin by showing that T̃ is well-defined. Let (zk)
∞
k=1, (z̃k)

∞
k=1 be two sequences in Z

s.t. zk , z̃k
k→∞−−−→ x in X . Then

∥Tzk − Tz̃k∥Y = ∥T (zk − z̃k)∥Y ≤ C∥zk − z̃k∥ ≤ C∥zk − x∥+ C∥z̃k − x∥ k→∞→ 0.

Recalling that T̃ (x) := limk→∞ Tzk , we obtain

∥Tz̃k − T̃ (x)∥ ≤ ∥Tz̃k − Tzk∥+ ∥Tzk − T̃ (x)∥ k→∞→ 0,

showing that T̃ is well-defined.

Next we show that T̃ is linear. Let x , x̃ ∈ X and a, b ∈ R. Let Z ∋ zk
k→∞−−−→ x and

Z ∋ z̃k
k→∞−−−→ x̃ . Now ax + bx̃ ∈ X and Z ∋ azk + bz̃k → ax + bx̃ . Thus

T̃ (ax + bx̃) = lim
k→∞

T (azk + bz̃k) = a lim
k→∞

Tzk + b lim
k→∞

Tz̃k = aT̃x + bT̃x ,

since the limit is linear.†

Since the norm is continuous,

∥T̃ x∥ = ∥ lim
k→∞

Txk∥ = lim
k→∞

∥Txk∥ ≤ C lim
k→∞

∥xk∥ = C∥x∥.
Finally, T̃ |Z = T holds by construction and the uniqueness of the limit Tzk → y ensures
that there cannot exist another mapping L : X → Y s.t. L|Z = T and ∥Lx∥ ≤ C∥x∥.

†Let y := limk→∞ Tzk and ỹ := limk→∞ Tz̃k .
Then ∥T (azk + bz̃k)− ay − bỹ∥ ≤ a∥Tzk − y∥+ b∥Tz̃k − ỹ∥ → 0.
Hence limk→∞ T (azk + bz̃k) = a limk→∞ Tzk + b limk→∞ Tz̃k .
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Practical matters

Monday May 1 (next week) is a public holiday
→ no lecture on May 1!

We will have a bonus live-coding lecture on Tuesday May 2 about
Computerized Tomography in place of the usual exercise session (this
material will not be essential to the course).

The deadline for the second exercise sheet will be moved to Tuesday
May 9. Note that tomorrow’s exercise session will happen as planned.



Spectral theory of compact operators



Let E be a (complex) Banach space and A : E → E a bounded linear
operator. The spectrum of operator A is denoted by

σ(A) := {λ ∈ C | λI − A does not have an inverse}.

Proposition

Let H be a real Hilbert space and A : H → H a bounded linear operator.
Then

sup{|λ| : λ ∈ σ(A)} ≤ ∥A∥.

Proof. Let |λ| > ∥A∥. Then λI − A = λ(I − 1
λA), where ∥ 1

λA∥ < 1. Thus
I − 1

λA is invertible (its inverse can be expressed as a Neumann series), and
therefore the operator λI − A is always invertible for all |λ| > ∥A∥.

Lemma

The eigenvalues of a self-adjoint operator A : H → H are real-valued.

Proof. If Ax = λx , with x ̸= 0, then†

λ⟨x , x⟩ = ⟨Ax , x⟩ = ⟨x ,A∗x⟩ = ⟨x , λx⟩ = λ⟨x , x⟩ ⇒ λ = λ ∈ R
†If the scalar field of an inner product space is complex, then recall that the inner

product needs to satisfy ⟨x , y⟩ = ⟨y , x⟩.



Lemma

Let H be a real Hilbert space and let A : H → H be a self-adjoint operator.
Then

∥A∥ = sup
∥x∥=1

|⟨Ax , x⟩|.

Proof. Let us denote α := sup{|⟨Ax , x⟩| : ∥x∥ = 1}.
“≥” By Cauchy–Schwarz, |⟨Ax , x⟩| ≤ ∥A∥ for ∥x∥ = 1, and thus α ≤ ∥A∥.
“≤” Using A∗ = A, we obtain the identity

⟨A(x + y), x + y⟩ − ⟨A(x − y), x − y⟩
=���⟨Ax , x⟩+ ⟨Ax , y⟩+ ⟨Ay , x⟩+���⟨Ay , y⟩ −���⟨Ax , x⟩+ ⟨Ax , y⟩+ ⟨Ay , x⟩ −���⟨Ay , y⟩
= 4⟨Ax , y⟩ for all x , y ∈ H.

Let x , y ∈ H be such that ∥x∥ = 1 = ∥y∥. Using the inequality |⟨Av , v⟩| ≤ α∥v∥2 for all
v ∈ H and the parallelogram rule (exercise 1), we obtain

4⟨Ax , y⟩ ≤ |⟨A(x + y), x + y⟩|+ |⟨A(x − y), x − y⟩| ≤ α(∥x + y∥2 + ∥x − y∥2)

= 2α(∥x∥2 + ∥y∥2) = 4α.

Let λ = sign⟨Ax , y⟩. Then |⟨Ax , y⟩| = λ⟨Ax , y⟩ = ⟨A(λx), y⟩ ≤ α
⇒ ∥A∥ = sup∥x∥=1 sup∥y∥=1 |⟨Ax , y⟩| ≤ α.



If A is a compact operator, then there exists an element in H which
satisfies the following.

Lemma

Let H be a real Hilbert space and let A : H → H be a compact, self-adjoint
operator. Then

∥A∥ = |⟨Ax0, x0⟩| for some x0 ∈ H, ∥x0∥ = 1. (1)

Moreover, x0 is an eigenvector of A, Ax0 = λ0x with |λ0| = ∥A∥.

Proof. Suppose that A ̸= 0. By the previous lemma,

∥A∥ = sup{|⟨Ax , x⟩| : ∥x∥ = 1},

and thus there exists a sequence (xn) ⊂ {x ∈ H : ∥x∥ = 1} such that

|⟨Axn, xn⟩|
n→∞→ ∥A∥, i.e., ⟨Axn, xn⟩

n→∞→ λ0, where λ0 ∈ {−∥A∥, ∥A∥}. Now

0 ≤ ∥Axn − λ0xn∥2 = ∥Axn∥2 + λ2
0∥xn∥2 − 2λ0⟨Axn, xn⟩ ≤ λ2

0 + λ2
0 − 2λ0⟨Axn, xn⟩

n→∞→ 0.

By compactness of A, there exists a subsequence (xnj ) of (xn) and a limit x0 ∈ H such
that Axnj → x0. Since Axnj − λ0xnj → 0, then λxnj → x0, ∥x0∥ = 1, and Ax0 = λ0x0.



Theorem (Spectral theorem for compact, self-adjoint operators)

Let H be a real Hilbert space and let A : H → H be a compact, self-adjoint
operator. Then

each λ ∈ σ(A) \ {0} is an eigenvalue of A;

0 is the only limit point of σ(A), i.e., if there are an infinite number
of eigenvalues (λn) ⊂ R, then limn λn = 0;

the eigenvectors (un) ⊂ H form an orthonormal sequence such that

Ax =
∑
n

λn⟨x , un⟩un.

Proof. We have already established that there exists u0 ∈ H
s.t. Au0 = λ0u0, |λ0| = ∥A∥ and ∥u0∥ = 1. Define H1 := {u0}⊥. If
y ∈ H1, then

⟨Ay , u0⟩ = ⟨y ,Au0⟩ = λ1⟨y , u0⟩ = 0,

which means that A|H1 : H1 → H1 is a compact, self-adjoint operator.



By (1), there exists u1 ∈ H1 such that

∥A|H1∥ = |⟨u1,Au1⟩|

with Au1 = λ1u1, where |λ1| ≤ |λ0| and ⟨u0, u1⟩ = 0.

Next, let H2 := {u0, u1}⊥. As before, A|H2 : H2 → H2 is a compact,
self-adjoint operator and (1) again implies that there exists u2 ∈ H2 such
that Au2 = λ2u2, where |λ2| ≤ |λ1| ≤ |λ0| and ∥u2∥ = 1.

Proceeding inductively, we obtain Hn := {u0, . . . , un−1}⊥ ⊂ Hn−1, where
A|Hn : Hn → Hn is compact and self-adjoint, |λn| = ∥A|Hn∥,
|λn| ≤ |λn−1| ≤ · · · ≤ |λ0| and Aun = λnun for some un ∈ Hn, ∥un∥ = 1.

If dimRan(A) = ∞, we claim that |λn| → 0 as n → ∞. Since uk ⊥ uj
whenever j ̸= k , we deduce that

|λj |2 + |λk |2 = ∥λkuk − λjuj∥2 = ∥Auk − Auj∥2.

Note that (λ2
j ) is convergent as a bounded, monotonic sequence. Since

(uj) is bounded and A is compact, (Auj) contains a convergent
subsequence – and hence it contains a Cauchy subsequence. This implies
that (λ2

j ) contains a subsequence which converges to 0. Since (λ2
j ) is a

convergent sequence, it follows that limj→∞ λj = 0.



Let M := span{un | n ∈ N}⊥. The previous discussion implies that
A|M = 0. Let H∞ := span{un | un ∈ N}. By the orthogonal decomposition
H = M ⊕ H∞, the orthogonal projection P : H → H∞ can be written as

Px =
∑
n

⟨x , un⟩un, x ∈ H (proof left as an exercise)

and therefore

Ax = APx = A

(∑
n

⟨x , un⟩un
)

=
∑
n

⟨x , un⟩Aun =
∑
n

λn⟨x , un⟩un,

as desired.

Finally, to see that each λ ∈ σ(A) \ {0} is an eigenvalue, suppose that
λ ̸∈ {λn | n ∈ N} ∪ {0}. Then there exists δ > 0 such that |λ− λn| > δ for
all n ∈ N and |λ| > δ. If Q : H → M is an orthogonal projection, then ´

(λI − A)−1x =
∑
n

1

λ− λn
⟨x , un⟩un +

1

λ
Qx , x ∈ H,

is bounded by the previous discussion, i.e., λ ̸∈ σ(A).



Our goal is to obtain a spectral expansion for all compact operators
A : H1 → H2. To begin with, note that if A : H1 → H2 is a compact
operator, then A∗A : H1 → H1 is compact and self-adjoint since

⟨A∗Ax , y⟩H1 = ⟨Ax ,Ay⟩H2 = ⟨x ,A∗Ay⟩H1 for all x , y ∈ H1.

Note in addition that the eigenvalues of A∗A are nonnegative: if
A∗Avn = λnvn, ∥vn∥H1 = 1

’
then

λn = λn∥vn∥2H1
= ⟨A∗Avn, vn⟩H1 = ∥Avn∥2H2

≥ 0.

In particular, we can write down the eigendecomposition

A∗Ax =
∑
n

λn⟨x , vn⟩H1vn,

where (vn) ⊂ H1 is an orthonormal sequence of eigenvectors.



Lemma

Let H1 and H2 be real Hilbert spaces and let A : H1 → H2 be a compact
operator. Then there exist orthonormal sequences (vn) ⊂ H1 and
(wn) ⊂ H2 such that

Avn =
√
λnwn and A∗wn =

√
λnvn, (2)

where λ1 ≥ λ2 ≥ · · · > 0 are the nonzero eigenvalues of A∗A. Define
|A| : H1 → H2 by setting |A|x =

∑
n

√
λn⟨x , vn⟩H1wn. Then

|A| is compact and |A|∗|A| = A∗A.

Proof. Let (vn) ⊂ H1 denote the orthonormal sequence of eigenfunctions
of A∗A, i.e.,

A∗Avn = λnvn

and define a second sequence by

wn =
1√
λn

Avn.

Straightforward computations show that (2) holds as well as
⟨wn,wn⟩H2 = 1 and ⟨wn,wm⟩H2 = 0 whenever n ̸= m.



Next, let us show that |A| : H1 → H2 is compact. It follows from the
generalized Pythagorean theorem and Bessel’s inequality that∥∥∥∥|A|x −

m∑
n=1

√
λn⟨x , vn⟩H1wn

∥∥∥∥2
H2

=

∥∥∥∥ ∞∑
n=m+1

√
λn⟨x , vn⟩H1wn

∥∥∥∥2
H2

=
∞∑

n=m+1

|λn||⟨x , vn⟩H1 |
2 ≤ sup

n≥m+1
|λn| · ∥x∥2

≤ sup
n≥m+1

|λn| for all ∥x∥H1 ≤ 1.

Thus ∥|A| −
∑m

n=1

√
λn⟨·, vn⟩H1wn∥ ≤ supn≥m+1

√
λn → 0 as m → ∞.

Since the operators x 7→ ⟨x , vn⟩H1wn have 1-dimensional range, they are
compact. Moreover, finite sums

∑m
n=1

√
λn⟨·, vn⟩H1wn of compact

operators are compact and, in consequence, their limiting operator |A| is
compact. (See, e.g., properties of compact operators from the lecture
notes of week 1.)



Finally, we wish to show that |A|∗|A| = A∗A. It is not difficult to check
that

|A|∗ =
∑
n

√
λn⟨·,wn⟩H2vn.

Let x ∈ H1. A direct computation then reveals that

|A|∗|A|x = |A|∗
(∑

n

√
λn⟨x , vn⟩H1wn

)
=

∑
m

√
λm

〈∑
n

√
λn⟨x , vn⟩H1wn,wm

〉
H2

vm

=
∑
m,n

√
λmλn⟨x , vn⟩H1⟨wn,wm⟩H2vm

=
∑
n

λn⟨x , vn⟩H1vn = A∗Ax ,

where we used ⟨wn,wn⟩H2 = 1 and ⟨wn,wm⟩H2 = 0 whenever n ̸= m.



Proposition (Polar decomposition)

Let H1 and H2 be real Hilbert spaces, A : H1 → H2 a compact operator,
and let |A| be defined as before. Then there exists a bounded, linear
operator U : H2 → H2 such that

A = U|A|,

where ∥Ux∥H2 = ∥x∥H2 for all x ∈ Ran(|A|) and Uy = 0 for all
y ∈ Ran(|A|)⊥.

Proof. If x ∈ H1, then

∥|A|x∥2H2
= ⟨|A|x , |A|x⟩H2 = ⟨x , |A|∗|A|x⟩H1 = ⟨x ,A∗Ax⟩H1 = ⟨Ax ,Ax⟩H2 = ∥Ax∥2H2

.

We can define a linear mapping U : Ran(|A|) → Ran(A) by setting U(|A|x) = Ax for
x ∈ H1. Since the above formula implies

∥U(|A|x)∥ = ∥Ax∥ = ∥|A|x∥ for all |A|x ∈ Ran(|A|),

there exists a unique extension U : Ran(|A|) → Ran(A) s.t. ∥Ux∥ = ∥x∥ for all
x ∈ Ran(|A|). Finally, since we have the orthogonal decomposition
H2 = Ran(|A|)⊕ Ran(|A|)⊥, we can set Uy = 0 for all y ∈ Ran(|A|)⊥.



Theorem (Singular value decomposition of compact operators)

Let H1 and H2 be real Hilbert spaces and let A : H1 → H2 be a compact
operator. Then there exists a (possibly finite) sequence of positive real
numbers (λn) ⊂ R with limn→∞ λn = 0 and (possibly finite) orthonormal
sequences (vn) ⊂ H1 and (un) ⊂ H2 such that

Ax =
∑
n

λn⟨x , vn⟩H1un, x ∈ H1.

Proof. The operator A∗A : H1 → H1 is compact and self-adjoint. Let

A∗Ax =
∑
n

λn⟨x , vn⟩H1vn, x ∈ H1,

be its eigendecomposition. Moreover, let

|A|x =
∑
n

√
λn⟨x , vn⟩H1wn, x ∈ H1,

be defined as before. Then using the polar decomposition:

Ax = U|A|x = U

(∑
n

√
λn⟨x , vn⟩H1wn

)
=

∑
n

√
λn⟨x , vn⟩H1U(wn)︸ ︷︷ ︸

=:un

.

Since U is an isometry in Ran(|A|), ⟨wn,wm⟩H2 = ⟨U(wn),U(wm)⟩H2 (exercise 1).
Therefore (un) is also an orthonormal sequence.
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Numerical example: X-ray tomography

As an application, we consider X-ray tomography and describe here the
construction of the tomography matrix. We will return to this example on
Tuesday May 30 when we will discuss total variation regularization for
X-ray tomography.



The following content follows roughly the material presented in the
following monographs.

J. Kaipio and E. Somersalo. Statistical and Computational Inverse
Problems. 2005.

J. L. Mueller and S. Siltanen. Linear and Nonlinear Inverse Problems
with Practical Applications. 2012.

ASTRA Toolbox for 2D and 3D tomography:
https://www.astra-toolbox.com/

https://www.astra-toolbox.com/


Parallel-beam X-ray tomography



Parallel-beam X-ray tomography
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Parallel-beam X-ray tomography



Parallel-beam X-ray tomography



Parallel-beam X-ray tomography



Radon transform in R2

Let L be a straight line in R2.

Any line in R2 can be parameterized as

L = {sω + tω⊥; t ∈ R} for some s ∈ R and ω ∈ S1,

where ω⊥ ⊥ ω.

Writing ω :=

[
cos θ
sin θ

]
, we get

L = L(s, θ) =

{
s

[
cos θ
sin θ

]
+ t

[
sin θ

− cos θ

]
; t ∈ R

}
, s ∈ R and θ ∈ [0, π).

The Radon transform of a continuous function f : R2 → R on L is defined
as

Rf (L) =

∫
L
f (x) |dx | =

∫ ∞

−∞
f (s cos θ + t sin θ, s sin θ − t cos θ) dt.
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Radon transform in R2

Let L be a straight line in R2.

Any line in R2 can be parameterized as

L = {sω + tω⊥; t ∈ R} for some s ∈ R and ω ∈ S1,

where ω⊥ ⊥ ω.

Writing ω =

[
cos θ
sin θ

]
, we get

L = L(s, θ) =

{
s

[
cos θ
sin θ

]
+ t

[
sin θ

− cos θ

]
; t ∈ R

}
, s ∈ R and θ ∈ [0, π).

The Radon transform of a continuous function f : R2 → R on L is defined
as

Rf (L) =

∫
L
f (x) |dx | =

∫ ∞

−∞
f (s cos θ + t sin θ, s sin θ − t cos θ) dt.



Let f be a nonnegative function modeling X-ray attenuation (density)
inside a physical body.

Beer–Lambert law:

Rf (L) = log
I0
I1
.



Let us consider the computational
domain [−1, 1]2. We divide this
region into n × n pixels and
approximate the density by a
piecewise constant function with
constant value

fi ,j in pixel Pi ,j

for i , j ∈ {0, . . . , n − 1}.

Pi ,j := {(x , y); −1 + 2 j
n < x < −1 + 2 j+1

n , −1 + 2 i
n < y < −1 + 2 i+1

n }



It is convenient to reshape the
matrix/image (fi ,j) into a vector x of
length n2 so that

xin+j = fi ,j , i , j ∈ {0, . . . , n − 1}.

The image on the left illustrates the
new numbering corresponding to the
pixels.

Note that x = f.reshape((n*n,1)) and f = x.reshape((n,n)).

(In MATLAB: x = f(:) and f = reshape(x,n,n)).



Measurement model

Let us consider a measurement setup where we take X-ray measurements
of an object using K X-rays L(s0, θ), . . . , L(sK−1, θ) taken at angles
θ ∈ {θ0, . . . , θM−1}. The total number of X-rays is Q = MK .

For brevity, let us write LmK+k := L(sk , θm) for k ∈ {0, . . . ,K − 1} and
m ∈ {0, . . . ,M − 1}.

The measurement model is

y =


∫
L0
f (x)|dx |
...∫

LQ−1
f (x)|dx |

+ η ≈


∑n2−1

j=0 A0,jxj
...∑n2−1

j=0 AQ−1,jxj

+ η = Ax + η,

where A ∈ RQ×n2 and Ai ,j is the distance that ray Li travels through pixel
j . Here, x is a vector containing the (piecewise constant) densities within
each pixel and η is measurement noise.



LmK+k =

{
sk

[
cos θm
sin θm

]
+ t

[
sin θm

− cos θm

]
; t ∈ R

}
,

k = 0, . . . ,K − 1,
m = 0, . . . ,M − 1.



Pixel-by-pixel construction of the tomography matrix A
(See the files tomodemo.py/tomodemo.m on the course page!)



Case cos θ = 0 and sin θ = 1:[
xd
yd

]
≤

[
s cos θ + t sin θ
s sin θ − t cos θ

]
<

[
xu
yu

]
⇔

[
xd
yd

]
≤

[
t
s

]
<

[
xu
yu

]
.

The distance that ray Lm travels through pixel k is

Am,k =

∫
Lm

χk |dx | =
∫

xd≤t<xu
yd≤s<yu

dt =

{
xu − xd if yd ≤ s < yu,

0 otherwise.

N.B. In here and in the following, χk = χk (x) denotes the characteristic function of the kth

pixel. In the above illustration, the pixel is denoted by the rectangle [xd, xu)× [yd, yu).



Case cos θ = 1 and sin θ = 0:[
xd
yd

]
≤

[
s cos θ + t sin θ
s sin θ − t cos θ

]
<

[
xu
yu

]
⇔

[
xd
yd

]
≤

[
s
−t

]
<

[
xu
yu

]
⇔

[
xd
−yu

]
<

[
s
t

]
≤

[
xu
−yd

]
.

The distance that ray Lm travels through pixel k is

Am,k =

∫
Lm

χk |dx | =
∫

−yu<t≤−yd
xd<s≤xu

dt =

{
yu − yd if xd < s ≤ xu,

0 otherwise.



Case cos θ > 0:[
xd
yd

]
<

[
s cos θ + t sin θ
s sin θ − t cos θ

]
<

[
xu
yu

]
⇔

[ xd−s cos θ
sin θ

s sin θ−yu
cos θ

]
<

[
t
t

]
<

[ xu−s cos θ
sin θ

s sin θ−yd
cos θ

]
.

The distance that ray Lm travels through pixel k is

Am,k =

∫
Lm

χk |dx | =
∫

max
{

xd−s cos θ

sin θ
, s sin θ−yu

cos θ

}
<t<min

{
xu−s cos θ

sin θ
,
s sin θ−yd

cos θ

} dt

=

(
min

{
xu − s cos θ

sin θ
,
s sin θ − yd

cos θ

}
−max

{
xd − s cos θ

sin θ
,
s sin θ − yu

cos θ

})
+

.



Case cos θ < 0:[
xd
yd

]
<

[
s cos θ + t sin θ
s sin θ − t cos θ

]
<

[
xu
yu

]
⇔

[
xd−s cos θ

sin θ
s sin θ − yu

]
<

[
t

t cos θ

]
<

[
xu−s cos θ

sin θ
s sin θ − yd

]
!⇔
[ xd−s cos θ

sin θ
s sin θ−yd

cos θ

]
<

[
t
t

]
<

[ xu−s cos θ
sin θ

s sin θ−yu
cos θ

]
.

The distance that ray Lm travels through pixel k is

Am,k =

∫
Lm

χk |dx | =
∫

max
{

xd−s cos θ

sin θ
,
s sin θ−yd

cos θ

}
<t<min

{
xu−s cos θ

sin θ
, s sin θ−yu

cos θ

} dt

=

(
min

{
xu − s cos θ

sin θ
,
s sin θ − yu

cos θ

}
−max

{
xd − s cos θ

sin θ
,
s sin θ − yd

cos θ

})
+

.



Discussion

Tomography problems can be classified into three classes based on the
nature of the measurement data:

Full angle tomography

– Sufficient number of measurements from all angles → not a very
ill-posed problem.

Limited angle tomography

– Data collected from a restricted angle of view → reconstructions very
sensitive to measurement error and it is not possible to reconstruct the
object perfectly (even with noiseless data). Applications include, e.g.,
dental imaging.

Sparse data tomography

– The data consist of only a few projection images, possibly from any
direction → extremely ill-posed inverse problem and prior knowledge
necessary for successful reconstructions. (E.g., minimizing a patient’s
radiation dose.)
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Fredholm equation and its solvability



Separable Hilbert space

A Hilbert space is said to be separable if (and only if) there exists a
countable orthonormal basis {ψj}∞j=1 of H with respect to the inner
product ⟨·, ·⟩H , that is,

⟨ψj , ψk⟩H = δj ,k and

∥∥∥∥f − ℓ∑
j=1

⟨f , ψj⟩Hψj

∥∥∥∥
H

ℓ→∞−−−→ 0 for all f ∈ H.

This last condition is usually written as

f =
∞∑
j=1

⟨f , ψj⟩Hψj .

Note that
∑ℓ

j=1⟨f , ψj⟩Hψj is precisely the orthogonal projection onto the
subspace spanned by ψ1, . . . , ψℓ.



Fredholm equation

Let us formalize the problem that we will concentrate on during the first
part of the course.

Let H1 and H2 be separable real Hilbert spaces and let A : H1 → H2 be a
compact linear operator. We are interested in finding x ∈ H1 such that

y = Ax ,

where y ∈ H2 is given. Recall that compact operators are the closure of
finite-dimensional operators (loosely speaking: matrices) in the operator
topology.

Examples:

H1 = H2 = L2(a, b).

H1 = Rn, H2 = Rm, and A ∈ Rm×n.



Singular value decomposition of a compact operator

Let us assume that H1 and H2 are separable real Hilbert spaces and let
A : H1 → H2 be a compact linear operator.

Then there exist (possibly countably infinite) orthonormal sets of vectors
{vn} ⊂ H1 and {un} ⊂ H2, and a sequence of positive numbers
λ1 ≥ λ2 ≥ λ3 ≥ · · · ≥ 0 with limn→∞ λn = 0 in the countably infinite case
such that

Ax =
∑
n

λn⟨x , vn⟩un for all x ∈ H1. (1)

In particular, since H1 and H2 are separable, we have

Ran(A) = span{un} and (Ker(A))⊥ = span{vn}.

The system (λn, vn, un) is called a singular system of A, and (1) is a
singular value decomposition (SVD) of A.



Singular value decomposition of matrices: H1 = Rn and
H2 = Rm

Let H1 = Rn and H2 = Rm, meaning that

y = Ax

is a matrix equation with A ∈ Rm×n, x ∈ Rn, and y ∈ Rm.

Since this operator has finite rank (rank(A) := dimRan(A) <∞), we have

Ax =

p∑
j=1

λj(x
Tvj)uj , p := rank(A) ≤ min{n,m},

where {vj}pj=1 ⊂ Rn and {uj}pj=1 ⊂ Rm are sets of orthonormal vectors

and {λj}pj=1 are positive numbers such that λj ≥ λj+1.



It is possible to complete the sequences of (orthonormal) singular vectors
{vj}pj=1 ⊂ Rn and {uj}pj=1 ⊂ Rm with complementary orthonormal vectors
{vj}nj=p+1 and {uj}mj=p+1 such that {vj}nj=1 forms an orthonormal basis for
Rn and {uj}mj=1 forms an orthonormal basis for Rm. This can be done,
e.g., using the Gram–Schmidt process.

Define the matrices

V = [v1, . . . , vn] ∈ Rn×n,

U = [u1, . . . , um] ∈ Rm×m.

Due to the orthonormality of {vj} and {uj}, the matrices V and U are
orthogonal:

VTV = VVT = I and UTU = UUT = I .



Next, we define the matrix Λ ∈ Rm×n as follows:

Λ =

 λ1
. . . Om×(n−m)

λm

 if m < n,

Λ =


λ1

. . .

λn
O(m−n)×n

 if m > n,

and Λ = diag(λ1, . . . , λm) if m = n.

It is simple to check that

Ax =

p∑
j=1

λjujv
T
j x = UΛVTx for all x ∈ Rn,

which yields the matrix singular value decomposition (SVD)

A = UΛVT.

In Python: numpy.linalg.svd. In MATLAB: svd.



Note that in the matrix SVD, the singular values {λj}
min{m,n}
j=1 are

non-negative and

Ran(A) = span{uj | 1 ≤ j ≤ p},
Ker(A) = span{vj | p + 1 ≤ j ≤ n},
(Ran(A))⊥ = span{uj | p + 1 ≤ j ≤ m},
(Ker(A))⊥ = span{vj | 1 ≤ j ≤ p},

where p = rank(A) = max1≤k≤min{m,n}{k | λk > 0}.



Solvability of y = Ax

Let us assume that H1 and H2 are separable real Hilbert spaces and let
A : H1 → H2 be a compact linear operator. Let P : H2 → Ran(A) be an
orthogonal projection. This can be represented using the singular system
of A as

Py =
∑
n

⟨y , un⟩un.

Theorem

Let A : H1 → H2 be a compact operator with the singular system
(λn, vn, un). The equation y = Ax has a solution iff

y = Py and
∑
n

1

λ2n
|⟨y , un⟩|2 <∞︸ ︷︷ ︸

“Picard criterion”

.

In this case, the solution is of the form

x = x0 +
∑
n

1

λn
⟨y , un⟩vn for arbitrary x0 ∈ Ker(A).



Proof. “⇒” Suppose that y = Ax has a solution x ∈ H1. This implies
that y ∈ Ran(A) (thus y = Py) and, moreover,

⟨y , uj⟩ = ⟨Ax , uj⟩ = ⟨x ,A∗uj⟩ = λj⟨x , vj⟩

⇒
∑
n

1

λ2n
|⟨y , un⟩|2 =

∑
n

|⟨x , vn⟩|2
Bessel inequ.

≤ ∥x∥2 <∞.

“⇐” Next, suppose that y = Py and the Picard criterion hold and define
x := x0 +

∑
n λ

−1
n ⟨y , un⟩vn, where x0 ∈ Ker(A) is arbitrary. We obtain

Ax = Ax0 +
∑
n

1

λn
⟨y , un⟩Avn =

∑
n

⟨y , un⟩un = Py = y .

Remark. In the above proof, it is helpful to note that if A has the SVD

Ax =
∑
n

λn⟨x , vn⟩un,

then its adjoint A∗ has the SVD

A∗y =
∑
n

λn⟨y , un⟩vn.



Note that for any x ∈ H1, we have

∥Ax − y∥2 = ∥Ax − Py∥2 + ∥(I − P)y∥2 ≥ ∥(I − P)y∥2.

Hence, if y has a nonzero component in the subspace orthogonal to the
range of A (which may happen if y is contaminated by noise), the
equation Ax = y cannot be satisfied exactly. Thus, the best we can do is
to solve the projected equation

Ax = PAx = Py .

However, there is in general no guarantee that the Picard criterion∑
n

1

λ2n
|⟨Py , un⟩|2 <∞

is satisfied for a general y ∈ H2 if rank(A) = dimRan(A) = ∞.



Truncated singular value decomposition (TSVD)



To recap: the best we can do is to solve the projected equation

Ax = Py .

However, the solution exists iff the very restrictive Picard criterion holds.

We begin by considering one of the simplest regularization techniques for
linear inverse problems. By restricting the range of P onto a
finite-dimensional subspace of the range of A, we obtain a well-defined
approximation to the above problem.



Truncated singular value decomposition (TSVD)

Let us define a family of finite-dimensional orthogonal projections by

Pk : H2 → span{u1, . . . , uk}, y 7→
k∑

n=1

⟨y , un⟩un.

By the orthogonality of {un},

P(Pky) =
∑
n

⟨Pky , un⟩un =
k∑

n=1

⟨y , un⟩un = Pky

and ∑
n

1

λ2n
|⟨Pky , un⟩|2 =

k∑
n=1

1

λ2n
|⟨y , un⟩|2 <∞.

Note that k ≤ rank(A) if rank(A) <∞.



It follows that the problem

Ax = Pky (2)

is always solvable. Taking on both sides the inner product with un, we find
that

λn⟨x , vn⟩ =

{
⟨y , un⟩, 1 ≤ n ≤ k

0, n > k.

Hence the solutions to (2) are given by

xk = x0 +
∑
n

1

λn
⟨Pky , un⟩vn = x0 +

k∑
n=1

1

λn
⟨y , un⟩vn ∈ H1

for any x0 ∈ Ker(A). Observe that since for increasing k ,

∥Axk − Py∥2 = ∥(P − Pk)y∥2
k→∞−−−→ 0,

the residual of the projected equation can be made arbitrarily small.



Finally, to remove the ambiguity of the sought solution due to the possible
noninjectivity of A, we select x0 = 0. This choice minimizes the norm of
xk since, by orthogonality,

∥xk∥2 = ∥x0∥2 +
k∑

n=1

1

λ2n
|⟨y , un⟩|2.



Definition
Let H1 and H2 be separable real Hilbert spaces and let A : H1 → H2 be a
compact linear operator with a singular system (λn, vn, un). By the
truncated SVD approximation (TSVD) of the problem Ax = y , we mean
the problem of finding x ∈ H1 such that

Ax = Pky , x ⊥ Ker(A)

for some k ≥ 1.

Theorem

The solution to the TSVD problem has a unique solution xk , called the
truncated SVD (TSVD) solution, given by

xk =
k∑

n=1

1

λn
⟨y , un⟩vn.

The TSVD solution satisfies

∥Axk − y∥2 = ∥(I − P)y∥2 + ∥(P − Pk)y∥2
k→∞−−−→ ∥(I − P)y∥2.



Truncated SVD for a matrix A ∈ Rm×n

The truncated SVD solution, i.e., solution of

Ax = Pky and x ⊥ Ker(A), 1 ≤ k ≤ p := rank(A),

where Pk : Rm → span{u1, . . . , uk} is an orthogonal projection, is given by

xk =
k∑

j=1

1

λj
⟨y , uj⟩vj =

k∑
j=1

1

λj
vj(u

T
j y) = VΛ†

kU
Ty ,

where A has the SVD A = UΛVT and we define

Λ†
k =



1/λ1 0 · · · 0 · · · 0

0 1/λ2

...
...

. . .

1/λk

0
...

. . .
...

0 · · · · · · 0


∈ Rn×m,

where λ1 ≥ · · · ≥ λp > 0 are the singular values of A (i.e., diagonal of Λ).



Moore–Penrose pseudoinverse of matrices

For the largest possible cut-off k = p = rank(A), the matrix

A† := A†
p = VΛ†

pU
T =: VΛ†UT

is called the Moore–Penrose pseudoinverse. It follows from the above that
x† = A†y is the solution of the projected (matrix) equation

Ax = Py ,

where P : Rm → Ran(A) is the orthogonal projection.

The solution x† = A†y is called the minimum norm solution of the
problem y = Ax since

∥A†y∥ = min{∥x∥ : ∥Ax − y∥ = ∥(I − P)y∥},

where P is the projection onto the range of A. The minimum norm
solution is the solution that minimizes the residual error and has the
minimum norm.



Since the smallest singular value λp is extremely small in inverse problems,
the use of the pseudoinverse is usually very sensitive to inaccuracies in the
data y .

Spectral regularization using TSVD, i.e., discarding singular values below a
certain threshold from the forward model, is a simple and popular
technique used to render linear problems less ill-posed while improving the
noise robustness of the numerical inversion procedure.

However, obtaining the singular values and vectors for large system
matrices is usually very slow.



Numerical experiment: TSVD for X-ray tomography

Let us consider the inverse problem of recovering the attenuation
coefficient (density) of an object given a set of X-ray measurements.
Recall from last week that the mathematical model can be expressed as

y = Ax ,

where y ∈ RQ denotes the (noisy) measurements for Q X-rays, A ∈ RQ×n2

is the projection matrix subject to an n × n pixel discretization of the
computational domain, and x ∈ Rn2 denotes the (piecewise constant)
discretization of the unknown attenuation inside the object of interest.

The data y can be reshaped into an n × n array, which is a graphical
representation of the X-ray measurements (sinogram). The unknown can
be reshaped into an n × n image of the density of the imaged object.



Let us use TSVD to solve this inverse problem for real-life measurement
data. We use the FIPS open dataset of carved cheese available at
https://doi.org/10.5281/zenodo.1254210

The files DataFull 128x15.mat and DataLimited 128x15.mat contain
sparse angle and limited angle tomography measurements, respectively.
The data has been collected using 15 projections spanning either the full
360◦ circle in the first dataset, and 15 projections spanning a limited 90◦

angle of view in the second dataset. The computational domain is a
128× 128 pixel grid in both cases. Each file contains a projection matrix A

and a sinogram measurement matrix m.

By defining y = m.reshape((m.size,1)) (in MATLAB: y = m(:)), the
unknown x can be solved from the linear equation

y = Ax.

The reconstruction is the image x.reshape((128,128)) (in MATLAB:
reshape(x,128,128)).

See the files tomo tsvd.py / tomo tsvd.m on the course webpage!

https://doi.org/10.5281/zenodo.1254210


TSVD for sparse angle tomography data
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Left: the actual object. Middle: sinogram data for sparse angle tomography. Right: näıve
reconstruction without any regularization.
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(right).



TSVD for limited angle tomography data
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Left: the actual object. Middle: sinogram data for limited angle tomography. Right: näıve
reconstruction without any regularization.
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In summary (matrix case H1 = Rn, H2 = Rm): Let the SVD of matrix
A ∈ Rm×n be given by

A = UΛVT,

where Λ ∈ Rm×n has the non-negative singular values {λj}
min{m,n}
j=1 on its

diagonal and V ∈ Rn×n and U ∈ Rm×m are orthogonal matrices.†

The TSVD solution for 1 ≤ k ≤ p := rank(A) is given by

xk = VΛ†
kU

Ty ,

where

Λ†
k =



1/λ1 0 · · · 0 · · · 0

0 1/λ2

...
...

. . .

1/λk

0
...

. . .
...

0 · · · · · · 0


∈ Rn×m.

The matrix A† = VΛ†
pUT is called the Moore–Penrose pseudoinverse of A.

†This means that the columns {vj}nj=1 of V form an orthonormal basis for Rn, and
similarly the columns {uj}mj=1 of U are an orhonormal basis of Rm.



Morozov discrepancy principle



The implementation of TSVD raises the question: how to choose the
spectral cut-off parameter k? If k is too small, the TSVD operator loses
information about the forward operator. On the other hand, if k is chosen
too large, then the forward operator becomes ill-conditioned and sensitive
to measurement noise.

If the noise level of the data is known (or can be estimated), then one of
the simplest criteria is to choose the spectral parameter as large as
possible without fitting the solution to noise.



Morozov discrepancy principle

Let H1 and H2 be separable real Hilbert spaces and A : H1 → H2 a
compact linear operator.

How to choose the spectral cut-off index k ≥ 1 in the TSVD problem

Ax = Pky and x ⊥ Ker(A)?

There is a rule of thumb called the Morozov discrepancy principle:

Suppose that the data y ∈ H2 is a noisy approximation of noiseless
“exact” data y0 ∈ H2. While y0 is unknown to us, we may have an
estimate on the noise level, e.g.,

∥y − y0∥ ≈ ε > 0.

We choose the smallest k ≥ 1 such that the residual satisfies

∥y − Axk∥ ≤ ε.

Intuitively, this means that we cannot expect the approximate solution to
yield a smaller residual than the measurement error without fitting the
solution to noise.



Q: When does an index k ≥ 1 satisfying ∥y − Axk∥ ≤ ε exist?
A: When ε > ∥Py − y∥ and rank(A) = ∞, it follows from
Ran(A) = Ran(P) ⊥ Ran(I − P) that

∥Axk − y∥2 = ∥Axk − Py + Py − y∥2 = ∥Axk − Py∥2 + ∥(P − I )y∥2

=
∞∑

n=k+1

|⟨y , un⟩|2 + ∥(P − I )y∥2 k→∞−−−→ ∥Py − y∥2.

Due to the properties of the orthogonal projection,
∥Py − y∥ = infz∈Ran(A) ∥z − y∥, so this is the best we can do. (Note
however that there is no guarantee that prevents ∥xk∥ from blowing up as
k → ∞.)

On the other hand, if p = rank(A) <∞,

∥Axp − y∥ = ∥Ppy − y∥ = ∥Py − y∥.

One should usually avoid choosing the spectral cut-off to be this large in
practice.



Numerical example: backward heat equation

Let us consider the backward heat equation:
∂tu(x , t) = ∂2xu(x , t) for (x , t) ∈ (0, π)× R+,

u(0, ·) = u(π, ·) = 0 on R+,

u(·, 0) = f on (0, π),

where f : (0, π) → R is the initial heat distribution.

Forward problem: Given initial data f : (0, π) → R, determine the heat
distribution u(·,T ) at time T > 0.

Inverse problem: Reconstruct the initial state f based on noisy
measurements of u(·,T ) at time T > 0.



Let us consider a simple discretization of the PDE
∂tu(x , t) = ∂2xu(x , t) for (x , t) ∈ (0, π)× R+,

u(0, ·) = u(π, ·) = 0 on R+,

u(·, 0) = f on (0, π).

Let xj = jh for j = 0, . . . , 100, where h = π/100 is the step size.

Zero Dirichlet boundary conditions imply that u(x0, t) = u(x100, t) = 0.

The spatial second derivative can be discretized using the stencils

∂2xu(x1, t) =
−2u(x1, t) + u(x2, t)

h2
+O(h2),

∂2xu(xj , t) =
u(xj−1, t)− 2u(xj , t) + u(xj+1, t)

h2
+O(h2) for j = 2, . . . , 98,

∂2xu(x99, t) =
u(x98, t)− 2u(x99, t)

h2
+O(h2).

Denote U(t) = (Uj(t))
99
j=1 = (u(xj , t))

99
j=1 and F = (f (xj))

99
j=1.



∂

∂t



U1(t)
U2(t)
U3(t)

...
U98(t)
U99(t)


=

1

h2



−2 1
1 −2 1

1 −2 1
. . .

1 −2 1
1 −2


︸ ︷︷ ︸

=:B



U1(t)
U2(t)
U3(t)

...
U98(t)
U99(t)


.

After spatial discretization, our PDE has been transformed into the initial
value problem

U̇(t) = BU(t), U(0) = F .

At time t = T > 0, the discretized heat distribution U := U(T ) is given by

U = AF ,

where A = eTB ∈ R99×99 and

eM :=
∞∑
k=0

1

k!
Mk

is the matrix exponential (scipy.linalg.expm in Python / expm in
MATLAB).



A note on simulating measurement data and inverse crimes

When simulating measurement data, one should take care not to use the
same computational model for inversion as the one which was used to
generate the measurements in the first place. This would lead to
unreasonably good reconstructions, since this is akin to multiplying a
matrix with its own inverse. This is known as an inverse crime. (Similar
concerns also apply to non-linear problems.)

With real-life measurement data, we do not have worry about this
phenomenon – measurements that come from nature are automatically
independent of any computational model we end up using for practical
inverse problems simulations.

A popular technique to avoid committing an inverse crime is using a
higher resolution computational model to generate the measurements and
interpolating the simulated data onto a coarser grid, where we plan to
carry out the actual computational inversion. Another good option is to
use an analytic solution, if one is readily available. We will use this
technique with the heat equation.



The forward problem of the heat equation
∂tu(x , t) = ∂2xu(x , t) for (x , t) ∈ (0, π)× R+,

u(0, ·) = u(π, ·) = 0 on R+,

u(·, 0) = f on (0, π),

has the classical series solution

u(x , t) =
∞∑
n=1

f̂n e
−n2t sin(nx),

where the coefficients f̂n are the Fourier sine series coefficients of the
initial heat distribution f satisfying

f (x) =
∞∑
n=1

f̂n sin(nx), f̂n =
2

π

∫ π

0
f (x) sin(nx) dx .



Let us fix the ground truth

f (x) =

{
1 if x ∈ [1, 2],

0 if x ∈ (0, 1) ∪ (2, π).

It is easy to see that the Fourier sine coefficients are given by

f̂n =
2

nπ
(cos n − cos 2n).

Let us plug these into the forward solution at time t = T > 0

u(xj ,T ) =
∞∑
n=1

f̂n e
−n2T sin(nxj), j = 1, . . . , 99,

and add some simulated measurement noise!

We assume that the data U(T ) ∈ R99 at time T = 0.1 is contaminated
with mean-zero Gaussian noise with standard deviation 0.01, and that the
discrepancy between the measured data and the underlying “exact” data
equals the square root of the expected value of the squared norm of the
noise vector, i.e.,

ε =
√
99 · 0.012 ≈ 0.0995.
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See the files heateq tsvd.py / heateq tsvd.m on the course webpage!
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Tikhonov regularization



Tikhonov regularization

The sequence of TSVD solutions {xk} minimizes the norm of the residual

∥Ax − y∥

as k tends to rank(A). Unfortunately, when inverse/ill-posed problems are
considered, it may also happen that

∥xk∥ → ∞ as k → rank(A).

In consequence, it appears reasonable to try minimizing the residual and
the norm of the solution simultaneously.



Definition

A Tikhonov regularized solution xδ ∈ H1 is a minimizer of the Tikhonov
functional

Fδ(x) := ∥Ax − y∥2 + δ∥x∥2,

where δ > 0 is called the regularization parameter.

Theorem

Let A : H1 → H2 be a compact linear operator with the singular
system (λn, vn, un). Then the Tikhonov regularized solution exists, is
unique, and is given by the formula

xδ = (A∗A+ δI )−1A∗y =

p∑
n=1

λn

λ2
n + δ

⟨y , un⟩vn,

where p = rank(A).

Remark. The Tikhonov regularized solution can be obtained without
knowing the SVD of A by solving xδ from (A∗A+ δI )xδ = A∗y .



Proof. We make use of the Lax–Milgram lemma:
Lemma (Lax–Milgram)

Let H be a Hilbert space, and let B : H × H → R be a bilinear quadratic
form such that

|B(x , y)| ≤ C∥x∥∥y∥ for all x , y ∈ H,

B(x , x) ≥ c∥x∥2 for all x ∈ H

for some constants 0 < c ≤ C <∞. Then there exists a unique linear
boundedly invertible operator T : H → H such that

B(x , y) = ⟨x ,Ty⟩ for all y ∈ H,

∥T∥ ≤ C and ∥T−1∥ ≤ 1

c
.

In our case, we define the bilinear operator B(x , y) := ⟨x , (A∗A+ δI )y⟩
and observe that |B(x , y)| ≤ (∥A∥2 + δ)∥x∥∥y∥ (boundedness) and
B(x , x) = ⟨x , (A∗A+ δI )x⟩ = ∥Ax∥2 + δ∥x∥2 ≥ δ∥x∥2 (coercivity).
∴ (A∗A+ δI )−1 exists such that ∥(A∗A+ δI )−1∥ ≤ 1

δ . In particular,
xδ = (A∗A+ δI )−1A∗y is well-defined.



Recall that Ax =
∑

n λn⟨x , vn⟩un and A∗y =
∑

n λn⟨y , un⟩vn. Especially,

A∗Ax =
∑
n

λ2
n⟨x , vn⟩vn.

Since H1 = Ker(A)⊕Ker(A)⊥, we can write

xδ = Pxδ + Qxδ =
∑
n

⟨xδ, vn⟩vn + Qxδ,

where P : H1 → Ker(A)⊥ = span{vn} and Q : H1 → Ker(A) are
orthogonal projections. Thus

(A∗A+ δI )xδ = A∗y ⇔
∑
n

(λ2
n + δ)⟨xδ, vn⟩vn + Qxδ =

∑
n

λn⟨y , un⟩vn.

Equating terms yields that Qxδ = 0 and

(λ2
n + δ)⟨xδ, vn⟩ = λn⟨y , un⟩ ⇔ ⟨xδ, vn⟩ =

λn

λ2
n + δ

⟨y , un⟩,

as desired.



Finally, to show that xδ minimizes the quadratic functional
Fδ(x) = ∥Ax − y∥2 + δ∥x∥2, consider

x = xδ + z ,

where z ∈ H1 is arbitrary. Now

Fδ(x) = Fδ(xδ + z) = Fδ(xδ) + ⟨z , (A∗A+ δI )xδ − A∗y⟩+ ⟨z , (A∗A+ δI )z⟩
= Fδ(xδ) + ⟨z , (A∗A+ δI )z⟩,

by definition of xδ.The last term is nonnegative and vanishes only if z = 0.
This proves the claim.



Morozov discrepancy principle for Tikhonov regularization

Suppose that the measurement y ∈ H2 is a noisy version of some
underlying “exact” data y0 ∈ H2, and that

∥y − y0∥ ≈ ε > 0.

In the framework of Tikhonov regularization, the Morozov discrepancy
principle tells us to choose the regularization parameter δ > 0 so that the
residual satisfies

∥y − Axδ∥ = ε.

It turns out that there is a unique regularization parameter satisfying this
condition if

∥y − Py∥ < ε < ∥y∥,

where P : H2 → Ran(A) is an orthogonal projection.



Properties of the Tikhonov regularized solution

Theorem
Let A : H1 → H2 be a compact linear operator with the singular system
(λn, vn, un). Let P : H2 → Ran(A) be an orthogonal projection. Then we
have the following:

(i) δ 7→ ∥Axδ − y∥ is a strictly increasing function of δ > 0.

(ii) ∥Py − y∥ = lim
δ→0+

∥Axδ − y∥ ≤ ∥Axδ − y∥ ≤ lim
δ→∞
∥Axδ − y∥ = ∥y∥.

(iii) If Py ∈ Ran(A), then xδ converges to the solution of the problem

Ax = Py and x ⊥ Ker(A)

as δ → 0+.

Corollary

The equation ∥Axδ − y∥ = ε has a unique solution δ = δ(ε) iff
∥(I − P)y∥ < ε < ∥y∥.
Interpretation: ∥(I − P)y∥ < ε means that any component in the data y orthogonal to

the range of A must be due to noise; ε < ∥y∥ means that the error level should not

exceed the signal level.



Proof. Suppose that the operator A has the SVD

Ax =
∑
n

λn⟨x , vn⟩un.

Then Avn = λnun, the orthogonal projection P : H2 → Ran(A) is

Py =
∑
n

⟨y , un⟩un,

and the Tikhonov regularized solution xδ and its image under A are

xδ =
∑
n

λn

λ2
n + δ

⟨y , un⟩vn ⇒ Axδ =
∑
n

λ2
n

λ2
n + δ

⟨y , un⟩un.

(i) It follows that

∥Axδ − y∥2 = ∥Axδ − Py∥2 + ∥(I − P)y∥2

=
∑
n

(
λ2
n

λ2
n + δ

− 1

)2

|⟨y , un⟩|2 + ∥(I − P)y∥2

=
∑
n

(
δ

λ2
n + δ

)2

|⟨y , un⟩|2 + ∥(I − P)y∥2.



We arrived at

∥Axδ − y∥2 =
∑
n

(
δ

λ2
n + δ

)2

|⟨y , un⟩|2 + ∥(I − P)y∥2.

For each term of the sum,

d

dδ

(
δ

λ2
n + δ

)2

=
2δλ2

n

(λ2
n + δ)3

> 0,

implying that the mapping δ 7→ ∥Axδ − y∥2 is strictly increasing.

(ii) It is easy to see that

∥Axδ − y∥2 =
∑
n

(
δ

λ2
n + δ

)2

|⟨y , un⟩|2 + ∥(I − P)y∥2 δ→0+−−−−→ ∥(I − P)y∥2,

∥Axδ − y∥2 =
∑
n

(
δ

λ2
n + δ

)2

|⟨y , un⟩|2 + ∥(I − P)y∥2

δ→∞−−−→ ∥Py∥2 + ∥(I − P)y∥2 = ∥y∥2.



(iii) Let Py ∈ Ran(A). This implies that there exists x ∈ Ker(A)⊥ such
that Ax = Py ; this is the minimum norm solution

x =
∑
n

1

λn
⟨y , un⟩vn,

for which it can be shown that

xδ =
∑
n

λn

λ2
n + δ

⟨y , un⟩vn
δ→0+−−−−→

∑
n

1

λn
⟨y , un⟩vn = x .

Remark. In parts (ii) and (iii), one should take care when interchanging
the order of the limit and the summation, i.e., justifying the steps

lim
λ→0+

∑
n

=
∑
n

lim
λ→0+

and lim
λ→∞

∑
n

=
∑
n

lim
λ→∞

.

Standard techniques involve the monotone convergence theorem and the
dominated convergence theorem (note that these apply to infinite series as

well as integrals). In part (iii), it is helpful to observe that xδ
δ→0+−−−−→ x iff

⟨xδ, ϕ⟩
δ→0+−−−−→ ⟨x , ϕ⟩ for all ϕ ∈ H1 and ∥xδ∥

δ→0+−−−−→ ∥x∥.



Tikhonov regularization with matrices
Consider the special case H1 = Rn and H2 = Rm corresponding to the
matrix equation y = Ax . The Tikhonov functional takes the special form

Fδ(x) =

∥∥∥∥ [ A√
δI

]
x −

[
y
0

] ∥∥∥∥2, I ∈ Rn×n, 0 ∈ Rn.

The minimizer can be found by solving the least squares problem[
A√
δI

]T [
A√
δI

]
x =

[
A√
δI

]T [
y
0

]
or, equivalently,

(ATA+ δI )x = ATy .

In MATLAB, this can be implemented simply as follows:

K = [A;sqrt(delta)*eye(n)];

z = [y; zeros(n,1)];

xdelta = K\z;

In Python, e.g., scipy.linalg.lstsq can be used to obtain the least
squares solution. For sparse matrices, e.g.,
xdelta =

scipy.sparse.linalg.lsqr(A,y,damp=numpy.sqrt(delta))[0].



Numerical example: backward heat equation

Let us revisit the backward heat equation from earlier:
∂tu(x , t) = ∂2

xu(x , t) for (x , t) ∈ (0, π)× R+,

u(0, ·) = u(π, ·) = 0 on R+,

u(·, 0) = f on (0, π),

where f : (0, π)→ R is the initial heat distribution.

We reconstruct the initial state f based on noisy measurements of
u(·,T ) at time T > 0 using Tikhonov regularization.

We assume that the data U(T ) ∈ R99 at time T = 0.1 is contaminated
with mean-zero Gaussian noise with standard deviation 0.01, and that the
discrepancy between the measured data and the underlying “exact” data
equals the square root of the expected value of the squared norm of the
noise vector, i.e.,

ε =
√
99 · 0.012 ≈ 0.0995.
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See the files heateq tikhonov.py / heateq tikhonov.m on the course
webpage!



Tikhonov regularization for nonlinear problems

Unlike the TSVD, Tikhonov regularization can be generalized to nonlinear
problems as well. Consider a nonlinear operator A : H1 → H2 and the
problem

y = A(x).

A standard way of solving such a problem is via sequential linearizations,
which leads to solving a set of linear problems involving the Fréchet
derivative of operator A.

Definition

The function A : H1 → H2 is called Fréchet differentiable at x0 ∈ H1 if
there exists a continuous linear operator A′

x0 : H1 → H2 such that

A(x + h) = A(x) + A′
x0h +Wx0(z),

where ∥Wx0(z)∥ ≤ ε(x0, z)∥z∥ and the functional z 7→ ε(x0, z) tends to
zero as z → 0.

The linear operator A′
x0 is called the Fréchet derivative of A at x0.



We are interested in minimizing

Fδ(x) = ∥A(x)− y∥2 + δ∥x∥2, δ > 0.

Since Fδ is no longer quadratic, it is unclear whether a unique minimizer
exists and typically the minimizer cannot be given by an explicit formula
even it exists.

Let A be Fréchet differentiable. The linearization of A around a given
point x0 leads to the approximation of the functional Fδ,

Fδ(x) ≈ F̃δ(x ; x0) = ∥A(x0) + A′
x0(x − x0)− y∥2 + δ∥x∥2

= ∥A′
x0(x)− g(y , x0)∥2 + δ∥x∥2,

where g(y , x0) := y − A(x0) + A′
x0(x0).

From the previous discussion on the linear case, we know that the
minimizer of F̃δ(x ; x0) is given by

x = ((A′
x0)

∗Ax0 + δI )−1(A′
x0)

∗g(y , x0).



Minimization strategy with step size control

It may happen that the solution of the linearized problem does not reflect
adequately the nonlinearities of the original function. A better strategy is
to implement some form of step size control. For example, we might
design the following iterative method.

1. Pick an initial guess x0 and set k = 0.

Repeat:

2. Calculate the Fréchet derivative A′
x0 .

3. Determine

x = ((A′
xk )

∗A′
xk + δI )−1(A′

xk )
∗g(y , xk), g(y , xk) = y −A(xk) +A′

xk xk ,

and define ∆x = x − xk .
4. Find step size s > 0 by minimizing the function

f (s) = ∥A(xk + s∆x)− y∥2 + ∥xk + s∆x∥2.

5. Set xk+1 = xk + s∆x and increase k ← k + 1.

until convergence.



Remarks on nonlinear Tikhonov regularization

In practice, evaluating A′
xk

is often the most difficult part.

For finite-dimensional operators, the Fréchet derivative is simply the
Jacobi matrix.

Depending on the nature of the nonlinearity, one might also consider
more “specialized” optimization methods (e.g., Gauss–Newton
algorithm, Levenberg–Marquardt algorithm...).



More general penalty terms

A more general way of defining the Tikhonov functional is

Fδ(x) = ∥Ax − y∥2 + δG (x),

where G : H1 → R≥0 takes non-negative values. The existence of a unique
minimizer for this kind of functional depends on the properties of G , as
does the workload needed for finding it.

One typical way of defining G is

G (x) = ∥L(x − x0)∥2,

where x0 ∈ H1 is a given reference vector and L is some linear operator.
The choice of x0 and L reflects our prior knowledge about “feasible”
solutions: Lx is some property that is known to be relatively close to the
reference value Lx0 for all reasonable solutions. (In the standard case
x0 = 0 and L = I , the solutions are “known” to lie relatively close to the
origin.)



The numerical implementation of Tikhonov regularization
with G (x) = ∥L(x − x0)∥2 is approximately as easy as for the standard
penalty term.

In the case where H1 = Rn and H2 = Rm, the operator L is some matrix in
Rℓ+n and the Tikhonov functional can be given as

Fδ(x) =

∥∥∥∥ [ A√
δL

]
x −

[
y√
δLx0

] ∥∥∥∥2.
Assuming that the singular values of K are bounded suitably far away from
zero, the Tikhonov solution can be computed in MATLAB as

K = [A; sqrt(delta)*L];

z = [y; sqrt(delta)*L*x0];

xdelta = K\z;

In Python, e.g., scipy.linalg.lstsq can be used to solve the equivalent

least squares problem

[
A√
δL

]
x =

[
y√
δLx0

]
. For sparse matrices, e.g.,

K = scipy.sparse.vstack((A,np.sqrt(delta)*L))

z = np.hstack((y,np.sqrt(delta)*L@x0))

xdelta = scipy.sparse.linalg.lsqr(K,z)[0]
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Practical matters

Monday May 29 (next week) is a public holiday
→ no lecture on May 29!

We will have a bonus live-coding lecture on Tuesday May 30 about
total variation regularization in place of the usual exercise session
(this material will not be essential to the course).

The deadline for the fifth exercise sheet will be moved to Tuesday
June 6. Note that tomorrow’s exercise session will happen as
planned.



Regularization by truncated iterative methods



Regularization by truncated iterative methods

For simplicity, we will only consider the case when

Ax = y (1)

is a system of linear equations, i.e., A ∈ Rm×n, x ∈ Rn, and y ∈ Rm.

Iterative methods attempt to solve (1) by finding successive
approximations for the solution starting from some initial guess.

Typically, the computation of such iterations involves multiplications
by A and its adjoint, but not explicit computation of inverse
operators. (Direct methods, such as Gaussian elimination, produce a
solution in a finite number of steps.)

Iterative methods are sometimes the only feasible choice if the
problem involves a large number of variables (e.g., in the order of
millions), in which case direct methods are prohibitively expensive.
Iterations are especially useful if multiplications by A are cheap: for
example, if A is sparse or it contains some other structure (e.g., it is a
multi-diagonal matrix arising from finite difference or finite element
approximation of an elliptic PDE).



Although iterative solvers have not usually been designed for ill-posed
equations, they often possess regularizing properties. If the iterations are
terminated before “the solution starts to fit to noise”, one often obtains
reasonable solutions for inverse problems.



Banach fixed point iteration

Let E be a Banach space and S ⊂ E . Consider a mapping, not necessarily
linear, T : E → E . We say that S is an invariant set for T if T (S) ⊂ S ,
that is,

T (x) ∈ S for all x ∈ S .

Moreover, T is a contraction on an invariant set S if there exists
0 ≤ κ < 1 such that

∥T (x)− T (y)∥ ≤ κ∥x − y∥ for all x , y ∈ S .

Finally, a vector x ∈ E is called a fixed point of T if

T (x) = x .



Theorem (Banach fixed point theorem)

Let E be a Banach space and S ⊂ E a closed invariant set for the (possibly
nonlinear) mapping T : E → E . Assume further that T is a contraction in
S . Then there exists a unique fixed point x ∈ S such that T (x) = x .
Furthermore, this fixed point can be found by the fixed point iteration

x = lim
k→∞

xk , where xk+1 = T (xk),

for any x0 ∈ S .

Proof. Let T : E → E be a mapping, S ⊂ E a closed invariant set such
that T (S) ⊂ S , and let T be a contraction in S ,

∥T (x)− T (y)∥ ≤ κ∥x − y∥ for all x , y ∈ S ,

with κ < 1. For all j > 1, we have

∥xj+1 − xj∥ = ∥T (xj)− T (xj−1)∥ ≤ κ∥xj − xj−1∥.

Inductively, it follows that

∥xj+1 − xj∥ ≤ κj−1∥x2 − x1∥.



For any n, k ∈ N, we have

∥xn − xk∥ ≤
max{n,k}−min{n,k}∑

j=1

∥xmin{n,k}+j − xmin{n,k}+j−1∥

≤
max{n,k}−min{n,k}∑

j=1

κmin{n,k}+j−2∥x2 − x1∥

≤ κmin{n,k}−1

1− κ
∥x2 − x1∥

n,k→∞−−−−−→ 0,

where we used the formula for the geometric series. Therefore (xj) is a
Cauchy sequence and thus convergent (since E is a Banach space and
thus complete). The limit is in S since S is closed.

Finally, as a contraction, T is (Lipschitz) continuous and we have that

x = lim
k→∞

xk = lim
k→∞

T (xk−1) = T
(
lim
k→∞

xk−1) = T (x),

as desired.



Landweber–Fridman iteration



Landweber–Fridman iteration

Instead of considering the original equation

Ax = y ,

let us consider the normal equation

ATAx = ATy .

Recall that x ∈ Rn satisfies the normal equation iff it minimizes the
residual

∥Ax − y∥.

Moreover, there exists a unique element of Rn, given by x† := A†y , which
satisfies the normal equation and x† ∈ Ker(A)⊥ (the minimum norm
solution).



Let us define the affine mapping T : Rn → Rn by

T (x) = x + β(ATy − ATAx), β ∈ R.

Note that any solution of the normal equation ATAx = ATy is a fixed
point of T .

If β is small enough, then there is only one fixed point of T in Ker(A)⊥,
precisely x†, and it can be reached by the fixed point iteration if x0 = 0.

Theorem

Let λ1 be the largest singular value of matrix A and let 0 < β < 2/λ2
1 be

fixed. Then the fixed point iteration

xk+1 = T (xk), x0 = 0,

converges toward x† as k →∞.



Proof. Let S := Ker(A)⊥ = Ran(AT). Clearly T (S) ⊂ S since

T (x) = x + AT(βy − βAx) ∈ Ran(AT)

for all x ∈ Ran(AT). Thus S is invariant under T .

Recall that A and its transpose can be written using the SVD of A as

Ax =

p∑
j=1

λj(v
T
j x)uj and ATy =

p∑
j=1

λj(u
T
j y)vj ,

where p = rank(A) and λj are the positive singular values of A. The
singular vectors {vj}pj=1 and {uj}pj=1 span S = Ker(A)⊥ and Ran(A),
respectively, and thus

x =

p∑
j=1

(vTj x)vj for all x ∈ S .



Let x , z ∈ S . Then x − z ∈ S and

T (x)− T (z) = (x − z)− βATA(x − z)

=

p∑
j=1

vTj (x − z)vj − β

p∑
j=1

λ2
j (v

T
j (x − z))vj

=

p∑
j=1

(1− βλ2
j )(v

T
j (x − z))vj .

Since λ1 is the largest singular value, it follows that

−1 < βλ2
j − 1 ≤ βλ2

1 − 1 < 2− 1 = 1 for all j ∈ {1, . . . , p}.

Hence
κ := max

j=1,...,p
|βλ2

j − 1| < 1.



In consequence,

∥T (x)− T (y)∥2 ≤
p∑

j=1

(1− βλ2
j )

2(vTj (x − z))2

≤ κ2
p∑

j=1

(vTj (x − z))2 = κ2∥x − z∥2,

which shows that T is a contraction on S . Since S is a closed invariant set
for T , there exists a unique fixed point of T in S .

Finally, recall that x† = A†y belongs to S = Ker(A)⊥ and it satisfies the
normal equation. Since x0 = 0 is in S (it is orthogonal to all vectors), the
fixed point iteration starting from x0 converges to x†.



Regularization properties of Landweber–Fridman

In what follows, we will assume that 0 < β < 2/λ2
1.

In the exercises, it will be shown that the kth iterate of the
Landweber–Fridman iteration can be written explicitly as

xk =

p∑
j=1

1

λj
(1− (1− βλ2

j )
k)(uTj y)vj , k = 0, 1, . . . .

Since we assumed |1− βλ2
j | < 1, then

(1− βλ2
j )

k k→∞−−−→ 0.

This is what one would expect since

x† =

p∑
j=1

1

λj
(uTj y)vj .



While k ∈ N is finite, the coefficients appearing in the series representation

xk =

p∑
j=1

1

λj
(1− (1− βλ2

j )
k)(uTj y)vj (2)

satisfy

1

λj
(1− (1− βλ2

j )
k) =

1

λj

(
1−

k∑
ℓ=0

(
k

ℓ

)
(−1)ℓβℓλ2ℓ

j

)

=
1

λj

k∑
ℓ=1

(
k

ℓ

)
(−1)ℓ+1βℓλ2ℓ

j =
k∑

ℓ=1

(
k

ℓ

)
(−1)ℓ+1βℓλ2ℓ−1

j ,

which converges to zero as λj → 0 (for a fixed k).

In consequence, while k is “small enough”, no coefficient of (uTj y)vj in (2)
is so large that the component of the measurement noise in the direction
uj is amplified in an uncontrolled manner. (Compare with Tikhonov
regularization, where the corresponding coefficients are λj/(λ

2
j + δ).)



Discrepancy principle for Landweber–Fridman iteration

Let y ∈ Rm be a noisy version of some underlying “exact” data vector
y0 ∈ Rm, and assume that

∥y − y0∥ ≈ ε > 0.

The Morozov discrepancy principle for the Landweber–Fridman iteration is
analogous to the truncated SVD: choose the smallest k ≥ 0 such that the
residual satisfies

∥y − Axk∥ ≤ ε.



Q: When does an index k ≥ 1 satisfying ∥y − Axk∥ ≤ ε exist?
A: When ε > ∥Py − y∥ = ∥y − A(A†y)∥ = ∥y − Ax†∥, where P = AA† is
the orthogonal projection onto Ran(A) (cf. 3rd exercises) and x† = A†y is
the minimum norm solution. Since the sequence (xk)

∞
k=0 converges to x†,

for any ε > ∥y − Ax†∥, there exists k = kε ∈ N such that

∥xk − x†∥ ≤ 1

∥A∥
(ε− ∥y − Ax†∥).

By the reverse triangle inequality

∥y − Axk∥ − ∥y − Ax†∥ ≤ ∥(y − Axk)− (y − Ax†)∥
≤ ∥A∥∥xk − x†∥
≤ ε− ∥y − Ax†∥.

From this, we deduce that ∥y − Axk∥ ≤ ε as desired.



Conjugate gradient method



Krylov subspace methods

Krylov subspace methods are iterative solvers for (large scale) matrix
equations of the form Ax = y , A ∈ Rn×n. In general terms, the solution
vector x ∈ Rn is approximated as a linear combination of vectors of the
form u, Au, A2u, . . ., with some given u ∈ Rn. If multiplication by A is
cheap – for example, when A is sparse – Krylov subspace methods can be
particularly efficient.

We consider only the most well-known Krylov subspace method, the
conjugate gradient method. It is worth mentioning that other methods in
this class include, e.g., the generalized minimum residual method
(GMRES) and the biconjugate gradient method (BiCG).



Assumptions on A and A-dependent inner product

In what follows, we assume that the system matrix A ∈ Rn×n is symmetric
and positive definite:

AT = A and uTAu > 0 for all u ∈ Rn \ {0}.

Note that this implies that A is injective.† By the fundamental theorem of
linear algebra, A is invertible. Furthermore, the inverse A−1 ∈ Rn×n is also
symmetric and positive definite.

We define
⟨u, v⟩A := uTAv and ∥u∥A :=

√
⟨u, u⟩A.

Since A was assumed to be symmetric and positive definite, it is
straightforward to check that ⟨·, ·⟩A : Rn × Rn → R defines an inner
product on Rn. In consequence, ∥ · ∥A : Rn → R is a norm.

Finally, we say that non-zero vectors {s0, . . . , sk} ⊂ Rn are A-conjugate if

⟨si , sj⟩A = sTi Asj = 0 whenever i ̸= j ,

i.e., they are orthogonal with respect to the inner product ⟨·, ·⟩A.
†Ax = Ay ⇒ A(x − y) = 0 ⇒ (x − y)TA(x − y) = 0 ⇒ x − y = 0.



Error, residual, and minimization problem

Let x∗ = A−1y ∈ Rn denote the unique solution of the equation

Ax = y

for a given y ∈ Rn. We define the error and residual corresponding to
some approximate solution x ∈ Rn by

e = x∗ − x and r = y − Ax = Ae.

Let ϕ : Rn → R be the A-dependent quadratic functional

ϕ(x) = ∥e∥2A = eTAe = rTA−1r = ∥r∥2A−1 .

Since ∥ · ∥A is a norm, ϕ(x) ≥ 0 for all x ∈ Rn and

ϕ(x) = 0 ⇔ e = 0 ⇔ x = x∗.

Minimizing ϕ is equivalent to solving Ax = y .



The conjugate gradient method is an iterative scheme which, at each step
of the iteration, returns xk+1 = argminx∈Sk

ϕ(x), where

Sk := {x ∈ Rn | x = x0 + c0s0 + · · ·+ cksk , c0, . . . , ck ∈ R}
is a hyperplane determined by a sequence of vectors s0, . . . , sk ∈ Rn.

Starting from an initial guess x0 ∈ Rn, the successive iterates are given by

xk+1 = xk + αksk , k = 0, 1, 2, . . . .

Define the residual rk = y − Axk corresponding to iterate xk and let
s0 = r0 be the initial search direction. Then the parameters are

αk =
sTk rk

sTk Ask
for k ≥ 0, (“step size”)

sk = rk + βk−1sk−1, βk−1 = −
sTk−1Ark

sTk−1Ask−1
for k ≥ 1. (“search direction”)

We proceed to show that the search directions defined by the above
recursion are A-conjugate (and thus linearly independent) and the iterates
xk+1 obtained using this algorithm are minimizers of the functional ϕ(x)
on the hyperplanes Sk . Note especially that Sn−1 = Rn, so an exact
solution (up to rounding errors) is achieved in at most n iteration steps.



Step 1: If s0, . . . , sk are A-conjugate, then rk+1 ⊥ span{s0, . . . , sk}.
Now xk+1 = xk + αksk = xk−1 + αk−1sk−1 + αksk = · · · = x0 +

∑k
j=0 αjsj

and rk+1 = y − Axk+1 = y − Ax0 −
∑k

j=0 αjAsj = r0 −
∑k

j=0 αjAsj .
Let ℓ ∈ {0, . . . , k}. Then

rTk+1sℓ =

(
r0 −

k∑
j=0

αjAsj

)T

sℓ (AT = A)

= rT0 sℓ −
k∑

j=0

αjs
T
j Asℓ (sTj Asℓ = 0 for j ̸= ℓ)

= rT0 sℓ − αℓs
T
ℓ Asℓ (αℓ =

sTℓ rℓ
sTℓ Asℓ

)

= rT0 sℓ − sTℓ rℓ (rℓ = r0 −
∑ℓ−1

j=0 αjAsj)

= rT0 sℓ − sTℓ r0 +
ℓ−1∑
j=0

αjs
T
ℓ Asj

= 0,

as desired.



Step 2: s0, . . . , sk are A-conjugate and linearly independent.

By induction with respect to k ∈ N0. If k = 0, then {s0} is trivially
A-conjugate. Suppose that the claim has been proved for some k ∈ N0; we
show that sTk+1Asj = 0 for all j ∈ {0, . . . , k}.
Let j ∈ {0, . . . , k}. Then

sTk+1Asj = (rk+1 + βksk)
TAsj = rTk+1Asj + βks

T
k Asj .

If 0 ≤ j ≤ k − 1, then the above expression vanishes by the previous slide
and the induction hypothesis. Let j = k . Then

sTk+1Ask = rTk+1Ask + βks
T
k Ask (βk = − sTk Ark+1

sTk Ask
)

= 0,

as desired. For the linear dependence, write c0s0 + · · ·+ cksk = 0 for some
undetermined coefficients c0, . . . , ck ∈ R. For any ℓ ∈ {0, . . . , k},
multiplying from the left by sTℓ A yields

c0s
T
ℓ As0 + · · ·+ cks

T
ℓ Ask = 0⇒ cℓs

T
ℓ Asℓ = 0

xTAx=0
iff x=0⇒ cℓ = 0

as desired.



Step 3:h∗ = argmin
h∈Rk+1

ϕ(x0 + Skh) iff h∗ = (ST
k ASk)

−1ST
k r0, where x0 ∈ Rn,

r0 = y − Ax0, Sk = [s0, . . . , sk ], and s0, . . . , sk ∈ Rn are lin. independent.

We first verify that the expression (ST
k ASk)

−1ST
k r0 is well-defined by

showing that ST
k ASk ∈ R(k+1)×(k+1) is invertible. By the positive

definiteness of A,

ST
k ASkz = 0 ⇒ zTST

k ASkz = 0 ⇒ ∥Skz∥2A = 0 ⇒ Skz = 0,

which means that z = 0 since the columns of Sk are linearly independent.
Hence ST

k ASk is injective, and (ST
k ASk)

−1 exists by the fundamental
theorem of linear algebra.

The residual corresponding to x = x0 + Skh satisfies

r = y − A(x0 + Skh) = r0 − ASkh,

thus (recall that ϕ(x) = rTA−1r for r = y − Ax)

ϕ(x0 + Skh) = (r0 − ASkh)
TA−1(r0 − ASkh)

= rT0 A
−1r0 − 2rT0 Skh + hTST

k ASkh.



We obtained

ϕ(x0 + Skh) = rT0 A
−1r0 − 2rT0 Skh + hTST

k ASkh.

The Hessian of h 7→ ϕ(x0+Skh) is 2S
T
k ASk , which is positive definite since

uT(ST
k ASk)u = (Sku)

TA(Sku) ≥ 0 for all u ∈ Rk+1,

where equality holds iff Sku = 0 ⇔ u = 0. Hence h 7→ ϕ(x0 + Skh) is
convex, and we can find its unique minimizer by solving the zero point of
its gradient:

0 = ∇hϕ(x0 + Skh) = 2ST
k ASkh − 2ST

k r0

⇔ h = (ST
k ASk)

−1ST
k r0.



Step 4: Let x0 ∈ Rn be the initial guess and Sk = [s0, . . . , sk ], where

s0, . . . , sk ∈ Rn are the conjugate gradient search directions. The

conjugate gradient iterates satisfy xk+1 = argminh∈Rk+1ϕ(x0 + Skh).

Let aj = (α0, . . . , αj)
T ∈ Rj+1, where αi =

sTi ri
sTi Asi

are the line search

parameters of the conjugate gradient method. Then

xj = x0 +
∑j−1

i=0 αi si = x0 + Sj−1aj−1, j = 1, . . . , k + 1.

The residual corresponding to xj is

rj = y − Axj = (y − Ax0)− ASj−1aj−1 = r0 − ASj−1aj−1

and hence

sTj rj = sTj r0 − sTj ASj−1aj−1 = sTj r0 − sTj [As0, . . . ,Asj−1]︸ ︷︷ ︸
=0

aj−1,

since sTj Asi = 0, i < j , due to A-conjugacy. Therefore

αj =
sTj rj

sTj Asj
=

sTj r0

sTj Asj
, j = 0, . . . , k .



The line search parameters can be written as

αj =
sTj rj

sTj Asj
=

sTj r0

sTj Asj
, j = 0, . . . , k .

On the other hand, since {s0, . . . , sk} are A-conjugate, we have that

(ST
k ASk)

−1 = diag(sT0 As0, . . . , s
T
k Ask)

−1

= diag

(
1

sT0 As0
, . . . ,

1

sTk Ask

)
.

Especially, this means that the minimizer h∗ of ϕ(x0 + Skh) over the
hyperplane Sk is given by

h∗ = (ST
k ASk)

−1ST
k r0 = diag

(
1

sT0 As0
, . . . ,

1

sTk Ask

)s
T
0 r0
...

sTk r0

 =

 α0
...
αk

 = ak .

In consequence, xk+1 = x0 + Skak = x0 + Skh∗.



Remark. In the conjugate gradient method, the search directions are given
by s0 = r0 and

sk = rk + βk−1sk−1, k ≥ 1,

where rk = y − Axk . Note that span{s0, . . . , sk} = span{r0, . . . , rk}.

Especially, the conjugate gradient iterate xk+1 satisfies

xk+1 = argmin
x∈x0+span{s0,...,sk}

∥x − x∗∥2A = argmin
x∈x0+span{r0,...,rk}

∥x − x∗∥2A

= argmin
x∈x0+Kk

∥x − x∗∥2A,

where the search space Kk := span{r0,Ar0, . . . ,Ak−1r0} is precisely the
kth Krylov subspace of A with the initial vector r0 = y − Ax0. Some basic
properties of Krylov subspaces:

A(Kk) ⊂ Kk+1.

Kk−1 ⊂ Kk (Krylov subspaces are nested).

dimKk ≤ k (dimension of the kth Krylov subspace is at most k).

dimKk ≤ dimKk−1 + 1 (dimension of the successive Krylov space is
at most one higher than that of the former).



The conjugate gradient algorithm is usually presented in slightly different
form. Assuming that the iteration has not yet converged at the iterate xk ,

we can deduce the following formulae for αk =
sTk rk
sTk Ask

and βk = − sTk Ark+1

sTk Ask
.

Simplifying αk : Since rk ⊥ sk−1, we have that

sTk rk=(rk + βk−1sk−1)
Trk = ∥rk∥2 ⇒ αk=

∥rk∥2

sTk Ask
. (3)

Simplifying βk : since rk+1 ⊥ span{s0, . . . , sk} ∋ rk and
rk+1 = rk − αkAsk , then

∥rk+1∥2 = rTk+1(rk − αkAsk)
(3)
= − ∥rk∥

2

sTk Ask
rTk+1Ask=βk∥rk∥2

and thus

βk =
∥rk+1∥2

∥rk∥2
.

This leads to the “standard form” of the method.



Pseudocode for the conjugate gradient algorithm

Given: symmetric, positive definite system matrix A ∈ Rn×n,
data y ∈ Rn.

1. Choose initial guess x0 ∈ Rn.

2. Set k = 0, r0 = y − Ax0, s0 = r0;

Repeat until the chosen stopping rule is satisfied:

3. αk = ∥rk∥2/(sTk Ask);
4. xk+1 = xk + αksk ;
5. rk+1 = rk − αkAsk ;
6. βk = ∥rk+1∥2/∥rk∥2;
7. sk+1 = rk+1 + βksk ;
8. k ← k + 1;

end



Numerical example

Let us consider minimization with the steepest descent directions

sk = −∇ϕ(xk) = 2(y − Axk), k = 0, 1, . . . . (4)

In general, the convergence of the sequence {xk} toward the global
minimizer x∗ = A−1y can be fairly slow. We demonstrate this with the
following example.

Let

A =

[
1 0
0 5

]
and y =

[
0
0

]
.

Now
ϕ(x) = x21 + 5x22 .

We plot the level contours of ϕ and the sequence {xk}5k=0 starting from
x0 = (1, 0.3)T. The true solution x∗ = (0, 0)T is marked with a blue cross.

We also illustrate minimization over the hyperplanes S0 and S1,
i.e., x0+S0h∗ and x0+S1h∗ with S0 = [s0] ∈ R2×1 and S1 = [s0, s1] ∈ R2×2,
where s0 and s1 were computed using the sequential method (4).
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Figure: Left: Minimization using steepest descent search directions sk = −∇ϕ(xk).
Right: In the linear case, the conjugate gradient method iteratively finds the
optima over the hyperplanes S1 and S2. The CG method converges to the actual
solution x∗ = (0, 0)T (marked with a blue cross) in n = 2 iterations (which equals
the dimensionality of the ambient space R2).



Conjugate gradient method for inverse problems

According to the previous construction, if the conjugate gradient method
is applied to the equation

Ax = y ,

where A ∈ Rn×n is symmetric and positive definite, an exact solution (up
to rounding errors) is achieved in at most n iteration steps, i.e.,
xn = x∗ = A−1y . However, the algorithm typically converges satisfactorily
much quicker. A (pessimistic) convergence rate is proved in the first
exercise of week 4.

With ill-posed problems, one should be more cautious and terminate the
iterations well before convergence to avoid fitting the solution to noise. In
fact, since the conjugate gradient method often converges very fast, one
should be extremely cautious.



Let us consider a general ill-posed matrix equation

Ax = y ,

where A ∈ Rm×n and y ∈ Rm are given.

If m = n and there is some available prior information suggesting that
A is, at least in theory, positive (semi-)definite, one can apply the
conjugate gradient algorithm directly on the original equation.

More generally, one may still consider the normal equation

ATAx = ATy ,

which corresponds to solving the original equation in the sense of
least squares.



The system matrix ATA = (ATA)T ∈ Rn×n is symmetric and

uTATAu = ∥Au∥2 > 0 for all u ∈ Rn \Ker(A).

Thus the conditions of the conjugate gradient algorithm are almost
satisfied, and one may look for the solution of the inverse problem by using
the conjugate gradient algorithm with A replaced by ATA and y by ATy .†

As a stopping criterion, one may try, e.g., the Morozov principle for the
original equation: terminate the iteration when

∥y − Axk∥ ≤ ε

for some ε > 0, which measures the amount of noise in y in some sense.

†Small remark on implementation: matrix-matrix products are typically far more
expensive to compute than matrix-vector products. For example, instead of computing
expressions like residual = A’*y - A’*A*x0 when implementing the conjugate
gradient method in MATLAB, one should use parentheses to parse the computation like
residual = A’*y - A’*(A*x0). Similarly residual = A.T@y - A.T@(A@x0) in
Python.



Numerical example: backward heat equation revisited

Let us revisit the backward heat equation:
∂tu(x , t) = ∂2

xu(x , t) for (x , t) ∈ (0, π)× R+,

u(0, ·) = u(π, ·) = 0 on R+,

u(·, 0) = f on (0, π),

where f : (0, π)→ R is the initial heat distribution.

Inverse problem: Reconstruct the initial state f based on noisy
measurements of u(·,T ) at time T > 0.

Let xj = jh, j = 0, . . . , 100 with h = π/100, and denote U(t) = (Uj(t))
99
j=1

and F = (f (xj))
99
j=1. At time t = T > 0, the discretized heat distribution

U := U(T ) is given by
U = AF ,

where A = eTB ∈ R99×99 and B = h−2tridiag(1,−2, 1) ∈ R99×99.



As ground truth, we take

f (x) =

{
1 if x ∈ [1, 2],

0 if x ∈ (0, 1) ∪ (2, π).

We assume that the simulated data U = U(T ) ∈ R99 at time T = 0.1 is
contaminated with mean-zero Gaussian noise with standard deviation 0.01,
and that the discrepancy between the measured data and the underlying
“exact” data equals the square root of the expected value of the squared
norm of the noise vector, i.e.,

ε =
√
99 · 0.012 ≈ 0.0995.

We use the conjugate gradient method to solve the normal equation

ATAF = ATU,

and terminate the algorithm for the first CG iterate Fk such that

∥AFk − U∥ ≤ ε.
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Although we have simply scratched the surface by covering some of the
basic ideas surrounding the conjugate gradient scheme and demonstrating
how an “early stopping rule” can provide reasonable solutions for inverse
problems, the regularizing properties of the conjugate gradient method
have been analyzed more explicitly in the literature. A classic textbook
specifically about this subject is:

M. Hanke. Conjugate gradient type methods for ill-posed problems.
Pitman Research Notes in Mathematics Series, 327.



Inverse Problems
Sommersemester 2023

Vesa Kaarnioja
vesa.kaarnioja@fu-berlin.de

FU Berlin, FB Mathematik und Informatik

Seventh lecture, May 30, 2023



Total variation regularization for X-ray tomography

Some helpful resources on the Chambolle–Pock algorithm:

A. Chambolle and T. Pock. A first-order primal-dual algorithm for
convex problems with applications to imaging. J. Math. Imaging
Vision 40:120-145, 2011.

L. Condat. A generic proximal algorithm for convex optimization –
application to total variation minimization. IEEE Signal Proc. Letters
21(8):985–989, 2014.

E. Y. Sidky, J. H. Jørgensen, and X. Pan. Convex optimization
problem prototyping for image reconstruction in computed
tomography with the Chambolle-Pock algorithm. Phys. Med. Biol.
57:3065–3091, 2012.

Operator Discretization Library. https://odl.readthedocs.io/
math/solvers/nonsmooth/chambolle_pock.html, 2017.

PORTAL. portal.readthedocs.io/en/latest/chambollepock.html,
written by P. Paleo, 2015.

https://odl.readthedocs.io/math/solvers/nonsmooth/chambolle_pock.html
https://odl.readthedocs.io/math/solvers/nonsmooth/chambolle_pock.html
https://portal.readthedocs.io/en/latest/chambollepock.html


Additional resources on total variation regularization for X-ray tomography:

J. L. Mueller and S. Siltanen. Linear and Nonlinear Inverse Problems
with Practical Applications. 2012.

S. Siltanen. Total variation regularization for X-ray tomography. FIPS
Computational Blog, https://blog.fips.fi/tomography/x-ray/
total-variation-regularization-for-x-ray-tomography/,
2017.

https://blog.fips.fi/tomography/x-ray/total-variation-regularization-for-x-ray-tomography/
https://blog.fips.fi/tomography/x-ray/total-variation-regularization-for-x-ray-tomography/


Recall that the discrete measurement model for X-ray tomography can be
expressed as

y = Ax .

This time, we consider solving the inverse problem of recovering x based
on noisy measurements y .

We are interested in anisotropic total variation regularization

argmin
x≥0

{
1
2∥y − Ax∥2 + λ∥Dx∥1

}
, λ > 0,

where ∥x∥1 =
∑

i |xi |, D =

[
LH
LV

]
is the discretized (image) gradient

operator,

∥Dx∥1 =
∑
j

|(Dx)j | =
∑
j

|(LHx)j |+
∑
j

|(LV x)j |,

and LH and LV denote the horizontal and vertical (image) finite difference
matrices, respectively.

Special feature: TV regularization preserves sharp edges.



Recall that the vector x is related to
the density matrix (fi ,j) of the
computational domain via

xin+j = fi ,j , i , j ∈ {0, . . . , n − 1}.

x = f.reshape((n*n,1)) and f = x.reshape((n,n)) (Python)
x = f(:) and f = reshape(x,n,n) (MATLAB)



Construction of LH (periodic boundary conditions)



−1 1 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0 0
0 0 −1 0 0 0 0 0 0
0 0 0 −1 0 0 0 0 0
0 0 0 0 −1 0 0 0 0
0 0 0 0 0 −1 0 0 0
0 0 0 0 0 0 −1 0 0
0 0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 0 −1





Construction of LH (periodic boundary conditions)



−1 1 0 0 0 0 0 0 0
0 −1 1 0 0 0 0 0 0
0 0 −1 0 0 0 0 0 0
0 0 0 −1 0 0 0 0 0
0 0 0 0 −1 0 0 0 0
0 0 0 0 0 −1 0 0 0
0 0 0 0 0 0 −1 0 0
0 0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 0 −1





Construction of LH (periodic boundary conditions)



−1 1 0 0 0 0 0 0 0
0 −1 1 0 0 0 0 0 0
1 0 −1 0 0 0 0 0 0
0 0 0 −1 0 0 0 0 0
0 0 0 0 −1 0 0 0 0
0 0 0 0 0 −1 0 0 0
0 0 0 0 0 0 −1 0 0
0 0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 0 −1





Construction of LH (periodic boundary conditions)



−1 1 0 0 0 0 0 0 0
0 −1 1 0 0 0 0 0 0
1 0 −1 0 0 0 0 0 0
0 0 0 −1 1 0 0 0 0
0 0 0 0 −1 0 0 0 0
0 0 0 0 0 −1 0 0 0
0 0 0 0 0 0 −1 0 0
0 0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 0 −1





Construction of LH (periodic boundary conditions)



−1 1 0 0 0 0 0 0 0
0 −1 1 0 0 0 0 0 0
1 0 −1 0 0 0 0 0 0
0 0 0 −1 1 0 0 0 0
0 0 0 0 −1 1 0 0 0
0 0 0 0 0 −1 0 0 0
0 0 0 0 0 0 −1 0 0
0 0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 0 −1





Construction of LH (periodic boundary conditions)



−1 1 0 0 0 0 0 0 0
0 −1 1 0 0 0 0 0 0
1 0 −1 0 0 0 0 0 0
0 0 0 −1 1 0 0 0 0
0 0 0 0 −1 1 0 0 0
0 0 0 1 0 −1 0 0 0
0 0 0 0 0 0 −1 0 0
0 0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 0 −1





Construction of LH (periodic boundary conditions)



−1 1 0 0 0 0 0 0 0
0 −1 1 0 0 0 0 0 0
1 0 −1 0 0 0 0 0 0
0 0 0 −1 1 0 0 0 0
0 0 0 0 −1 1 0 0 0
0 0 0 1 0 −1 0 0 0
0 0 0 0 0 0 −1 1 0
0 0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 0 −1





Construction of LH (periodic boundary conditions)



−1 1 0 0 0 0 0 0 0
0 −1 1 0 0 0 0 0 0
1 0 −1 0 0 0 0 0 0
0 0 0 −1 1 0 0 0 0
0 0 0 0 −1 1 0 0 0
0 0 0 1 0 −1 0 0 0
0 0 0 0 0 0 −1 1 0
0 0 0 0 0 0 0 −1 1
0 0 0 0 0 0 0 0 −1





Construction of LH (periodic boundary conditions)



−1 1 0 0 0 0 0 0 0
0 −1 1 0 0 0 0 0 0
1 0 −1 0 0 0 0 0 0
0 0 0 −1 1 0 0 0 0
0 0 0 0 −1 1 0 0 0
0 0 0 1 0 −1 0 0 0
0 0 0 0 0 0 −1 1 0
0 0 0 0 0 0 0 −1 1
0 0 0 0 0 0 1 0 −1





Construction of LH (periodic boundary conditions)



−1 1 0 0 0 0 0 0 0
0 −1 1 0 0 0 0 0 0
1 0 −1 0 0 0 0 0 0
0 0 0 −1 1 0 0 0 0
0 0 0 0 −1 1 0 0 0
0 0 0 1 0 −1 0 0 0
0 0 0 0 0 0 −1 1 0
0 0 0 0 0 0 0 −1 1
0 0 0 0 0 0 1 0 −1


Python:

N = 3

block = sparse.spdiags(np.array([np.ones(N),-np.ones(N),np.ones(N)]),

np.array([1-N,0,1]),N,N) # form the 3x3 block

LH = sparse.block_diag([block]*N) # assemble the 9x9 block matrix

MATLAB:

N = 3;

block = spdiags([1,-1,1].*ones(N,3),[1-N,0,1],N,N); % form the 3x3 block

LH = [];

for ii = 1:N

LH = blkdiag(LH,block); % assemble the 9x9 block matrix

end



Construction of LV (periodic boundary conditions)



−1 0 0 1 0 0 0 0 0
0 −1 0 0 0 0 0 0 0
0 0 −1 0 0 0 0 0 0
0 0 0 −1 0 0 0 0 0
0 0 0 0 −1 0 0 0 0
0 0 0 0 0 −1 0 0 0
0 0 0 0 0 0 −1 0 0
0 0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 0 −1





Construction of LV (periodic boundary conditions)



−1 0 0 1 0 0 0 0 0
0 −1 0 0 1 0 0 0 0
0 0 −1 0 0 0 0 0 0
0 0 0 −1 0 0 0 0 0
0 0 0 0 −1 0 0 0 0
0 0 0 0 0 −1 0 0 0
0 0 0 0 0 0 −1 0 0
0 0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 0 −1





Construction of LV (periodic boundary conditions)



−1 0 0 1 0 0 0 0 0
0 −1 0 0 1 0 0 0 0
0 0 −1 0 0 1 0 0 0
0 0 0 −1 0 0 0 0 0
0 0 0 0 −1 0 0 0 0
0 0 0 0 0 −1 0 0 0
0 0 0 0 0 0 −1 0 0
0 0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 0 −1





Construction of LV (periodic boundary conditions)



−1 0 0 1 0 0 0 0 0
0 −1 0 0 1 0 0 0 0
0 0 −1 0 0 1 0 0 0
0 0 0 −1 0 0 1 0 0
0 0 0 0 −1 0 0 0 0
0 0 0 0 0 −1 0 0 0
0 0 0 0 0 0 −1 0 0
0 0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 0 −1





Construction of LV (periodic boundary conditions)



−1 0 0 1 0 0 0 0 0
0 −1 0 0 1 0 0 0 0
0 0 −1 0 0 1 0 0 0
0 0 0 −1 0 0 1 0 0
0 0 0 0 −1 0 0 1 0
0 0 0 0 0 −1 0 0 0
0 0 0 0 0 0 −1 0 0
0 0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 0 −1





Construction of LV (periodic boundary conditions)



−1 0 0 1 0 0 0 0 0
0 −1 0 0 1 0 0 0 0
0 0 −1 0 0 1 0 0 0
0 0 0 −1 0 0 1 0 0
0 0 0 0 −1 0 0 1 0
0 0 0 0 0 −1 0 0 1
0 0 0 0 0 0 −1 0 0
0 0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 0 −1





Construction of LV (periodic boundary conditions)



−1 0 0 1 0 0 0 0 0
0 −1 0 0 1 0 0 0 0
0 0 −1 0 0 1 0 0 0
0 0 0 −1 0 0 1 0 0
0 0 0 0 −1 0 0 1 0
0 0 0 0 0 −1 0 0 1
1 0 0 0 0 0 −1 0 0
0 0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 0 −1





Construction of LV (periodic boundary conditions)



−1 0 0 1 0 0 0 0 0
0 −1 0 0 1 0 0 0 0
0 0 −1 0 0 1 0 0 0
0 0 0 −1 0 0 1 0 0
0 0 0 0 −1 0 0 1 0
0 0 0 0 0 −1 0 0 1
1 0 0 0 0 0 −1 0 0
0 1 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 0 −1





Construction of LV (periodic boundary conditions)



−1 0 0 1 0 0 0 0 0
0 −1 0 0 1 0 0 0 0
0 0 −1 0 0 1 0 0 0
0 0 0 −1 0 0 1 0 0
0 0 0 0 −1 0 0 1 0
0 0 0 0 0 −1 0 0 1
1 0 0 0 0 0 −1 0 0
0 1 0 0 0 0 0 −1 0
0 0 1 0 0 0 0 0 −1





Construction of LV (periodic boundary conditions)



−1 0 0 1 0 0 0 0 0
0 −1 0 0 1 0 0 0 0
0 0 −1 0 0 1 0 0 0
0 0 0 −1 0 0 1 0 0
0 0 0 0 −1 0 0 1 0
0 0 0 0 0 −1 0 0 1
1 0 0 0 0 0 −1 0 0
0 1 0 0 0 0 0 −1 0
0 0 1 0 0 0 0 0 −1


Python:

N = 3

LV = sparse.spdiags(np.array([np.ones(N**2),-np.ones(N**2),np.ones(N**2)]),

np.array([-N**2+N,0,N]),N**2,N**2)

MATLAB:

N = 3;

LV = spdiags([1,-1,1].*ones(N^2,3),[-N^2+N,0,N],N^2,N^2);



Let F ∗ : RM → R ∪ {+∞} and G : RN → R ∪ {+∞} be convex lower
semicontinuous functions and K ∈ RM×N . Consider the abstract problem

min
x∈RN

max
η∈RM

{⟨Kx , η⟩+ G (x)− F ∗(η)}.

The general form of the Chambolle–Pock algorithm can be written as

ηk+1 = proxσF∗(ηk + σKx̃k), (update dual variable)

xk+1 = proxτG (xk − τKTηk+1), (update primal variable)

x̃k+1 = xk+1 + θ(xk+1 − xk), (extrapolation)

where τ > 0 is the primal step size, σ > 0 is the dual step size, θ > 0 is an
extrapolation parameter, and the proximal operator of a function f is
defined as

proxf (η) := argmin
x

{
f (x) + 1

2∥x − η∥2
}
.

If στ ≤ 1/L2, L = ∥K∥2 (operator norm), and θ = 1, then the algorithm

can be shown to converge at linear rate O(k−1) [Chambolle and Pock
2011].



Let us recast the TV regularization problem

min
x≥0

{
1
2∥y − Ax∥2 + λ∥Dx∥1

}
, λ > 0, (1)

in the above framework.

Note that

1
2∥Ax − y∥2 = max

q

{
⟨Ax − y , q⟩ − 1

2∥q∥
2
}
,

since 0 = ∇q(⟨Ax − y , q⟩ − 1
2∥q∥

2) = Ax − y − q iff q = Ax − y .

Since ∥x∥1 =
∑

i |xi | = ⟨|x |, 1⟩ = ⟨x , sign(x)⟩,

λ∥Dx∥1 = max
∥z∥∞≤1

⟨Dx , λz⟩ = max
∥z∥∞≤λ

⟨Dx , z⟩ = max
z

{
⟨Dx , z⟩− ιλ(z)

}
,

where ιλ(z) = 0 if ∥z∥∞ ≤ λ and ιλ(z) = +∞ otherwise.

Then (1) is equivalent to

min
x

max
q,z

{
⟨Ax − y , q⟩+ ⟨Dx , z⟩ − 1

2∥q∥
2 − ιλ(z) + ι+(x)

}
,

where ι+(x) = 0 if x ≥ 0 and ι+(x) = +∞ otherwise.



It is easy to see that

min
x

max
q,z

{
⟨Ax − y , q⟩+ ⟨Dx , z⟩ − 1

2∥q∥
2 − ιλ(z) + ι+(x)

}
is tantamount to

min
x

max
q,z

{〈
Kx ,

[
q
z

]〉
+ G (x)− F ∗(q, z)

}
,

where

G (x) = ι+(x),

F ∗(q, z) = ⟨y , q⟩+ 1
2∥q∥

2 + ιλ(z),

K =

[
A
D

]
.

Note that if A ∈ RQ×N and D ∈ RL×N , then K ∈ R(Q+L)×N and we
identify the dual variable as the pair η = (q, z) ∈ RM , where q ∈ RQ ,
z ∈ RL, and M = Q + L.



The proximal mapping corresponding to G is simply the projection onto
{x ≥ 0 | x ∈ RN}:

proxτG (x) = (max(xi , 0))i = max(x, 0).

On the other hand,

proxσF∗(q, z) =

(
q − σy

1 + σ
,

λz

max
(
λ, |z |

)). (N.B. η = (q, z))

Noting that KT = [AT,DT], the Chambolle–Pock algorithm takes the form
ηk+1 = proxσF∗(ηk + σKx̃k)

xk+1 = proxτG (xk − τKTηk+1)

x̃k+1 = xk+1 + θ(xk+1 − xk)

⇔


qk+1 =

qk+σAx̃k−σy
1+σ

zk+1 =
λ(zk+σDx̃k )

max(λ,|zk+σDx̃k |) (elementwise division)

xk+1 = max(xk − τATqk+1 − τDTzk+1, 0) (elementwise max)

x̃k+1 = xk+1 + θ(xk+1 − xk).



Pseudocode for the Chambolle–Pock algorithm

Given: projection matrix A, data y , regularization parameter λ.

1. Form the difference matrices LH and LV. Set D = [LH;LV];

2. L = svds([A;D],1);

3. tau = 1/L, sigma = 1/L, theta = 1;

4. x = zeros(size(A,2),1), q = zeros(size(A,1),1);

5. z = zeros(size(D,1),1), xhat = x;
Repeat

6. q = (q+sigma*(A*xhat-y))/(1+sigma);

7. z = lambda *

(z+sigma*D*xhat)./max(lambda,abs(z+sigma*D*xhat));

8. xold = x;

9. x = max(x-tau*A’*q-tau*D’*z,0);

10. xhat = x+theta*(x-xold);

until convergence.
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Bayesian inverse problems

The second part of the course will focus on the Bayesian approach to
inverse problems.

We will mainly follow

D. Sanz-Alonso, A. M. Stuart, and A. Taeb (2018). Inverse Problems
and Data Assimilation. https://arxiv.org/abs/1810.06191

Other helpful texts are

J. Kaipio and E. Somersalo (2005). Statistical and Computational
Inverse Problems. Springer, New York, NY.

D. Calvetti and E. Somersalo (2007). Introduction to Bayesian
Scientific Computing – Ten Lectures on Subjective Computing.
Springer, New York, NY.

https://arxiv.org/abs/1810.06191


The Bayesian approach

Suppose that we have a noisy measurement model

y = F (x) + η,

where F : Rd → Rk is the forward mapping, y ∈ Rk is the measurement,
η ∈ Rk is measurement noise, and x ∈ Rd is the unknown.

In the Bayesian approach to solving inverse problems

both the noise η and the unknown quantity x (in a statistical context
usually called the parameter) are modelled as random variables with
values in Rk and Rd , respectively, and their probability distributions
are assumed to be known.

the quantity of interest is now the conditional distribution of x , given
the measured data y , which is considered the solution to the inverse
problem in the Bayesian sense.



We consider the noisy measurement model

y = F (x) + η.

The distribution of the parameter x formalizes all knowledge and
beliefs about x before the data y is taken into account. In the
Bayesian context, it is called prior distribution.

The conditional distribution of x , given y , takes the data y into
account, which can be understood as updating our knowledge and
beliefs about the parameter x . In the Bayesian context, it is called
posterior distribution.

The posterior distribution is usually obtained using some form of Bayes’
formula. It contains all knowledge about the parameter available from the
prior distribution and the measured data. It can be used to obtain
parameter estimates that are most likely in some sense or that represent
the posterior distribution well. In addition, the spread of the posterior
distribution provides information about the remaining uncertainty in the
parameter reconstruction.



While this approach has the advantage of being based upon explicit
assumptions on the distribution of the noise and the parameter, it is not
immediately clear why or how it should help resolving the ill-posedness of a
problem. We will, however, see how under certain conditions the Bayesian
approach has a regularizing effect in the sense that both the posterior
distribution, and estimators based upon it, are stable with respect to
changes in the data. To this end, we will introduce metrics to measure the
distance of probability distributions during next week’s lecture.



A brief introduction to probability theory

Here, we give a brief – and somewhat informal – overview of some
fundamental notions from probability theory that are needed for our
purposes, such as random variables, probability distributions and densities,
as well as joint, marginal, and conditional probability densities.



Probability measures

Let Ω be a set and let P(Ω) denote its power set. A subset F of P(Ω) is
called σ-algebra (or σ-field) if

1 ∅ ∈ F ,

2 Ω \ A ∈ F for every A ∈ F , and

3
⋃

n∈N An ∈ F for every countable subset {An}n∈N of F .

A pair (Ω,F) is called a measurable space.

An intuitive way of thinking about σ-algebras is that they contain
information. The subsets contained in a σ-algebra represent events for
which we can decide, after the observation, whether they happened or not.
Hence, F represents all the information we can get from an experiment.
For a topological space Ω (e.g., Rd), the smallest σ-algebra containing all
open sets in Ω is called Borel σ-algebra on Ω and it is denoted by B(Ω).



A function µ: F → [0,∞) ∪ {∞} is called probability measure if

(i) µ(∅) = 0,
(ii) for every countable subset {An}n∈N ⊂ F of pairwise disjoint sets (i.e.,

Ai ∩ Aj = ∅ if i ̸= j),

µ

( ∞⋃
n=1

An

)
=

∞∑
n=1

µ(An),

(iii) and µ(Ω) = 1.

We call µ(A) the probability of an event A ∈ F . If µ(A) = 1, we say that
the event A occurs almost surely. A triple (Ω,F , µ) is called probability
space. If only properties (i) and (ii) are satisfied, µ is called a measure. A
measure is called σ-finite if Ω is the countable union of measurable sets
with finite measure.

Example

The Dirac measure δm at a point m ∈ Rd is a probability measure on
(Rd ,B(Rd)) defined by

δm(A) =

{
1 if m ∈ A,

0 if m /∈ A
for all A ∈ B(Rd).



Example

The Lebesgue measure λ on (Rd ,B(Rd)) is σ-finite, but not a probability
measure, since λ(Rd) = ∞.

Let µ and ν be two measures on the same measure space. Then µ is said
to be absolutely continuous with respect to ν (or dominated by ν) if
ν(A) = 0 implies µ(A) = 0 for each A ∈ F . We denote this by µ ≪ ν.
Measures µ and ν are called equivalent if µ ≪ ν and ν ≪ µ. If µ and ν
are supported on disjoint sets, they are called mutually singular.

Theorem (Radon–Nikodym)

Let µ and ν be two measures on a measure space (Ω,F). If µ ≪ ν and ν
is σ-finite, then there exists a unique ν-integrable function f such that

µ(A) =

∫
A
f (ω)ν(dω) for all A ∈ F .

The function f is called Radon–Nikodym derivative (or density) of µ with
respect to ν and it is denoted by dµ

dν .



Example

If µ is a measure which is absolutely continuous with respect to the
Lebesgue measure λ on (Rd ,B(Rd)), then it has a unique density
p ∈ L1(Rd) by the Radon–Nikodym theorem.

Example

Let µ1 = U([0, 1]) and µ2 = U([0, 2]) be uniform probability measures on
R. Then µ1 ≪ µ2 with

dµ1

dµ2
(t) =

{
2 for t ∈ [0, 1],

0 otherwise,

but µ2 is not absolutely continuous with respect to µ1 because
µ1([1, 2]) = 0, whereas µ2([1, 2]) =

1
2 > 0.



Weak convergence of probability measures

A sequence {µn}n∈N of probability measures is said to converge weakly to
µ if

lim
n→∞

∫
Ω
f (ω)µn(dω) =

∫
Ω
f (ω)µ(dω)

for every bounded continuous function f ∈ Cb(Ω,R). In this case, we
write µn ⇀ µ.



Random variables

A function x : Ω → X between a probability space (Ω,F , µ) and a
measurable space (X ,X ) is now called a random variable (with values in
X ) if it is measurable, that is, if

x−1(A) ∈ F for every A ∈ X .

Here, x−1(A) = {ω ∈ Ω : x(ω) ∈ A}.
A random variable x induces a probability measure ν on X , defined by

ν(A) := µ(x−1(A)) for all A ∈ X ,

which is called probability distribution (or law) of x . We write x ∼ ν if x is
distributed according to ν.

A random variable x connects an event A ∈ X with a corresponding event
x−1(A) ∈ F and assigns the probability of x−1(A) to A. This probability is
denoted by

P(x ∈ A) := ν(A) = µ(x−1(A)) = µ({ω ∈ Ω : x(ω) ∈ A}).



Now, let x be a random variable with values in (Rd ,B(Rd)) and ν its
distribution.

If ν is absolutely continuous with respect to the Lebesgue measure λ on
Rd , then by the Radon–Nikodym theorem there exists a unique
p ∈ L1(Rd) such that

ν(A) =

∫
A
p(u)du for all A ∈ B(Rd).

The function p is called probability density of x .

Throughout, we will work with Rd -valued random variables and assume
that they have a probability density.



The mean or expected value of an Rd -valued random variable x with
distribution ν and density p is given by

E[x ] :=
∫
Rd

xν(dx) =

∫
Rd

xp(x)dx .

A mode x̄ of a random variable x is defined as a maximizer of its
density p, i.e.,

x̄ ∈ argmax
x∈Rd

p(x).

The covariance (or covariance matrix) of two random variables x1 and
x2 is defined by

Cov(x1, x2) = E
[
(x1 − E[x1])(x2 − E[x2])T

]
.

The characteristic function φx of x is defined by

φx(h) =

∫
Rd

exp(i hTx) ν(dx) =

∫
Rd

exp(i hTx)p(x)dx for all h ∈ Rd .

A random variable is uniquely determined by its characteristic function.



Gaussian random variables

Gaussian random variables arise naturally in many applications.

A Gaussian distribution is a popular choice for the prior distribution.

By the central limit theorem, a Gaussian distribution is often a good
approximation to inherently non-Gaussian distributions when the
observation is based on a large number of mutually independent
random events. For this reason the noise is often assumed to have a
Gaussian distribution.

Let m ∈ Rd and C ∈ Rd×d be a symmetric positive semidefinite matrix
(C ⪰ 0). An Rd -valued random variable x is said to be Gaussian (or
normal) with mean m and covariance C , denoted by x ∼ N (m,C ), if its
characteristic function φx is given by

φx(h) = exp

(
i hTm − 1

2
hTCh

)
for all h ∈ Rd .

A Gaussian random variable is completely determined by its mean and its
covariance.



If, in addition, C is positive definite (C ≻ 0), x ∼ N (m,C) has the probability
density

P(x) = 1

(2π)d/2
√
detC

exp

(
−1

2
(x −m)TC−1(x −m)

)
=

1

(2π)d/2
√
detC

exp

(
−1

2
∥C− 1

2 (x −m)∥
2
)
.

Note that C is invertible and C−1/2 exists due to our assumptions on C . Here,
∥x∥C−1 := ∥C−1/2x∥.
The Dirac measure δm at a point m ∈ Rd can be understood as a Gaussian
distribution with covariance C = 0, i.e., δm = N (m, 0).

If z1 ∼ N (m1,C1) and z2 ∼ N (m2,C2) are independent and a1, a2 ∈ R, then

z = a1z1 + a2z2 ∼ N (a1m1 + a2m2, a
2
1C1 + a22C2).

If z ∼ N (m,C), L ∈ Rd×k , and a ∈ Rd , then

w = Lz + a ∼ N (Lm + a, LCLT).

The weak convergence of Gaussian random variables is equivalent to convergence
of their means and covariances. That is, a sequence zn ∼ N (mn,Cn) converges
weakly towards z ∼ N (m,C) (zn ⇀ z), if and only if mn → m and Cn → C .



Conditional and marginal probability densities

Let x and y be random variables with values in Rd and Rk , respectively. If
the random variable (x , y) has a probability density px ,y , i.e., if

P(x ∈ A, y ∈ B) = P((x , y) ∈ A× B) =

∫
A×B

px ,y (u, v)d(u, v),

for all A ∈ B(Rd) and B ∈ B(Rk), then px ,y is called joint probability
density of x and y . Here P(x ∈ A, y ∈ B) := P(x ∈ A and y ∈ B). To
simplify notation, we will also write P(x , y) := px ,y (x , y).

Now, the marginal probability density px of x is defined by

px(u) =

∫
Rk

px ,y (u, v)dv for all u ∈ Rd .

Analogously, the marginal density of y is

py (v) =

∫
Rd

px ,y (u, v)du for all v ∈ Rk .



The marginal density of x is indeed the probability density for x in the
situation that we have no information about the random variable y ,
because

P(x ∈ A) = P(x ∈ A, y ∈ Rk) =

∫
A×Rk

px ,y (u, v)d(u, v)

=

∫
A

(∫
Rk

px ,y (u, v)dv

)
du =

∫
A
px(u)du

for every A ∈ B(Rd).

The random variables x and y are called independent (denoted by x ⊥ y) if

P(x ∈ A, y ∈ B) = P(x ∈ A)P(y ∈ B)

for all A ∈ B(Rd), B ∈ B(Rk) or, equivalently, if

px ,y (u, v) = px(u)py (v) almost surely.

To simplify notation, we will also write P(x) := px(x).



Next, we consider the random variable x in the opposite situation that we
know everything about the random variable y : we have observed it and
know what value it has taken.

We say we consider the random variable x , given that we know the value
y0 taken by y , and denote this by x |y = y0. For y0 ∈ Rk with py (y0) > 0,
the conditional probability density of x |y = y0, px |y=y0 , is then defined by

px |y=y0(u) =
px ,y (u, y0)

py (y0)
.

If x and y are independent and py (y0) > 0, then

px |y=y0(u) = px(u).

To simplify notation, we will also write P(x |y) := px |y (x) := px |y=y (x).



Bayes’ formula

Let (x , y) be a random variable with joint density P(x , y) on Rd × Rk . If
P(y) > 0, then the conditional probability density of x , given y , equals

P(x |y) = P(x , y)
P(y)

, P(y) =
∫
Rd

P(x , y)dx .

On the other hand, the conditional probability density of y in case we
know the value of the unknown x , is called the likelihood function

P(y |x) = P(x , y)
P(x)

, if P(x) > 0.

The joint density of (x , y), in turn, can be expressed in terms of the
likelihood of y , given x , as P(x , y) = P(y |x)P(x), which leads to Bayes’
formula

P(x |y) = P(y |x)P(x)∫
Rd P(y |x)P(x)dx

.

Bayes’ formula presents a way to express the conditional probability
density of x , given y , assuming that the conditional density of y , given x ,
and the marginal density of x are known.



Bayes’ formula for inverse problems

We return to an inverse problem of estimating an unknown parameter
x ∈ Rd from data y ∈ Rk that is connected to x via the model

y = F (x) + η.

We make the following assumptions:

A1 The noise η has the probability density ν on Rk .

A2 The parameter x has the probability density π on Rd .

A3 The random variables x and η are independent.



The following theorem yields the probability density of the posterior
distribution, i.e., the conditional density πy (x) := P(x |y) of the parameter
x , given a specific realization y of the measured data.

Lemma

Under assumptions A1−A3, the likelihood (i.e., the conditional
probability of y , given x) is

P(y |x) = ν(y − F (x)).

Proof. The forward model y = F (x) + η defines the conditional probability
density

P(y |x) = py |x(y) = pF (x)+η|x(y)

= pη|x(y − F (x)) = pη(y − F (x)) = ν(y − F (x))

due to the assumptions η ⊥ x and η ∼ ν.



Theorem (Bayes’ theorem)

If assumptions A1−A3 hold and

Z (y) :=

∫
Rd

ν(y − F (x))π(x)dx > 0,

then

πy (x) =
1

Z (y)
ν(y − F (x))π(x). (1)

Proof. By the previous Lemma, the random variable (x , y) has the joint
density

P(x , y) = P(y |x)P(x) = ν(y − F (x))π(x),

since x ∼ π by assumption. Now, the density of the posterior distribution
is defined as

πy (x) = P(x |y) = P(x , y)
P(y)

=
ν(y − F (x))π(x)

P(y)
,

and the marginal density of y is given by

P(y) =
∫
Rd

P(x , y)dx = Z (y) > 0.



The condition that the marginal density P(y) of the observed data y
is positive means that the observed data is assumed to be consistent
with the probabilistic assumptions A1−A3.

Bayes’ formula (1) implies that the posterior distribution is absolutely
continuous with respect to the prior distribution, πy ≪ π, with the
Radon–Nikodym derivative

dπy

dπ
(x) =

ν(y − F (x))

Z (y)
.

This means that an event cannot have positive probability under the
posterior distribution if it does not have positive probability under the
prior distribution.

Bayes’ theorem can be generalized to infinite-dimensional spaces, cf.,
e.g., [Theorem 14, Dashti–Stuart 2017]. However, its formulation
involves more subtlety. There is no Lebesgue measure on
infinite-dimensional spaces, so the density of the posterior distribution
is stated with respect to the prior distribution instead.



Case study: source localization

Suppose that a particle with unit charge is located at some (unknown)
point x∗ ∈ (0, 1) and our goal is to locate it based on measurements of
voltage at the interval end points x = 0 and x = 1. The mathematical
model for the voltage at any point x ∈ [0, 1] is given by

y(x) =
1

|x∗ − x |
.

Our noisy measurements are modeled by y1 =
1

|x∗−0| + η1 and

y2 =
1

|x∗−1| + η2, where η1 and η2 are i.i.d. realizations of N (0, σ2). We

take x∗ = 1/π (ground truth) and σ = 0.2 in the numerical experiments.

The likelihood is given by P(y |x) ∝ exp(− 1
2σ2

∑1
j=0(yj+1 − 1

|x−j |)
2).

We consider the prior π(x) = χ(0,1)(x) =

{
1 if x ∈ (0, 1),

0 otherwise.

Then the posterior density is given by Bayes’ formula

πy (x) ∝ χ(0,1)(x) exp

(
− 1

2σ2

1∑
j=0

(
yj+1 −

1

|x − j |

)2)
.



Let us visualize the posterior density against the ground truth solution.
(See also files source.py / source.m on the course homepage!)
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We see that the posterior is localized around the true parameter value
(“ground truth”). Note that in this case, the prior hardly plays any role.

We could take, e.g., the mean or mode of the posterior density as a point
estimate for the unknown location of the point charge. We will discuss
more about Bayesian estimators next week.



What if we modify the problem so that we have access to only one
boundary measurement at x = 1?
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The resulting posterior distribution carries substantially more uncertainty
since we now have less measurement data!

Note that the posterior will generally be high-dimensional, meaning that it
is usually not possible to visually inspect the posterior density.
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Recap: Bayes’ formula for inverse problems

We are interested in the inverse problem of solving x ∈ Rd from

y = F (x) + η,

where y ∈ Rk is the measurement vector, F : Rd → Rk the forward
mapping, and η ∈ Rk is noise. We model x , y , and η as random variables.
Then we have:

Theorem (Bayes’ theorem)

We assume:

The noise η has the probability density ν on Rk .

The parameter x has the probability density π on Rd .

The random variables x and η are independent.

Then the likelihood is P(y |x) = ν(y − F (x)) and we can write

πy (x) := P(x |y) = P(y |x)P(x)
P(y)

=:
ν(y − F (x))π(x)

Z (y)
,

provided that Z (y) :=
∫
Rd ν(y − F (x))π(x)dx > 0.



Bayes’ formula:

πy (x) =
ν(y − F (x))π(x)

Z (y)
.

The prior model π(x) describes a priori information. It should assign
high probability to objects x which are typical in light of a priori
information, and low probability to unexpected x .

The likelihood model P(y |x) = ν(y − F (x)) processes measurement
information. It gives low probability to objects that produce simulated
data which is very different from the measured data.

The number Z (y) can be seen as a normalization constant.

The posterior distribution πy (x) = P(x |y) represents the updated
knowledge about the parameter of interest x , given the evidence y .

Since the normalization constant Z (y) is often not of interest in our
considerations, we frequently write the Bayes’ formula as

πy (x) ∝ ν(y − F (x))π(x),

where the symbol ∝ means equality up to a constant factor.



Case study: one-dimensional deconvolution

As motivation†, suppose that we are interested in estimating a signal
f : [0, 1] → R from noisy, blurred observations modeled as

yi = y(si ) =

∫ 1

0
K (si , t)f (t) dt + ηi , i ∈ {1, . . . , k},

where the blurring kernel is

K (s, t) = exp

(
− 1

2ω2
(s − t)2

)
, ω = 0.5,

and η ∈ Rk is measurement noise.

†We will consider the so-called “linear-Gaussian setting” as well as computational
techniques for sampling posterior densities in more detail in a couple of weeks.
Specifically, we will not consider the question of how to draw samples from the posterior
density today. We will revisit this question in more detail at a later time.



Discrete model

Midpoint rule:

yi =

∫ 1

0
K (si , t)f (t) dt + ηi ≈

1

d

d∑
j=1

K (si , tj)xj + ηi ,

where tj =
j
d − 1

2d and xj = f (tj) for j ∈ {1, . . . , d}.
If we have si =

i
k − 1

2k for i ∈ {1, . . . , k}, then we have the discrete linear
model

y = Ax + η, where Ai ,j =
1

d
K (si , tj).

To employ the Bayesian approach, we treat y , η, and x as random
variables. We assume that η is Gaussian noise with variance σ2I ,

η ∼ N (0, σ2I ), ν(η) ∝ exp
(
− 1

2σ2
∥η∥2

)
.

The likelihood is then given by

P(y |x) = ν(y − Ax) ∝ exp
(
− 1

2σ2
∥y − Ax∥2

)
.



Next, we have to choose a prior distribution for the unknown. Assume
that we know that x(0) = x(1) = 0 and that x is quite smooth, that is,
the value of x(t) in a point is more or less the same as in its neighbor. We
will then model the unknown as

xj =
1

2
(xj−1 + xj+1) +Wj , j = 1, . . . , k , (1)

where the term Wj follows a Gaussian distribution N (0, γ2).

The variance γ2 determines how much the reconstructed function x
departs from the smoothness model xj =

1
2(xj−1 + xj+1). We can write (1)

as

Lx = W , where L :=
1

2



2 −1
−1 2 −1

−1 2 −1
. . .

. . .
. . .

−1 2 −1
−1 2


.

This leads to the so-called smoothness prior

π(x) ∝ exp
(
− 1

2γ2
∥Lx∥2

)
.



Using Bayes’ formula, we get the posterior distribution

πy (x) ∝ exp
(
− 1

2σ2
∥y − Ax∥2 − 1

2γ2
∥Lx∥2

)
.

For the numerical experiment, we simulate measurements using the
(smooth) ground truth signal

f (t) = 8t3 − 16t2 + 8t,

which satisfies f (0) = f (1) = 0. The measurements are contaminated with
10% relative noise (σ ≈ 0.0618) and we set d = k = 120.

Let us draw samples from the prior and posterior. As comparison, we also
consider a posterior obtained using the white noise prior, i.e.,

πy
0 (x) ∝

(
− 1

2σ2
∥y − Ax∥2

)
πpr,0(x), πpr,0(x) ∝ exp

(
− 1

2γ2
∥x∥2

)
.

Remark: Let us discuss the implementational details (sampling from
Gaussian posterior distributions, formulae for the posterior means and
variances of Gaussian posterior distributions) for this example in more
detail next week.
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As the previous example illustrates, many practical problems tend to be
high-dimensional. The measurement model for the discretized
deconvolution example

y = Ax + η,

with A ∈ Rk×d , x ∈ Rd , and y , η ∈ Rk , where k corresponds to the
number of points s1, . . . , sk where we observe the signal and d corresponds
to the number of quadrature points t1, . . . , td discretizing the unknown
quantity x .

A grid with only k = d = 120 points already corresponds to a
120-dimensional posterior, so visualization of the posterior density is highly
nontrivial.

In practice, we are often interested in various point estimates, statistics,
samples, or the spread of the posterior distribution.



Bayesian estimators

The posterior distribution can be used to define estimators for the
conditional random variable x |y ∼ πy (x). In general, an estimator x̂ is any
function of the data y . The estimate x̂(y) is itself an Rd -valued random
variable whose properties give information about the usefulness and quality
of the estimator.

Bayesian estimators are those defined via the posterior distribution πy . We
present the two most prominent ones. The conditional mean (CM)
estimator, which is defined as the mean

x̂CM(y) = E[x |y ] =
∫
Rd

uπy (u)du

of the posterior distribution.

The maximum a posteriori (MAP) estimator, which is defined as the mode

x̂MAP(y) = argmax
u∈Rd

πy (u)

of the posterior distribution (if a unique mode exists).



One way to estimate spread are Bayesian credible sets. A level 1− α
credible set Cα with α ∈ (0, 1) satisfies

P(x ∈ Cα|y) =
∫
Cα

πy (u)du = 1− α.

For small α, it is a region that contains a large fraction of the posterior
mass.



Deconvolution example: posteriors with 2σ credibility envelopes.

0 0.2 0.4 0.6 0.8 1
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4
Samples drawn from the posterior with white noise prior,  = 0.2

ground truth

posterior mean  2

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2
Samples drawn from the posterior with smoothness prior,  = 0.0005

ground truth

posterior mean  2

0 0.2 0.4 0.6 0.8 1
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3
Samples drawn from the posterior with white noise prior,  = 0.6864

ground truth

posterior mean  2

0 0.2 0.4 0.6 0.8 1
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
Samples drawn from the posterior with smoothness prior,  = 0.0032

ground truth

posterior mean  2

0 0.2 0.4 0.6 0.8 1
-6

-4

-2

0

2

4

6

8
Samples drawn from the posterior with white noise prior,  = 2

ground truth

posterior mean  2

0 0.2 0.4 0.6 0.8 1
-1

-0.5

0

0.5

1

1.5

2

2.5
Samples drawn from the posterior with smoothness prior,  = 0.01

ground truth

posterior mean  2



Example. Assume that x ∈ R and that the posterior density is given by

πy (u) =
c

σ1
ϕ

(
u

σ1

)
+

1− c

σ2
ϕ

(
u − 1

σ2

)
,

where c ∈ (0, 1), σ1, σ2 > 0, and ϕ is the density of the standard normal

distribution, ϕ(u) = 1√
2π

exp
(
−u2

2

)
. In this case,

x̂CM = 1− c and x̂MAP =

{
0 if c/σ1 > (1− c)/σ2,

1 if c/σ1 < (1− c)/σ2.

If c = 1
2 and σ1, σ2 are small, the probability that x takes values near x̂CM

is small. On the other hand, if σ1 = cσ2, then c/σ1 = 1/σ2 > (1− c)/σ2,
so that x̂MAP = 0. If c is small, this is, however, a bad estimate for x ,
since the probability for x to take values near 0 is small. Last of all, we
notice that when the conditional mean gives a poor estimate, this is
reflected in a larger posterior variance

σ2 =

∫ ∞

−∞
(u − x̂CM)2πy (u)du.



We cannot say that one estimator is better than the other in all
applications.

Left: the density with σ1 = 0.08, σ = 0.04, and c = 1
2
. The CM estimate represents the

distribution poorly. Notice that when the CM gives a poor estimate, this is reflected in wider
variance (1 standard deviation is depicted as a red line). Right: the density with σ1 = 0.001,
σ2 = 0.1, and c = 0.01. The MAP gives a poor estimate since it is in an unlikely part of the
computational domain.



The maximum likelihood estimate

x̂ML(y) = argmax
u∈Rd

P(y |u)

answers the question: “which value of the unknown is most likely to
produce the measured data?”

The ML estimate is a non-Bayesian estimate, and in the case of ill-posed
inverse problems, often not useful. It is analogous to solving a classical
inverse problem without regularization.



Well-posedness

Assume that the posterior density is given by

πy (x) =
1

Z
g(x)π(x)

with likelihood g(x) and prior density π(x). Now consider an
approximation

πy
δ (x) =

1

Zδ
gδ(x)π(x)

resulting from an approximated likelihood gδ(x). Such an approximation
can result, for example, from an approximation Fδ of the forward operator
F or from perturbed data yδ.

The question is therefore:

does |g − gδ| = O(δ) imply d(πy , πy
δ ) = O(δ)

for small enough δ > 0 and some metric d(·, ·) on probability densities?



Well-posedness refers to the continuity of the method of obtaining
the posterior distribution with respect to different perturbations in the
parameters. In practice, this could mean for example the following: If
we have two measurements close to each other, does this mean the
corresponding posterior distributions are close in some metric? Recall
that ill-posed problems generally are discontinuous in this regard, i.e.,
without regularization, small difference in measurements can induce
arbitrarily large difference in reconstruction. Does the Bayesian
approach then regularize the problem? The answer is yes under
certain assumptions on the modeling.

We will proceed to show that, under certain conditions, πy and πy
δ

satisfy
d(πy , πy

δ ) ≤ cδ

for δ small enough, some c > 0, and some metric d(·, ·) on probability
densities.

To this end, we define two metrics for probability densities: the total
variation distance and the Hellinger distance.



Metrics for probability densities

We introduce the total variation distance and the Hellinger distance, both
of which have been used to show well-posedness results. Here, we will use
the Hellinger distance to establish the well-posedness of Bayesian inverse
problems.

Let π and π′ be the probability densities of two random variables with
values in Rd . We define the total variation distance between π and π′ as

dTV(π, π
′) =

1

2

∫
Rd

∣∣π(x)− π′(x)
∣∣ dx =

1

2
∥π − π′∥L1 ,

and the Hellinger distance between π and π′ as

dH(π, π
′) =

(
1

2

∫
Rd

∣∣∣√π(x)−
√

π′(x)
∣∣∣2 dx) 1

2

=
1√
2

∥∥∥√π −
√
π′
∥∥∥
L2
.

The normalization constants are chosen in such a way that the largest
possible distance between two densities is one, as can be seen in the
following lemma.



Lemma

For any two probability densites π and π′,

0 ≤ dTV(π, π
′) ≤ 1 and 0 ≤ dH(π, π

′) ≤ 1.

Proof. The lower bounds follow immediately from the definition of dTV
and dH. It remains to prove the upper bounds. To this end, we estimate

dTV(π, π
′) =

1

2

∫
Rd

|π(x)− π′(x)|dx ≤ 1

2

∫
Rd

π(x)dx +
1

2

∫
Rd

π′(x)dx = 1

and

dH(π, π
′)2 =

1

2

∫
Rd

∣∣∣√π(x)−
√
π′(x)

∣∣∣2 dx
=

1

2

∫
Rd

(
π(x) + π′(x)− 2

√
π(x)π′(x)

)
dx

≤ 1

2

∫
Rd

(
π(x) + π′(x)

)
dx = 1.



In what follows, we will establish bounds between Hellinger and total
variation distance and show how both distances can be used to bound the
difference of expected values with respect to two different densities; these
results will be useful in subsequent lectures.

Lemma

For any two probability densities π and π′, the total variation and
Hellinger distance are related by the inequalities

1√
2
dTV(π, π

′) ≤ dH(π, π
′) ≤

√
dTV(π, π′).



Proof. Using the Cauchy–Schwarz inequality and (a+ b)2 ≤ 2a2 + 2b2

leads to

dTV(π, π
′) =

1

2

∫
Rd

∣∣∣√π(x)−
√
π′(x)

∣∣∣ · ∣∣∣√π(x) +
√
π′(x)

∣∣∣ dx
≤

(
1

2

∫
Rd

∣∣∣√π(x)−
√
π′(x)

∣∣∣2 dx) 1
2
(
1

2

∫
Rd

∣∣∣√π(x) +
√

π′(x)
∣∣∣2 dx) 1

2

≤ dH(π, π
′)

(
1

2

∫
Rd

(
2π(x) + 2π′(x)

)
dx

) 1
2

=
√
2dH(π, π

′).

Notice that |
√
π(x)−

√
π′(x)| ≤ |

√
π(x) +

√
π′(x)|, since√

π(x),
√
π′(x) ≥ 0. Thus, we have

dH(π, π
′)2 =

1

2

∫
Rd

∣∣∣√π(x)−
√

π′(x)
∣∣∣2 dx

≤ 1

2

∫
Rd

∣∣∣√π(x)−
√

π′(x)
∣∣∣ · ∣∣∣√π(x) +

√
π′(x)

∣∣∣ dx
=

1

2

∫
Rd

∣∣π(x)− π′(x)
∣∣ dx = dTV(π, π

′).



The following lemmata show that if two densities are close in total
variation or Hellinger distance, expectations computed with respect to
both densities are also close.



Lemma

Let f be a real valued function on Rd such that
Eπ[f 2] + Eπ′

[f 2] =: f 22 < ∞, then∣∣∣Eπ[f ]− Eπ′
[f ]

∣∣∣ ≤ 2f2dH(π, π
′). (2)

Proof. We estimate∣∣∣Eπ[f ]− Eπ′
[f ]

∣∣∣ = ∣∣∣∣∫
Rd

f (x)
(
π(x)− π′(x)

)
dx

∣∣∣∣
=

∣∣∣∣∫
Rd

f (x)
(√

π(x)−
√

π′(x)
)(√

π(x) +
√

π′(x)
)
dx

∣∣∣∣
≤

(
1

2

∫
Rd

∣∣∣√π(x)−
√
π′(x)

∣∣∣2 dx) 1
2
(
2

∫
Rd

|f (x)|2
∣∣∣√π(x)+

√
π′(x)

∣∣∣2 dx) 1
2

≤ dH(π, π
′)

(
4

∫
Rd

|f (x)|2
(
π(x) + π′(x)

)
dx

) 1
2

= 2f2dH(π, π
′).



Lemma

Let f be a real valued function on Rd such that
supx∈Rd |f (x)| =: ∥f ∥∞ < ∞, then∣∣∣Eπ[f ]− Eπ′

[f ]
∣∣∣ ≤ 2∥f ∥∞dTV(π, π

′).

Moreover, the following variational characterization of the total variation
distance holds:

dTV(π, π
′) =

1

2
sup

∥f ∥∞≤1

∣∣∣Eπ[f ]− Eπ′
[f ]

∣∣∣ .
Remark: Note that the result for the Hellinger distance only assumes that
f is square integrable with respect to π and π′, whereas the result for the
total variation distance requires that f is bounded.



Proof. For the first part of the lemma, note that∣∣∣Eπ[f ]− Eπ′
[f ]

∣∣∣ = ∣∣∣ ∫
Rd

f (x)
(
π(x)− π′(x)

)
dx

∣∣∣
≤ 2∥f ∥∞ · 1

2

∫
Rd

|π(x)− π′(x)|dx = 2∥f ∥∞dTV(π, π
′).

This in particular shows that, for any f with ∥f ∥∞ = 1,

dTV(π, π
′) ≥ 1

2

∣∣Eπ[f ]− Eπ′
[f ]

∣∣.
Our goal now is to show a choice of f with ∥f ∥∞ = 1 that achieves

equality. Define f (x) := sign
(
π(x)− π′(x)

)
, so that

f (x)
(
π(x)− π′(x)

)
= |π(x)− π′(x)|. Then, ∥f ∥∞ = 1 and

dTV(π, π
′) =

1

2

∫
Rd

|π(x)− π′(x)|dx =
1

2

∫
Rd

f (x)
(
π(x)− π′(x)

)
dx

=
1

2

∣∣∣Eπ[f ]− Eπ′
[f ]

∣∣∣.
This completes the proof of the variational characterization.



Approximation theorem

We denote by

g(x) = ν(y − F (x)) and gδ(x) = ν(y − Fδ(x))

the likelihoods associated with F and Fδ, so that

πy (x) =
1

Z
g(x)π(x) and πy

δ (x) =
1

Zδ
gδ(x)π(x)

with corresponding normalizing constants Z ,Zδ > 0. We make the
following assumptions on g and gδ.

Assumption 1. There exist δ+ > 0, constants K1,K2 > 0, and a function
φ: Rd → R such that Eπ[φ2] ≤ K1 and for all δ ∈ (0, δ+),

1

∣∣∣√g(x)−
√

gδ(x)
∣∣∣ ≤ φ(x)δ for all x ∈ Rd ,

2

∣∣∣√g(x)
∣∣∣+ ∣∣∣√gδ(x)

∣∣∣ ≤ K2 for all x ∈ Rd .



Lemma

Under Assumption 1 there exist δ̃+ > 0, c1, c2 ∈ (0,+∞) such that

|Z − Zδ| ≤ c1δ and Z ,Zδ > c2, for δ ∈ (0, δ̃+).

Proof. Since Z =
∫
Rd g(x)π(x)dx and Zδ =

∫
Rd gδ(x)π(x)dx we have

|Z − Zδ| =
∣∣∣∣ ∫

Rd

(
g(x)− gδ(x)

)
π(x)dx

∣∣∣∣
≤

(∫
Rd

∣∣∣√g(x)−
√
gδ(x)

∣∣∣2π(x)dx) 1
2
(∫

Rd

∣∣∣√g(x) +
√
gδ(x)

∣∣∣2π(x)dx) 1
2

≤
(∫

Rd

δ2ϕ(x)2π(x)dx
) 1

2
(∫

Rd

K 2
2π(x)dx

) 1
2

≤
√

K1K2δ, δ ∈ (0, δ+).

And when δ ≤ δ̃+ := min{ Z
2
√
K1K2

, δ+}, we have

Zδ ≥ Z − |Z − Zδ| ≥
1

2
Z .

The lemma follows by taking c1 =
√
K1K2 and c2 =

1
2Z .



Theorem (Well-posedness)

Under Assumption 1, there exist δ̃+ > 0 and c > 0 such that

dH(π
y , πy

δ ) ≤ cδ for all δ ∈ (0, δ̃+).

Proof. We break the distance into two error parts, one caused by the
difference between Z and Zδ, the other caused by the difference between g
and gδ:

dH(π
y , πy

δ ) =
1√
2

∥∥∥√πy −
√
πy
δ

∥∥∥
L2

=
1√
2

∥∥∥√gπ

Z
−
√

gπ

Zδ
+

√
gπ

Zδ
−

√
gδπ

Zδ

∥∥∥
L2

≤ 1√
2

∥∥∥√gπ

Z
−
√

gπ

Zδ

∥∥∥
L2

+
1√
2

∥∥∥√gπ

Zδ
−
√

gδπ

Zδ

∥∥∥
L2
.



On the previous slide, we obtained

dH(π
y , πy

δ ) ≤
1√
2

∥∥∥√gπ

Z
−
√

gπ

Zδ

∥∥∥
L2

+
1√
2

∥∥∥√gπ

Zδ
−
√

gδπ

Zδ

∥∥∥
L2
.

Using the previous Lemma, for δ ∈ (0, δ̃+), we have for the first term∥∥∥√gπ

Z
−
√

gπ

Zδ

∥∥∥
L2

=
∣∣∣ 1√

Z
− 1√

Zδ

∣∣∣( ∫
Rd

g(x)π(x)dx
) 1

2

︸ ︷︷ ︸
=
√
Z

=

∣∣∣∣1−
√
Z√
Z δ

∣∣∣∣ = ∣∣∣∣√Zδ −
√
Z√

Z δ

∣∣∣∣ = |Z − Zδ|
(
√
Z +

√
Zδ)

√
Zδ

≤ c1
2c2

δ.

For the second term, we obtain∥∥∥√gπ

Zδ
−
√

gδπ

Zδ

∥∥∥
L2

=
1√
Zδ

(∫
Rd

∣∣∣√g(x)−
√

gδ(x)
∣∣∣2π(x)dx) 1

2 ≤
√

K1

c2
δ.

Therefore

dH(π
y , πy

δ ) ≤
1√
2

c1
2c2

δ +
1√
2

√
K1

c2
δ = cδ,

with c = 1√
2

c1
2c2

+ 1√
2

√
K1
c2

independent of δ.



Notice that, together with (2), i.e., the inequality∣∣∣Eπ[f ]− Eπ′
[f ]

∣∣∣ ≤ 2f2dH(π, π
′), f 22 := Eπ[f 2] + Eπ′

[f 2],

this theorem guarantees that expectations computed with respect to πy

and πy
δ are in the order of δ apart.
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Today’s lecture

Sampling from multivariate Gaussian distributions, inverse transform
sampling

Prior modeling

The linear Gaussian setting

Numerical example



Change of variables

Consider two random variables x ∈ Rn and y ∈ Rn which are related via
the formula

y = f (x),

where f is continuously differentiable and one-to-one (these conditions can
be relaxed).

Then, for any B ∈ B(Rn), it holds that

P(x ∈ B) = P(y ∈ f (B)) =

∫
f (B)

πy (y)dy =

∫
B
πy (f (x))| detDf (x)| dx ,

where Df (x) ∈ Rn×n is the Jacobian matrix of f . In consequence

πx(x) = πy (f (x))| detDf (x)|.



Sampling from Gaussian distributions

Suppose that we want to create a sample of realizations for a multivariate
Gaussian random variable x ∼ N (x0,C ), with the probability density

πx(x) =

(
1

(2π)n detC

)1/2

exp

(
− 1

2
(x − x0)

TC−1(x − x0)

)
.

Since C−1 is (by assumption) symmetric and positive definite, it has a
Cholesky decomposition

C−1 = RTR,

where R is an upper triangular matrix. The probability density of x can be
alternatively written as

πx(x) =

(
1

(2π)n detC

)1/2

exp

(
− 1

2
∥R(x − x0)∥2

)
.

Let us define a new random variable w = R(x − x0) ⇔ x = R−1w + x0.



On the last slide, we defined w = R(x − x0) ⇔ x = R−1w + x0, where
x ∼ N (x0,C ). The change of variables formula yields

πw (w) = πx(R
−1w + x0)| detR−1| = πx(R

−1w + x0)| detR|−1.

Noting that

1

detC
= det(C−1) = detRT detR = det(R)2,

we obtain

πw (w) =
1

(2π)n/2
exp

(
− 1

2
∥w∥2

)
.

In consequence, w is Gaussian white noise, i.e.,

w ∼ N (0, I ).



Coloring transformation

Let x ∼ N (x0,C ) (C p.d.) and w ∼ N (0, I ), with C−1 = RTR. Then it
holds that

w = R(x − x0) ⇔ x = R−1w + x0.

This is the basis of the coloring transformation:

1. Draw w ∈ Rn from N (0, I ).
2. A realization of x ∈ Rn from N (x0,C ) can be obtained via

x = R−1w + x0.

Remark: The function mvnrnd can be used to draw from multivariate nor-
mal distributions in MATLAB (numpy.random.multivariate normal in
Python, respectively). However, if the Cholesky factor R (or its inverse)
has been precomputed, it may be slightly more efficient to apply the
coloring transformation, e.g., as

x = R \ randn(n,1) + x0; (in MATLAB)

x = numpy.linalg.solve(R,numpy.random.normal(size=(n,1)))\

+ x0 (in Python)



Sampling from general univariate distributions

In order to sample a real-valued random variable x directly, we can use its
inverse distribution function. Let us assume that the probability density
π(x) of x is almost surely positive (this condition can be relaxed). Then,
the cumulative distribution function Φ: R → (0, 1) of x is defined by

Φ(t) = P(x < t) =

∫ t

−∞
π(x) dx .

In other words, Φ is the antiderivative of π. It follows from the
fundamental theorem of calculus that Φ is strictly increasing. In particular,
its inverse Φ−1: (0, 1) → R exists.



Now, we define a new random variable u = Φ(x). First, we observe that

P(u < t) = P(Φ(x) < t) = P(x < Φ−1(t))

for all t ∈ (0, 1). However, by definition of the cumulative distribution
function,

P(x < Φ−1(t)) =

∫ Φ−1(t)

−∞
π(x) dx =

∫ Φ−1(t)

−∞
Φ′(x) dx

= Φ(Φ−1(t))− lim
x→−∞

Φ(x) = t.

Hence P(u < t) = t, meaning that u ∼ U(0, 1) is distributed uniformly on
the interval [0, 1]. On the other hand, if u ∼ U(0, 1) is given, then we
obtain a random variable x with density π by setting x = Φ−1(u). This
reduces drawing a sample from the distribution π to drawing a sample
from a uniform distribution, which can for example be performed in
MATLAB using the rand command (numpy.random.uniform in Python).



Inverse transform sampling (“Golden rule”)

An algorithm for drawing from the density π with CDF Φ:

1. Draw t ∼ U(0, 1).
2. Calculate x = Φ−1(t).

If a closed form expression for the inverse CDF is not available, then a
computationally attractive formula for obtaining the value Φ−1(t) at a
point t ∈ (0, 1) is based on the identity

Φ−1(t) = inf{x | Φ(x) ≥ t}.

Remark: The above formula is the expression for the generalized inverse
CDF: the formula with the infimum is valid even in the general case of
weakly monotonic and right-continuous CDFs.



“Draw t ∼ U(0, 1). Then find smallest value of x such that Φ(x) ≥ t.”



“Draw t ∼ U(0, 1). Then find smallest value of x such that Φ(x) ≥ t.”



“Draw t ∼ U(0, 1). Then find smallest value of x such that Φ(x) ≥ t.”



“Draw t ∼ U(0, 1). Then find smallest value of x such that Φ(x) ≥ t.”



●●

“Draw t ∼ U(0, 1) and find the smallest value of x such that Φ(x) ≥ t.”



Remarks:

The inverse transform sampling method can be used to sample
univariate densities π(u). However, if the components of a
multivariate density are mutually independent, i.e.,
π(u1, . . . , un) = π(u1) · · ·π(un) holds a.e., then inverse transform
sampling can be used to generate samples componentwise.

Unfortunately, the components of multivariate posterior distributions
are generally not mutually independent. In the next two weeks, we
will discuss importance sampling and MCMC methods for sampling
high-dimensional (posterior) distributions. These methods are
applicable even when the components of multivariate distributions are
not mutually independent.



Example

Suppose that we have the PDF π(x) := (6x − 6x2)χ(0,1)(x). We can
design the following simple scheme based on inverse transform sampling to
draw samples from this distribution.

MATLAB implementation:

n = 1e5; % sample size

x = linspace(0,1);

p = @(x) 6*x-6*x.^2; % PDF

P = cumsum(p(x)); P = P/P(end); % "empirical" CDF of p

samples = [];

for iter = 1:n

u = rand; % realization of U(0,1)

ind = find(u <= P,1,’first’); % inverse CDF rule

samples = [samples,x(ind)]; % store sample

end

histogram(samples,’Normalization’,’pdf’); % draw a histogram

hold on, plot(x,p(x),’LineWidth’,3), legend(’samples’,’pdf’);

hold off;



Python implementation:

import numpy as np

import matplotlib.pyplot as plt

n = int(1e5) # sample size

x = np.linspace(0,1,1000)

p = lambda x: 6*x-6*x**2 # PDF

P = np.cumsum(p(x)); P = P/P[-1] # "empirical" CDF of p

samples = []

for iter in range(n):

u = np.random.uniform() # realization of U(0,1)

ind = np.where(u<=P)[0][0] # inverse CDF rule

samples.append(x[ind]) # store sample

plt.hist(samples,bins=’auto’,

density=True,label=’samples’) # draw a histogram

plt.plot(x,p(x),linewidth=2,label=’pdf’)

plt.legend()

plt.show()

# Thanks to Subodh Khanger for the Python implementation!



Figure: 105 samples drawn from the distribution given on the previous page
organized as a histogram.



Prior modeling

The prior density should reflect our beliefs on the unknown variable of
interest before taking the measurements into account.

Often, the prior knowledge is qualitative in nature, and transferring the
information into quantitative form expressed through a prior density can
be challenging.

The prior probability distribution should be concentrated on those values
of x we expect to see and assign a clearly higher probability to them than
to the unexpected ones.



Gaussian priors

Gaussian densities

π(x) =
1

(2π)d/2
√
detC

exp

(
−1

2
∥x −m∥2C−1

)
are the most used prior distribution in statistical inverse problems. They
are easy to construct and form a versatile class of distributions. They also
often lead to explicit estimators.

Random samples from a standard normal distribution N (0, I ) can usually
be generated directly, for example in MATLAB via randn or
numpy.random.normal in Python. Samples from a general normal
distribution N (m,C ) and from a wide class of other distributions can then
be derived from those, so that it is often not necessary to employ the
inverse transform method.



Let us consider an image. We divide
this region into n× n pixels and label
the pixels fi ,j for i , j ∈ {0, . . . , n− 1}.

Pi ,j := {(x , y); −1 + 2 j−1
n < x < −1 + 2 j

n , −1 + 2 i−1
n < y < −1 + 2 i

n}



It is convenient to reshape the
matrix/image (fi ,j) into a vector x of
length d = n2 so that

xin+j = fi ,j , i , j ∈ {0, . . . , n − 1}.

The image on the left illustrates the
new numbering corresponding to the
pixels.

Note that x = f.reshape((n*n,1)) and f = x.reshape((n,n)).

(In MATLAB: x = f(:) and f = reshape(x,n,n).)



As an example, consider a problem where the unknown is a
two-dimensional pixel image, arranged as a vector x ∈ Rd . The
components xj represent the intensity of the j th pixel. Since we consider
images it is natural to add a positivity constraint to our prior. Assuming
that xi and xj are independent for i ̸= j , the Gaussian white noise density
with positivity constraint is

π(x) ∝ χ+(x) exp

(
− 1

2α2
∥x∥2

)
,

where χ+(x) = 1 if xj > 0 for all j and χ+(x) = 0 otherwise.

Since we assumed that each component is independent of the others,
random draws can be performed componentwise.



Impulse priors

We assume again that the unknown is a two-dimensional pixel image.

Assume that our prior information is that the image contains small and
well localized objects in an almost constant background.

In such a case we could assume an impulse prior density, which means that
it gives a low average amplitude but allows outliers. The tail of such a
prior distribution is long, although the expected value is small.

Let x ∈ Rd represent the pixel image, where the component xj is the
intensity of the j th pixel. In what follows, xi and xj are assumed to be
independent for i ̸= j .

One example of an impulse prior is the ℓ1 prior. It has the density

π(x) =
(α
2

)d
exp(−α∥x∥1)

with α > 0, where the ℓ1-norm is defined as

∥x∥1 =
d∑

j=1

|xj |.



The impulse effect can be enhanced by choosing an even smaller power
p ∈ (0, 1) of the components of x , that is, using

∑d
j=1 |xj |

p instead of the

ℓ1-norm.

Another choice that produces images with few distinctly different pixels
and a low-amplitude background is the Cauchy density

π(x) =
(α
π

)n
n∏

j=1

1

1 + α2x2j

with α > 0.



Since we consider images we add a positivity constraint to our prior. For
the ℓ1 prior, we set

π(x) = αdχ+(x) exp(−α∥x∥1),
where χ+(x) = 1 if xj > 0 for all j and χ+(x) = 0 otherwise. The
components xj are independent and each have the cumulative distribution
function

Φ(t) = α

∫ t

0
e−αs ds = 1− e−αt for all t ≥ 0.

Now, we can draw samples of xj using

xj = Φ−1(uj) = − 1

α
ln(1− uj),

where the uj are independent random draws from the uniform distribution
U(0, 1).
Similarly, the components xj of the Cauchy prior with positivity constraint
are independent and have the CDF

Φ(t) =
2α

π

∫ t

0

1

1 + α2s2
ds =

2

π
arctanαt,

so that the inverse cumulative distribution is Φ−1(t) = 1
α tan

(
πt
2

)
.



Random draws from the white noise prior with positivity constraint, the
impulse (ℓ1) prior, and the Cauchy prior:
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Note that as along as all components are independent, drawing can be
done componentwise using inverse transform sampling. Here, for each
pixel xj , we draw tj from U(0, 1) and calculate xj = Φ−1(tj).



Discontinuities

Assume that we want to estimate a one-dimensional signal f : [0, 1] → R
with f (0) = 0 from indirect observations. Our prior knowledge is that the
signal is usually relatively stable but can have large jumps every now and
then. We may also have information on the size of the jumps or the rate
of their occurrence.

We obtain one possible prior by taking the finite difference approximation
of the derivative of f and assigning an impulsive noise distribution to it.
Let us discretize the interval [0, 1] by points tj = j/d and write xj = f (tj).
Consider the density

π(x) =
(α
π

)d
d∏

j=1

1

1 + α2(xj − xj−1)2
.

To draw samples from the above distribution we define new random
variables for the jumps

uj = xj − xj−1, j = 1, . . . , d .



These each have the density

π(u) =
(α
π

)d
d∏

j=1

1

1 + α2u2j
.

In particular, the uj are independent from each other, so that they can be
drawn from a one-dimensional Cauchy density. Also note that
x = (x1, . . . , xd)

T ∈ Rd satisfies x = Lu, where L ∈ Rd×d is a lower
triangular matrix with Lij = 1 for i ≥ j .† Generalizing the idea behind the
above prior leads, e.g., to total variation priors.

†Note that in MATLAB, it is more efficient to implement this as x = cumsum(u)

(similarly x = numpy.cumsum(u) in Python).



Hierarchical models

The prior density may depend on some parameter, such as variance or
mean. So far we have assumed that these parameters are known.
However, we often do not know how to choose them. If a parameter is not
known, it can be estimated as a part of the statistical inference problem on
the data. This leads to hierarchical models that include hypermodels for
the parameters defining the prior density.

Assume that the prior distribution depends on a parameter α, which is
assumed to be unknown. We then write the prior as a conditional density

P(x |α).

We model the unknown α with a hyperprior P(α) = πh(α) and write the
joint distribution of x and α as

P(x , α) = P(x |α)P(α).



Assuming we have a likelihood model P(y |x) for the measurement y , we
get the posterior density for x and α, given y , using Bayes’ formula

P(x , α|y) ∝ P(y |x , α)P(x , α) = P(y |x , α)P(x |α)P(α).

The hyperprior density πh may again depend on some hyperparameter α0.
The main reason for the use of a hyperprior model is that the construction
of the posterior is assumed to be more robust with respect to fixing a
value for the hyperparameter α0 than fixing a value for α.



The linear Gaussian setting

In this chapter we study the linear Gaussian setting, where the forward
map F is linear and both the prior distribution and the distribution of the
observational noise η are Gaussian.

For several reasons, it plays a central role in the study of inverse problems.

It arises frequently in applications, either directly or in the form of
posterior distributions that are asymptotically Gaussian in the large data
limit. It also allows computing explicit solutions which can be used to gain
a general understanding. Apart from that, many methods employed in a
nonlinear or non-Gaussian setting build on ideas from the linear Gaussian
case by performing linearization or Gaussian approximation.



Let us suppose that the unknown x ∈ Rd and the data y ∈ Rk follow the
relation

y = Ax + η, (1)

where
1 The forward model is linear, i.e., A ∈ Rk×d .
2 The prior distribution is Gaussian: x ∼ π = N (x0, Γpr), where Γpr is

symmetric and positive definite.
3 The noise is Gaussian: η ∼ ν = N (η0, Γn), where Γn is symmetric

and positive definite.
4 x and η are independent.

Theorem

Under assumptions 1–4, the posterior distribution corresponding to (1) is
Gaussian with x |y ∼ N (µpost, Γpost), where we have the posterior mean

µpost = (Γ−1
pr + ATΓ−1

n A)−1(ATΓ−1
n (y − η0) + Γ−1

pr x0)

and covariance
Γpost = (Γ−1

pr + ATΓ−1
n A)−1.



Proof. Noting that Γpost = (Γ−1
pr + ATΓ−1

n A)−1 and
µpost = Γpost(A

TΓ−1
n (y − η0) + Γ−1

pr x0), we obtain

πy (x) ∝ exp

(
− 1

2
(y − Ax − η0)

TΓ−1
n (y − Ax − η0)

)
exp

(
− 1

2
(x − x0)

TΓ−1
pr (x − x0)

)
= exp

(
− 1

2

(
yTΓ−1

n y − yTΓ−1
n Ax − yTΓ−1

n η0

− xTATΓ−1
n y + xTATΓ−1

n Ax + xTATΓ−1
n η0

− ηT
0 Γ

−1
n y + ηT

0 Γ
−1
n Ax + ηT

0 Γ
−1
n η0

+ xTΓ−1
pr x − 2xTΓ−1

pr x0 + xT
0 Γ−1

pr x0
))

= exp

(
− 1

2

(
xT(Γ−1

pr + ATΓ−1
n A)︸ ︷︷ ︸

=Γ−1
post

x − 2xT(ATΓ−1
n (y − η0) + Γ−1

pr x0)︸ ︷︷ ︸
=Γ−1

postµpost

))



Proof. Noting that Γpost = (Γ−1
pr + ATΓ−1

n A)−1 and
µpost = Γpost(A

TΓ−1
n (y − η0) + Γ−1

pr x0), we obtain

πy (x) ∝ exp

(
− 1

2
(y − Ax − η0)

TΓ−1
n (y − Ax − η0)

)
exp

(
− 1

2
(x − x0)

TΓ−1
pr (x − x0)

)
∝ exp

(
− 1

2

(
yTΓ−1

n y − xTATΓ−1
n y−yTΓ−1

n η0

− xTATΓ−1
n y + xTATΓ−1

n Ax + xTATΓ−1
n η0

−ηT
0 Γ

−1
n y + xTATΓ−1

n ηT
0 η

T
0 Γ

−1
n η0

+ xTΓ−1
pr x − 2xTΓ−1

pr x0+xT
0 Γ−1

pr x0
))

= exp

(
− 1

2

(
xT(Γ−1

pr + ATΓ−1
n A)︸ ︷︷ ︸

=Γ−1
post

x − 2xT(ATΓ−1
n (y − η0) + Γ−1

pr x0)︸ ︷︷ ︸
=Γ−1

postµpost

))



Proof. Noting that Γpost = (Γ−1
pr + ATΓ−1

n A)−1 and
µpost = Γpost(A

TΓ−1
n (y − η0) + Γ−1

pr x0), we obtain

πy (x) ∝ exp

(
− 1

2
(y − Ax − η0)

TΓ−1
n (y − Ax − η0)

)
exp

(
− 1

2
(x − x0)

TΓ−1
pr (x − x0)

)
∝ exp

(
− 1

2

(
yTΓ−1

n y − xTATΓ−1
n y−yTΓ−1

n η0

− xTATΓ−1
n y + xTATΓ−1

n Ax + xTATΓ−1
n η0

−ηT
0 Γ

−1
n y + xTATΓ−1

n ηT
0 η

T
0 Γ

−1
n η0

+ xTΓ−1
pr x − 2xTΓ−1

pr x0+xT
0 Γ−1

pr x0
))

= exp

(
− 1

2

(
xT(Γ−1

pr + ATΓ−1
n A)︸ ︷︷ ︸

=Γ−1
post

x − 2xT(ATΓ−1
n (y − η0) + Γ−1

pr x0)︸ ︷︷ ︸
=Γ−1

postµpost

))
.



On the previous slide, we arrived at

πy (x) ∝ exp

(
− 1

2

(
xTΓ−1

postx − 2xTΓ−1
postµpost

))
.

To finish the proof, we “complete the square” by multiplying and dividing by
exp(− 1

2
µT
postΓ

−1
postµpost). Since this term does not depend on x , we can absorb the

denominator into the implied coefficient to obtain

πy (x) ∝ exp

(
− 1

2

(
xTΓ−1

postx − 2xTΓ−1
postµpost

))
exp

(
− 1

2
µT
postΓ

−1
postµpost

)
= exp

(
− 1

2

(
xTΓ−1

postx − 2xTΓ−1
postµpost + µT

postΓ
−1
postµpost

))
= exp

(
− 1

2

(
(x − µpost)

TΓ−1
post(x − µpost) + 2xTΓ−1

postµpost − 2xTΓ−1
postµpost

))
= exp

(
− 1

2

(
(x − µpost)

TΓ−1
post(x − µpost)

))
,

as desired.



Remark: The previous proof shows that if x ∼ N (x0, Γpr) and
η ∼ N (η0, Γn), then

x |y ∼ N (µpost, Γpost),

where

Γpost = (Γ−1
pr + ATΓ−1

n A)−1 (2)

and

µpost = Γpost(A
TΓ−1

n (y − η0) + Γ−1
pr x0). (3)

One also has the following alternative representations for the posterior
mean

µpost = x0 + ΓprA
T(AΓprA

T + Γn)
−1(y − Ax0 − η0) (4)

and the posterior covariance

Γpost = Γpr − ΓprA
T(AΓprA

T + Γn)
−1AΓpr. (5)

Formula (5) can be proved, e.g., by using the
Sherman–Morrison–Woodbury formula on (2). Formula (4) can be proved
by plugging the formula (5) into (3) and simplifying the expression
(homework).

https://en.wikipedia.org/wiki/Woodbury_matrix_identity


As the posterior distribution is Gaussian, its mean and its mode coincide.
This means that the conditional mean estimator and the MAP estimator
coincide in the linear Gaussian setting.

Corollary

The conditional mean estimator and the maximum a posteriori estimator
coincide in the linear Gaussian setting and are given by
x̂CM = x̂MAP = µpost.



Example

Let Γn = γ2I , η0 = 0, Γpr = σ2I , x0 = 0, and set λ = γ2

σ2 . Then µpost

minimizes
Jλ(x) := ∥y − Ax∥2 + λ∥x∥2.

and therefore satisfies

(ATA+ λI )µpost = ATy . (6)

This example provides a connection between Bayesian inference and
variational regularization: Jλ can be interpreted as the objective functional
in a linear regression model with a regularization term λ∥x∥2. Equation
(6) for µpost is then exactly the normal equation. In the general case,
equation µpost = (Γ−1

pr +ATΓ−1
n A)−1(ATΓ−1

n (y − η0) + Γ−1
pr x0) can thus be

viewed as a generalized normal equation. This point of view helps to
understand the structure of Bayesian regularization by linking it to
well-understood optimization approaches for inverse problems.



Numerical example: one-dimensional deconvolution

Let us revisit the deconvolution example from last week: we are interested
in estimating a signal f : [0, 1] → R from noisy, blurred observations
modeled as

yi = y(si ) =

∫ 1

0
K (si , t)f (t) dt + ηi , i ∈ {1, . . . , k},

where the blurring kernel is

K (s, t) = exp

(
− 1

2ω2
(s − t)2

)
, ω = 0.5,

and we have Gaussian measurement noise η ∼ N (η0, Γnoise) with a
symmetric, positive definite covariance matrix Γnoise.

If si =
i
k − 1

2k for i ∈ {1, . . . , k} and we discretize the integral using the

midpoint rule with tj =
j
d − 1

2d and xj = f (tj) for j ∈ {1, . . . , d}, then we
have the discrete linear model

y = Ax + η, where Ai ,j =
1

d
K (si , tj).



Linear Gaussian setting

Suppose that we set a Gaussian prior for the unknown x ∼ N (x0, Γpr),
where Γpr is a symmetric, positive definite covariance matrix.

Now the posterior probability density of x given the measurement y is

πy (x) ∝ exp

(
− 1

2
(x − x)TΓ−1

post(x − x)

)
,

where we have the posterior mean

x = x0 + ΓprA
T(AΓprA

T + Γnoise)
−1(y − Ax0 − η0)

and posterior covariance

Γpost = Γpr − ΓprA
T(AΓprA

T + Γnoise)
−1AΓpr.



With additive noise η ∼ ν(η) = N (η0, σ
2I ), we have the likelihood

P(y |x) = ν(y − Ax) ∝ exp

(
− 1

2σ2
∥y − Ax − η0∥2

)
.

Let L = tridiag(−1, 2,−1) and consider the following priors

πpr,1(x) ∝ exp

(
− 1

2γ2
∥x − x0∥2

)
with covariance Γpr,1 = γ2I ;

πpr,2(F ) ∝ exp

(
− 1

2γ2
∥L(x − x0)∥2

)
= exp

(
− 1

2γ2
(x − x0)

T(LTL)(x − x0)

) with covariance
Γpr,2 = γ2(LTL)−1,

where x0 ∈ Rd is the prior mean (assumed to be the same in both cases).
Hence (from the previous page)

xj = x0 + Γpr,jA
TG−1

j (y − Ax0 − η0),

Γpost,j = Γpr,j − Γpr,jA
TG−1

j AΓpr,j ,

where Gj = AΓpr,jA
T + Γnoise and Γnoise = σ2I .



For the numerical experiment, we simulate measurements using the
(smooth) ground truth signal

f (t) = 8t3 − 16t2 + 8t,

which satisfies f (0) = f (1) = 0. The measurements are contaminated with
zero-mean 10% relative noise (σ ≈ 0.0618) and we set d = k = 120.

Remark: When we simulate the measurement data, it is important to
avoid the inverse crime. One way to do this is to generate the
measurement data using a denser grid and then interpolate the forward
solution onto a coarser computational grid, which is actually used to
compute the reconstruction.



Since both the prior and the posterior are now Gaussian, we can use the
coloring transformation to draw samples from the prior and posterior.

See the scripts deconv.m / deconv.py on the course webpage!



A note on marginal Gaussian distributions

Let
π(x) ∝ exp(−1

2(x − µ)TΓ−1(x − µ))

be a multivariate Gaussian PDF with mean µ and positive definite and
symmetric covariance matrix Γ.

Q: What is Γii?
A: σ2

i := Γii is the variance of the marginal distribution with PDF

π(xi ) =

∫
Rn−1

π(x1, . . . , xi , . . . , xn)dx1 · · · dxi−1 dxi+1 · · · dxn,

which is itself a (univariate) Gaussian PDF with mean µi .

This is why we can obtain the credibility envelopes by taking the square
roots of the diagonal values of Γpost,j .
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Recap: the linear Gaussian setting

Let the unknown x ∈ Rd and the data y ∈ Rk follow the relation

y = Ax + η, (1)

where
1 The forward model is linear, i.e., A ∈ Rk×d .
2 The prior distribution is Gaussian: x ∼ π = N (x0, Γpr), where Γpr is

symmetric and positive definite.
3 The noise is Gaussian: η ∼ ν = N (η0, Γn), where Γn is symmetric

and positive definite.
4 x and η are independent.

Theorem

Under assumptions 1–4, the posterior distribution corresponding to (1) is
Gaussian with x |y ∼ N (µpost, Γpost), where we have

µpost = (ATΓ−1
n A+ Γ−1

pr )
−1(ATΓ−1

n (y − η0) + Γ−1
pr x0),

Γpost = (ATΓ−1
n A+ Γ−1

pr )
−1.



Small noise limit of the posterior distribution

Now we assume that the observational noise has the distribution
η ∼ N (0, γ2Γ0) with γ > 0 and Γ0 is a fixed symmetric and positive
definite matrix, and consider the limiting behavior of the posterior mean
and covariance as γ → 0.

Substituting Γn = γ2Γ0 in the expressions for the posterior mean and
covariance yield

m(γ) :=
(
ATΓ−1

0 A+ γ2Γ−1
pr

)−1 (
ATΓ−1

0 y + γ2Γ−1
pr x0

)
, (2)

C (γ) := γ2
(
ATΓ−1

0 A+ γ2Γ−1
pr

)−1
. (3)

We distinguish between overdetermined, determined, and underdetermined
problems.



Overdetermined and determined case

Recall that x ∈ Rd and y ∈ Rk .

Theorem (Overdetermined and determined case)

Suppose in the linear Gaussian setting that Γn = γ2Γ0 with γ > 0, and
that Ker(A) = {0}.

1 If d < k, then the posterior distribution πy satisfies

πy ⇀ δm† as γ → 0,

where m† is the solution to the least squares problem

m† = argmin
u∈Rd

∥∥Γ− 1
2

0 (Au − y)
∥∥2.

2 If d = k, then we have

πy ⇀ δA−1y as γ → 0.



Proof. (i): As A has a trivial null space, Au ̸= 0, and thus

(u,ATΓ−1
0 Au) = (Au, Γ−1

0 Au) > 0

for all u ∈ Rd \ {0}. Therefore, the matrix ATΓ−1
0 A is invertible. Now we

can take γ to zero in (2) and (3) and get

m(γ) =
(
ATΓ−1

0 A+ γ2Γ−1
pr

)−1 (
ATΓ−1

0 y + γ2Γ−1
pr m0

)
γ→0→ (ATΓ−1

0 A)−1ATΓ−1
0 y =: m∗

as well as C (γ) = γ2
(
ATΓ−1

0 A+ γ2Γ−1
pr

)−1 γ → 0→ 0. This shows that
πy = N (m,C ) ⇀ N (m∗, 0) = δm∗ .

Due to the trivial null space of A, the minimizer m† of∥∥Γ− 1
2

0 (Au − y)
∥∥2

is the unique solution to the normal equation

ATΓ−1
0 Am† = ATΓ−1

0 y ,

which shows that m∗ = m†.
(ii): As in part (i), we have m(γ) → m∗ and C (γ) → 0. Since A is now
invertible, we obtain

m∗ =
(
A−1Γ0(A

T)−1
)
ATΓ−1

0 y = A−1y .



Reminder: singular value decomposition (SVD)

Let A ∈ Rk×d be any matrix. Then we can always write

A = UΛVT,

where U ∈ Rk×k , Λ ∈ Rk×d , and V ∈ Rd×d are matrices such that

UUT = UTU = Ik and VVT = VTV = Id (U and V are orthogonal matrices)

and

Λ =

 σ1

. . . Ok×(d−k)

σk

 if k < d ,

Λ =


σ1

. . .

σd

O(k−d)×d

 if k > d ,

and Λ = diag(σ1, . . . , σk) if k = d , where σ1 ≥ σ2 ≥ · · · ≥ σmin{k,d} ≥ 0 are called the
singular values of matrix A.



Underdetermined case

Both in the overdetermined and the determined case, the small noise limit
of the posterior distribution is a Dirac distribution. Note that the prior
plays no role in the limit.

This case is of particular relevance because practical inverse problems are
usually underdetermined. Here, we assume that the matrix A ∈ Rk×d has
Rank(A) = k < d and write

A
(∗)
=

(
A1 0

)
QT =

(
A1 0

) (
Q1 Q2

)T
= A1Q

T
1 (4)

with an invertible matrix A1 ∈ Rk×k and an orthogonal matrix
Q =

(
Q1 Q2

)
∈ Rd×d (i.e., QTQ = QQT = Id).

To get an idea of what is going on in the underdetermined case, we first
consider a basic example.

.(∗) To see this, consider the SVD A = UΛVT. Since k < d , we have Λ =:
(
Λ1 0

)
with Λ1 = diag(σ1, . . . , σk); thus A = UΛVT = U

(
Λ1 0

)
VT =

(
UΛ1 0

)
VT.

Finally, define A1 := UΛ1 (invertible) and Q := V (orthogonal).



Example. Assume that A =
(
A1 0

)
, η ∼ N (0, γ2Ik), and x ∼ N (0, Id).

Let

x =:

(
x1
x2

)
with x1 ∈ Rk and x2 ∈ Rd−k . Then, the data satisfies

y = Ax + η = A1x1 + η.

The posterior density is given by πy (x) = 1
Z exp(−J(x)), where

J(x) =
1

2γ2
∥y − A1x1∥2 +

1

2
∥x∥2

=

(
1

2γ2
∥y − A1x1∥2 +

1

2
∥x1∥2

)
+

1

2
∥x2∥2,

and Z is a normalization constant.



We can write it as a product

πy (x1, x2) =
1

Z̃
ν(y − A1x1)π1(x1) · π2(x2) =: πy

1 (x1)π2(x2)

where π1(x1) = N (0, Ik) and π2(x2) = N (0, Id−k) are Gaussian densities.
We can interpret the factor 1

Z̃
ν(y − A1x1)π1(x1) as posterior density πy

1

resulting from the determined problem y = A1x1 + η with prior density
x1 ∼ π1. By the small noise limit in the determined case, we know that
πy
1 ⇀ δA−1

1 y as γ → 0, whereas π2 remains constant. Since x1 and x2 are

independent, we would expect the posterior distribution to converge
weakly towards

πy (x1, x2) ⇀ δA−1
1 y (x1)π2(x2).

This means that in the limit, the data determines the posterior distribution
on a subspace of dimension k , whereas uncertainty remains in a subspace
of dimension d − k .



In order to generalize these observations, we need the following
decomposition of the identity.

Lemma

Let Γpr ∈ Rd×d be symmetric and positive definite and Q =
(
Q1 Q2

)
an

orthogonal matrix with Q1 ∈ Rd×k , Q2 ∈ Rd×(d−k). Then we have

Id = ΓprQ1(Q
T
1 ΓprQ1)

−1QT
1 + Q2(Q

T
2 Γ

−1
pr Q2)

−1QT
2 Γ

−1
pr . (5)

Proof. Let R denote the right-hand side of (5). Since Q is orthogonal, we
have QT

1 Q2 = QT
2 Q1 = 0, and thus

QT
1 (R − Id) = 0, QT

2 Γ
−1
pr (R − Id) = 0.

If B :=
(
Q1 Γ−1

pr Q2

)
has full rank, then the above identities, written as

BT(R − Id) = 0, imply R = I . B in turn is invertible, since

QTB =

(
QT

1

QT
2

)(
Q1 Γ−1

pr Q2

)
=

(
Ik QT

1 Γ
−1
pr Q2

0 QT
2 Γ

−1
pr Q2

)
is invertible and Q is orthogonal.



Theorem (Underdetermined case)

Suppose in the linear Gaussian setting that x ∼ N (x0, Γpr),
η ∼ N (0, γ2Γ0) with γ > 0, and that Rank(A) = k < d . Then

πy ⇀ N (m∗,C ∗),

where

m∗ = ΓprQ1(Q
T
1 ΓprQ1)

−1A−1
1 y + Q2(Q

T
2 Γ

−1
pr Q2)

−1QT
2 Γ

−1
pr x0,

C ∗ = Q2(Q
T
2 Γ

−1
pr Q2)

−1QT
2 .



Proof. Using the previous lemma, we can decompose x into

x = ΓprQ1(Q
T
1 ΓprQ1)

−1︸ ︷︷ ︸
=: S

QT
1 x︸︷︷︸

=: x1

+Q2(Q
T
2 Γ

−1
pr Q2)

−1︸ ︷︷ ︸
=: T

QT
2 Γ

−1
pr x︸ ︷︷ ︸

=: x2

= Sx1 + Tx2.

This way, x1 = QT
1 x and x2 = QT

2 Γ
−1
pr x are Gaussian, and†

x2 ∼ N (QT
2 Γ

−1
pr x0,Q

T
2 Γ

−1
pr Q2).

Now x1 and x2 are independent, since

Cov(x1, x2) = E[(x1 − E x1)(x2 − E x2)
T]

= QT
1 E[(x − E x)(x − E x)T]Γ−1

pr Q2

= QT
1 Q2 = 0,

where we used Cov(x , x) = E[(x − E x)(x − E x)T] = Γpr.
(∗)

.(∗) Note that, in general, uncorrelated random variables are not necessarily
independent. However, this assertion is true for jointly Gaussian random variables.

†Recall task 4 of exercise 6: if z ∼ N (m,C), then Lz + a ∼ N (Lm + a, LCLT).



By (4), we have

y = Ax + η = A1Q
T
1 x + η = A1x1 + η. (6)

As η ⊥ x , this implies x2 ⊥ y , x1 and hence P(x1, x2|y) = P(x1|y)P(x2).
The random variable x1 is Gaussian, so problem (6) satisfies the
assumptions of the linear Gaussian setting, and thus the posterior
distribution P(x1|y) is Gaussian. The small noise limit in the determined
case in turn shows that P(x1|y) ⇀ δA−1

1 y (x1) as γ → 0. As a consequence,

the limiting posterior distribution of (x1, x2)|y is

P(x1, x2|y) ⇀ δA−1
1 y (x1)P(x2).

Now, the mean and covariance of the limiting posterior distribution of x |y
are given by

m∗ = E[Sx1 + Tx2|y ] = SA−1
1 y + T E[x2]

= SA−1
1 y + TQT

2 Γ
−1
pr x0,

C ∗ = Var(Sx1 + Tx2|y) = Var(Sx1|y) + Var(Tx2)

= TQT
2 Γ

−1
pr Q2T

T = Q2(Q
T
2 Γ

−1
pr Q2)

−1QT
2 .



Q: How to interpret the limiting distribution in the underdetermined case?

A: Uncertainty remains in the subspace Ker(A) = Ran(Q2) of dimension
d − k , where the posterior is fully described by the prior.



Monte Carlo and Importance Sampling

Suppose that we are interested in estimating the integral

π(f ) := Eπ[f (x)] :=

∫
Rd

f (x)π(x) dx , (7)

where π is a probability density function and f : Rd → R is a quantity of
interest.

In the Bayesian framework, we have π(x) = 1
Z g(x)ρ(x), where Z is a

normalization constant, π is the posterior, g(x) := ν(y − F (x)) is the
likelihood, and ρ is the prior. Note that here we change the notations
slightly to improve readability.

In a non-Gaussian setting, we usually have to resort to approximating the
integral (7) by means of sampling. To this end, we will consider the
following techniques:

The Monte Carlo method (today’s lecture)

Importance sampling (today’s lecture)

Markov Chain Monte Carlo (MCMC) methods (next week’s lecture)



The Monte Carlo method

A simple technique to approximate the integral

π(f ) =

∫
Rd

f (x)π(x)dx , d ∈ Z+,

is to use a sample average. If we are able to draw the i.i.d. samples
x1, . . . , xn from the probability distribution corresponding to π, then one
can consider the Monte Carlo estimate

πMC
n (f ) :=

1

n

n∑
i=1

f (xi ).

Generally speaking, the Law of Large Numbers and the Central Limit
Theorem imply that

lim
n→∞

πMC
n (f ) = π(f ) and Var(πMC

n (f )− π(f )) ≈ Var(f (X ))

n
,

provided that f (X ) has finite mean and variance with X distributed
according to the probability distribution that corresponds to π.



Some properties of the Monte Carlo estimator

If we have the i.i.d. random samples x1, . . . , xn distributed according to π,
then π can be estimated by

πMC
n :=

1

n

n∑
i=1

δxi .

Theorem ([Theorem 5.1, Sanz-Alonso, Stuart, and Taeb 2018])

For f : Rd → R, denote ∥f ∥∞ := supx∈Rd |f (x)|. Then

sup
∥f ∥∞≤1

∣∣E[π(f )− πMC
n (f )

]∣∣ = 0 and sup
∥f ∥∞≤1

∣∣E[(π(f )− πMC
n (f ))2

]∣∣ ≤ 1

n
.

This shows that the Monte Carlo estimator πMC
n is an unbiased estimator

of π. While the convergence rate is slow with respect to n, the error is
independent of the dimension d or the properties of f , its supremum
notwithstanding.



Proof. Let x1, . . . , xn be i.i.d. according to π. Define

f̄ (x) = f (x)− π(f ).

To prove the first result, namely that the estimator is unbiased, note that

E
[
πMC
n (f )− π(f )

]
=

1

n

n∑
i=1

E[f (xi )− π(f )] =
1

n

n∑
i=1

(
π (f )− π (f )

)
=

1

n
· 0 = 0.

Therefore the supremum of its absolute value is also zero. For the second
result, which bounds the variance of the estimator, we observe that
E[f̄ ] = 0 and, then,

E
[(
πMC
n (f )− π(f )

)2]
=

1

n2

n∑
i=1

n∑
j=1

E
[
f̄ (xi ) f̄ (xj)

]
=

1

n2

n∑
i=1

E
[
f̄ (xi )

2
]
=

1

n
E
[
f̄ (x1)

2
]
=

1

n
Varπ[f ]

since xi are i.i.d.



In particular we have

E
[(
πMC
n (f )− π(f )

)2]
=

1

n
Varπ[f ] ≤

1

n
π(f 2) (8)

since
Varπ[f ] = π(f 2)− π(f )2 ≤ π(f 2).

Therefore

sup
∥f ∥∞≤1

∣∣∣E[(πMC
n (f )− π(f )

)2]∣∣∣ = sup
∥f ∥∞≤1

∣∣∣∣1nVarπ[f ]
∣∣∣∣ ≤ 1

n
.



Example

Suppose that we have the PDF π(x) := (6x − 6x2)χ(0,1)(x) and f (x) = x .
We can design the following simple scheme based on inverse transform
sampling to draw samples from this distribution.

MATLAB implementation:

n = 1e5; % sample size

x = linspace(0,1);

p = @(x) 6*x-6*x.^2; % PDF

P = cumsum(p(x)); P = P/P(end); % "empirical" CDF of p

samples = [];

for iter = 1:n

u = rand; % realization of U(0,1)

ind = find(u <= P,1,’first’); % inverse CDF rule

samples = [samples,x(ind)]; % store sample

end

histogram(samples,’Normalization’,’pdf’); % draw a histogram

hold on, plot(x,p(x),’LineWidth’,3), legend(’samples’,’pdf’);

hold off;



Python implementation:

import numpy as np

import matplotlib.pyplot as plt

n = int(1e5) # sample size

x = np.linspace(0,1,1000)

p = lambda x: 6*x-6*x**2 # PDF

P = np.cumsum(p(x)); P = P/P[-1] # "empirical" CDF of p

samples = []

for iter in range(n):

u = np.random.uniform() # realization of U(0,1)

ind = np.where(u<=P)[0][0] # inverse CDF rule

samples.append(x[ind]) # store sample

plt.hist(samples,bins=’auto’,

density=True,label=’samples’) # draw a histogram

plt.plot(x,p(x),linewidth=2,label=’pdf’)

plt.legend()

plt.show()

# Thanks to Subodh Khanger for the Python implementation!



Figure: 105 samples drawn from the distribution given on the previous page
organized as a histogram.
MATLAB:

>> mean(samples) % Monte Carlo estimate of the mean

ans =

0.5001

Python: np.mean(samples) # Monte Carlo estimate of the mean



Example

Use Monte Carlo to estimate the value of
∫
R2 χ{x2+y2<1}(x , y)dx dy .
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Figure: Left: 213 samples drawn from U((−1, 1)2). We calculate the value of the
integral as 4 · #samples inside unit disk

#samples inside unit disk+#samples outside unit disk . Right: the absolute

integration error for n = 2k , k ∈ {10, . . . , 30}.

Sample average at n = 230: 3.141725998371840.



Importance sampling

Let us focus on the setting

π(x) =
1

Z
g(x)ρ(x), (9)

where Z is a normalization constant. Unless π is some well-understood
distribution (e.g., Gaussian), the basic Monte Carlo method is generally
infeasible due to the difficulties associated with drawing samples from π
directly in the high-dimensional setting.

An alternative tactic is to use ρ as a proposal density, drawing samples
from it instead of π. By substituting the identity (9) into π(f ), we obtain

π(f ) =

∫
Rd

f (x)π(x)dx =

∫
Rd (f (x)g(x)) ρ(x) dx∫

Rd g(x) ρ(x)dx
.

If the samples x1, . . . , xn are now distributed i.i.d. according to ρ, we can
replace the numerator and denominator by their respective Monte Carlo
estimates:

πIS
n (f ) :=

n∑
i=1

wi f (xi ), wi :=
g(xi )∑n
j=1 g(xj)

(“importance weights”).

Here, the numbers w1, . . . ,wn are called the importance weights.



Similarly to the Monte Carlo estimator, we can define the particle
approximation measure

πIS
n :=

n∑
i=1

wiδxi , wi :=
g(xi )∑n
j=1 g(xj)

.

Theorem ([Theorem 5.4, Sanz-Alonso, Stuart, and Taeb 2018])

sup
∥f ∥∞≤1

∣∣E[πIS
n (f )− π(f )

]∣∣ ≤ 2
1 + dχ2(π∥ρ)

n
,

sup
∥f ∥∞≤1

∣∣E[(πIS
n (f )− π(f ))2

]∣∣ ≤ 4
1 + dχ2(π∥ρ)

n
,

where the χ2 divergence of two probability distributions π, π′ > 0 is
defined as

dχ2(π∥π′) :=

∫
Rd

(
π(x)

π′(x)
− 1

)2

π′(x) dx .

Unlike Monte Carlo, πIS
n is biased for π. The χ2 divergence between π and

ρ should not be too large for importance sampling to be accurate.



Proof. Let x1, . . . , xn be i.i.d. according to ρ. Given

π(x) =
1

Z
g(x)ρ(x) =

1

ρ(g)
g(x)ρ(x),

we obtain

dχ2(π∥ρ) =
∫
Rd

(
π(x)

ρ(x)
− 1

)2

ρ(x)dx =

∫
Rd

(
g(x)

Z
− 1

)2

ρ(x) dx

=

∫
Rd

g(x)2ρ(x)

Z 2
dx︸ ︷︷ ︸

= ρ(g2)

ρ(g)2

− 2
1

Z

∫
Rd

g(x)ρ(x) dx︸ ︷︷ ︸
=Z

+

∫
Rd

ρ(x)dx︸ ︷︷ ︸
=1

=
ρ(g2)

ρ(g)2
− 1.

Let ζ := ρ(g2)
ρ(g)2

. Noting that

π(f ) =
ρ(gf )

ρ(g)
≈ ρMC

n (gf )

ρMC
n (g)

= πIS
n (f ),

it follows that

πIS
n (f )− π(f ) = πIS

n (f )− ρ(gf )

ρ(g)

=
πIS
n (f )

(
ρ(g)− ρMC

n (g)
)

ρ(g)
−

(
ρ(gf )− ρMC

n (gf )
)

ρ(g)
.

(10)



Let us prove the second inequality first. We use the splitting of
πIS
n (f )− π(f ) into the sum of two terms from the previous slide together

with E[(ρ(f )− ρMC
n (f ))2] ≤ 1

nρ(f
2) (see (8)) and the inequality

(a− b)2 ≤ 2(a2 + b2) such that for all ∥f ∥∞ ≤ 1 we have |πIS
n (f )| ≤ 1 and∣∣∣E[(πIS

n (f )− π(f )
)2]∣∣∣

≤ 2

ρ(g)2

(
E
[(
πIS
n (f )

)2 (
ρ(g)− ρMC

n (g)
)2]

+ E
[(
ρ(gf )− ρMC

n (gf )
)2])

≤ 2

ρ(g)2

(
E
[(
ρ(g)− ρMC

n (g)
)2]

+ E
[(
ρ(gf )− ρMC

n (gf )
)2])

=
2

ρ(g)2n

(
Varρ [g ] + Varρ [gf ]

)
≤ 2

ρ(g)2n

(
ρ(g2) + ρ(g2f 2)

)
≤ 4

n

ρ(g2)

ρ(g)2
=

4ζ

n
.

Therefore, since ζ = dχ2(π∥ρ) + 1, we obtain

sup
|f |∞≤1

∣∣∣E[(πIS
n (f )− π(f )

)2]∣∣∣ ≤ 4
1 + dχ2(π∥ρ)

n
.



To prove the first inequality, we start again with the splitting (10), i.e.,

πIS
n (f )− π(f ) =

πIS
n (f )

(
ρ(g)− ρMC

n (g)
)

ρ(g)
−

(
ρ(gf )− ρMC

n (gf )
)

ρ(g)
.

The expectation of the second term vanishes since∣∣∣∣E[ρ(gf )− ρMC
n (gf )

ρ(g)

]∣∣∣∣ = 1

ρ(g)

∣∣E[ρ(gf )− ρMC
n (gf )

]∣∣ = 0.

The Cauchy–Schwarz inequality together with
E[(ρ(g)− ρMC

n (g))2] ≤ 1
nρ(g

2) (see (8)) and the previous result yield that∣∣E[πIS
n (f )− π(f )

]∣∣ = 1

ρ(g)

∣∣E[πIS
n (f )

(
ρ(g)− ρMC

n (g)
)]∣∣

≤ 1

ρ(g)

∣∣E[(πIS
n (f )− π(f )

) (
ρ(g)− ρMC

n (g)
)]

+ π(f )E
[(
ρ(g)− ρMC

n (g)
)]︸ ︷︷ ︸

=0

∣∣
≤ 1

ρ(g)

(
E
[(
πIS
n (f )− π(f )

)2])1/2 (
E
[(
ρ(g)− ρMC

n (g)
)2])1/2

≤ 1

ρ(g)

(
4ζ

n

)1/2(ρ(g2)

n

)1/2

=
2ζ

n
= 2

dχ2(π∥ρ) + 1

n
.



Case study: source localization

Suppose that a particle with unit charge is located at some (unknown)
point x∗ ∈ (0, 1) and our goal is to locate it based on measurements of
voltage at the interval end points x = 0 and x = 1. The mathematical
model for the voltage at any point x ∈ [0, 1] is given by

y(x) =
1

|x∗ − x |
.

Our noisy measurements are modeled by y1 =
1

|x∗−0| + η1 and

y2 =
1

|x∗−1| + η2, where η1 and η2 are i.i.d. realizations of N (0, σ2) with
σ = 0.2.

The likelihood is given by P(y |x) ∝ exp
(
− 1

2σ2

∑1
j=0

(
yj − 1

|x−j |
)2)

.

We consider the prior π(x) = χ(0,1)(x) =

{
1 if x ∈ (0, 1),

0 otherwise.

Then the posterior density is given by Bayes’ formula

πy (x) ∝ χ(0,1)(x) exp

(
− 1

2σ2

1∑
j=0

(
yj −

1

|x − j |

)2)
.



Computation of the CM estimate (MATLAB)

First, let us generate the measurements.
MATLAB:
format long

x_ast = 1/pi; % Fix "ground truth", i.e., particle location

sigma = .2; % Std for noise

v = 1./abs(x_ast-[0,1]); % Measurements at end points

v = v+sigma*randn(1,2); % Add noise

x = linspace(0,1); % Discretize the unit interval

% Define the (unnormalized) posterior density

p = @(x) exp(-1/(2*sigma^2)*((v(1)-1./abs(x-0)).^2+ ...

(v(2)-1./abs(x-1)).^2));



%% Monte Carlo

n = 1e5;

P = cumsum(p(x)); P = P/P(end); % "empirical" CDF

% For the Monte Carlo method, we need to sample the posterior.

% We do this using inverse transform sampling.

samples = [];

for ii = 1:n

u = rand; % realization of U(0,1)

ind = find(u <= P,1,’first’); % inverse CDF rule

samples = [samples,x(ind)]; % store sample

end

% Sanity check: plot samples in histogram.

histogram(samples,’Normalization’,’probability’, ...

’BinWidth’,.01), axis([0,1,0,.25]);

hold on;

plot(x,p(x)/sum(p(x)),’LineWidth’,2), hold off;

title([num2str(n),’ samples from the posterior density’]);

mean(samples) % Monte Carlo estimate



%% Importance sampling

n = 1e5;

samples = rand(1,n); % Sample our prior, i.e., U(0,1)

weights = p(samples); % Compute the importance weights

weights = weights/sum(weights); % Normalize the weights

% Compute the IS estimate

dot(weights,samples)



Computation of the CM estimate (Python)

First, let us generate the measurements.
Python:
import numpy as np

x_ast = 1/np.pi # Fix "ground truth", i.e., particle location

sigma = .2 # Std for noise

v = 1/np.abs(x_ast-np.array([0,1])) # Measurements at

# end points

v = v+sigma*np.random.normal(size=v.shape) # Add noise

x = np.linspace(0,1) # Discretize the unit interval

x = x[1:-1] # Drop end points to avoid numerical issues...

# Define the (unnormalized) posterior density

p = lambda x: (x > 0) * (x < 1) *\

np.exp(-1/(2*sigma**2)*((v[0]-1/np.abs(x-0))**2\

+(v[1]-1/np.abs(x-1))**2))



## Monte Carlo

n = int(1e5)

P = np.cumsum(p(x)); P = P/P[-1] # "empirical" CDF

# For the Monte Carlo method, we need to sample the posterior.

# We do this using inverse transform sampling.

samples = []

for ii in range(n):

u = np.random.uniform() # realization of U(0,1)

ind = np.where(u<=P)[0][0] # inverse CDF rule

samples.append(x[ind]) # store sample

# Compute the Monte Carlo estimate

print(np.mean(samples))



## Importance sampling

n = int(1e5)

samples = np.random.uniform(size=(1,n)) # Sample our prior,

# i.e., U(0,1)

weights = p(samples) # Compute the importance weights

weights = weights/np.sum(weights) # Normalize the weights

# Compute the IS estimate

print(np.sum(weights*samples))
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estimates vs. the analytic CM estimate
and ground truth.

Monte Carlo estimate Ground truth
0.328444646464649 0.318309886183791

Importance sampling estimate Analytic CM estimate
0.328340981036045 0.328421554655529



What if we modify the problem so that we have access to only one
boundary measurement at x = 1?

Monte Carlo estimate
0.349233333333324

Importance sampling estimate
0.349743141888635

Analytic CM estimate
0.349675613936670

Ground truth
0.318309886183791

The problem becomes substantially more ill-posed!

N.B. In the implementation above, a discretized version of the inverse
transform sampling rule was used to obtain the MC estimate. The
repeating digits are an artifact of the relatively coarse discretization used
in the actual implementation.
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The content of these slides follows roughly the material presented in the
following monographs.

D. Calvetti and E. Somersalo. Introduction to Bayesian Scientific
Computing – Ten Lectures on Subjective Computing. 2007.

J. Kaipio and E. Somersalo. Statistical and Computational Inverse
Problems. 2005.



Discrete time Markov chains

A sequence {Xk}∞k=0 of random variables is called a discrete time Markov
chain if the probability distribution of any Xk+1 depends only on the
previous state Xk :

π(xk+1 | x0, . . . , xk) = π(xk+1 | xk).

Suppose in addition that there exists a probability transition kernel q(x , y)
such that

π(xk+1 | xk) = q(xk , xk+1).

Then the Markov chain is called time invariant (or time homogeneous)
since the kernel q is independent of the time k.

Remark. We assume here and in the sequel that transition kernels satisfy

x 7→
∫
B q(x , y) dy is measurable for all x ∈ Rd and B ∈ B(Rd);

B 7→
∫
B q(x , y)dy is a probability distribution for all x ∈ Rd ,

B ∈ B(Rd). In particular, P(Y ∈ B | X = x) =
∫
B q(x , y) dy and∫

Rd q(x , y) dy = 1.



Let X be a random variable with probability density p(x).

Let q(x , y) be an arbitrary transition kernel used to generate a new
random variable Y given X = x , i.e.,

π(y | x) = q(x , y).

The probability density of Y can be found through marginalization:

π(y) =

∫
Rd

π(y | x)p(x) dx =

∫
Rd

q(x , y)p(x) dx .

If the probability density of Y is equal to the probability density of X ,∫
Rd

q(x , y)p(x)dx = p(y),

then we call p an invariant density of the transition kernel q.



Definition (Irreducible transition kernel)

The transition kernel q is irreducible if, regardless of the starting point, the
Markov chain generated by q can visit any set of positive measure with
positive probability.

Definition (Periodic transition kernel)

The transition kernel q is periodic if, for some integer m ≥ 2, there is a set
of disjoint nonempty sets {E1, . . . ,Em} ⊂ Rd such that for all
j ∈ {1, . . . ,m} and for all x ∈ Ej :

P(Y ∈ Emod(j ,m)+1|X = x) =

∫
Emod(j,m)+1

q(x , y) dy = 1.

That is, the Markov chain generated by q remains in a periodic loop
forever.

Definition (Aperiodic transition kernel)

The transition kernel q is aperiodic if it is not periodic.



Theorem

Let {Xk}∞k=0 be a time invariant Markov chain with the transition kernel
q, i.e.,

π(xk+1 | xk) = q(xk , xk+1).

Assume that p is an invariant density of q and the following technical
conditions hold:

q is irreducible;

q is aperiodic.

Then for all x0 ∈ Rd and any B ∈ B(Rd), it holds that

lim
N→∞

P(XN ∈ B | X0 = x0) =

∫
B
p(x) dx .

Moreover, for any f ∈ L1p(Rd),

lim
N→∞

1

N

N∑
j=1

f (Xj) =

∫
Rd

f (x)p(x) dx a.s.



Suppose we want to sample some probability density p and we know that
it is invariant with respect to transition kernel q. Then we can proceed as
follows:

1 Select starting point x0 and set k = 0.

2 Draw xk+1 from q(xk , xk+1).

3 Set k ← k + 1 and return to step 2.

The previous theorem implies that the sample {xk}Nk=0 is asymptotically
distributed according to p as N →∞.

This raises the question: given a probability density p, how do you find a
kernel q such that p is its invariant density?

The Metropolis–Hastings algorithm is a method to construct such a kernel!



Derivation of the Metropolis–Hastings algorithm

We are interested in obtaining samples from the probability density p.
Consider the following Markov process: if you are currently situated at
some x ∈ Rd , either

1 stay put at x with the probability r(x), 0 ≤ r(x) ≤ 1, or

2 move away from x using a transition kernel R(x , y) otherwise.

Here, both R(x , y) and r(x) are as yet undetermined—the trick will be to
calibrate these in order to find a kernel such that p is its invariant density
as discussed on the previous slide.

Since R is a transition kernel, y 7→ R(x , y) is a probability density and
hence ∫

Rd

R(x , y) dy = 1 for all x ∈ Rd .

Denote by A the event of moving away from x and by ¬A the event of
not moving. Clearly

P(A) = 1− r(x) and P(¬A) = r(x).



Given a current state X = x , we want to know what is the probability
density of Y generated by the aforementioned strategy. Let B ∈ B(Rd)
and consider the probability of the event Y ∈ B. Then

P(Y ∈ B | X = x) = P(Y ∈ B | X = x ,A)P(A) (move away from x)

+ P(Y ∈ B | X = x ,¬A)P(¬A). (stay put at x)

The probability of arriving in B through a move is

P(Y ∈ B | X = x ,A) =
∫
B
R(x , y) dy .

The only way to arrive in B without moving is if x is already in B:

P(Y ∈ B | X = x ,¬A) = χB(x) =

{
1 if x ∈ B,

0 if x ̸∈ B.

Hence

P(Y ∈ B | X = x) =

∫
B

=:K(x ,y)︷ ︸︸ ︷
(1− r(x))R(x , y)dy + r(x)χB(x)

=

∫
B
K (x , y) dy + r(x)χB(x).



The probability of Y ∈ B can be obtained by marginalizing over x :

P(Y ∈ B) =

∫
Rd

P(Y ∈ B | X = x)p(x)dx

=

∫
Rd

(∫
B
K (x , y) dy

)
p(x)dx +

∫
Rd

r(x)χB(x)p(x) dx

=

∫
B

(∫
Rd

K (x , y)p(x) dx

)
dy +

∫
B
r(x)p(x)dx

=

∫
B

(∫
Rd

K (x , y)p(x) dx + r(y)p(y)

)
dy

=

∫
B

(∫
Rd

K (x , y)p(x) dx −
∫
Rd

K (y , x)p(y) dx + p(y)

)
dy ,

where we used
∫
Rd K (y , x) dx = (1− r(y))

∫
Rd R(y , x) dx = 1− r(y).

If the balance equation∫
Rd

p(y)K (y , x)dx =

∫
Rd

p(x)K (x , y) dx (1)

holds, then

P(Y ∈ B) =

∫
B
p(y) dy as desired.



The Metropolis–Hastings algorithm is a technique for finding a kernel K
that satisfies the detailed balance equation

p(y)K (y , x) = p(x)K (x , y),

which implies (1). Let us start with a proposal density q(x , y), chosen so
that generating a Markov chain with it is easy. (For this reason, a
Gaussian kernel is a very popular choice.) There are three separate cases:

1 If p(y)q(y , x) = p(x)q(x , y), then set r(x) = 0,
R(x , y) = K (x , y) = q(x , y) and the previous analysis ensures that p
is an invariant density for kernel q.

2 If p(y)q(y , x) < p(x)q(x , y), then define the kernel K to be

K (x , y) = α(x , y)q(x , y),

where α is chosen s.t. p(y)α(y , x)q(y , x) = p(x)α(x , y)q(x , y). We
can make the selection

α(y , x) = 1 and α(x , y) =
p(y)q(y , x)

p(x)q(x , y)
< 1.

3 If p(y)q(y , x) > p(x)q(x , y), then in complete analogy to the above:

α(x , y) = 1 and α(y , x) =
p(x)q(x , y)

p(y)q(y , x)
< 1.



In summary, we define K as

K (x , y) = α(x , y)q(x , y), α(x , y) = min

{
1,

p(y)q(y , x)

p(x)q(x , y)

}
.

Even though the expression for K seems complicated, it turns out that the
drawing can be performed according to the following procedure.



Metropolis–Hastings algorithm

1 Choose x (0) ∈ Rd and set k = 0.

2 Given x = x (k), draw y using the transition kernel q(x , y) of your
choosing.

3 Calculate the acceptance ratio

α(x , y) = min

{
1,

p(y)q(y , x)

p(x)q(x , y)

}
.

4 Flip the α-coin: draw t ∼ U([0, 1]). If α > t, set x (k+1) = y ,
otherwise stay put at x and set x (k+1) = x (k).

5 Set k ← k + 1 and return to step 2.

Remark. Note that due to the form of α
’
both the target p and the

proposal density q can be unnormalized within the Metropolis–Hastings
algorithm.



Why does this work?

Let us focus on the main loop of the Metropolis–Hastings algorithm:

Given x , draw y using the transition kernel q(x , y).

Calculate the acceptance ratio α(x , y) = min
{
1, p(y)q(x ,y)p(x)q(x ,y)

}
.

Draw t ∼ U([0, 1]). If α > t, accept y , otherwise stay put at x .

Recall that A was the event of moving in the Markov chain. Then

P(A|y , x) = “probability of accepting transition” = α(x , y),

P(y |x) = “probability of drawing y” = q(x , y).

Then

“probability of accepted y” = P(A, y |x)
= P(A|y , x)P(y |x)
= α(x , y)q(x , y) = K (x , y),

as desired.



Example

Let us consider sampling from the density

p(x1, x2) ∝ exp(−10(x21 − x2)
2 − (x2 − 1

4)
4).

As the proposal distribution, we use the random walk model Y = X +W ,
W ∼ N (0, γ2I ), with the kernel

q(x , y) ∝ exp

(
− 1

2γ2
∥x − y∥2

)
.

We draw 5000 samples from the probability distribution with density p
using three different step sizes: γ = 0.1, γ = 0.5, and γ = 2.



Random walk Metropolis-Hastings with 5000 samples,  = 0.1, acceptance ratio 0.7764
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Random walk Metropolis-Hastings with 5000 samples,  = 0.5, acceptance ratio 0.3272
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Random walk Metropolis-Hastings with 5000 samples,  = 2, acceptance ratio 0.058
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Derivation of the single component Gibbs sampler

We continue to be interested in sampling the distribution with density
p(x). The single component Gibbs sampler is based on the same Markov
process that was introduced in the derivation of Metropolis–Hastings: if
you are currently situated at some x ∈ Rd , either

1 stay put at x with the probability r(x), 0 ≤ r(x) ≤ 1, or
2 move away from x using a transition kernel R(x , y) otherwise.

Recall also the definition we made in the Metropolis–Hastings derivation:

K (x , y) = (1− r(x))R(x , y).

Suppose that x is a d-variate random variable. For the single component
Gibbs sampler, we set r(x) = 0 (moving is obligatory) and define the
transition kernel

K (x , y) = R(x , y) =
d∏

i=1

p(yi | y1, . . . , yi−1, xi+1, . . . , xd),

where p(yi | y1, . . . , yi−1, xi+1, . . . , xd) =
p(y1, . . . , yi , xi+1, . . . , xd)∫

R p(y1, . . . , yi , xi+1, . . . , xd) dyi
.



This transition kernel K does not in general satisfy the detailed balance
equation, but it does satisfy the standard balance equation, which is
sufficient to ensure that p is the invariant density of the Markov chain (see
derivation of the Metropolis–Hastings method).

Theorem

The transition kernel

K (x , y) =
d∏

i=1

p(yi | y1, . . . , yi−1, xi+1, . . . , xd),

where p(yi | y1, . . . , yi−1, xi+1, . . . , xd) =
p(y1, . . . , yi , xi+1, . . . , xd)∫

R p(y1, . . . , yi , xi+1, . . . , xd) dyi
,

satisfies ∫
Rd

p(y)K (y , x)dx =

∫
Rd

p(x)K (x , y) dx .

Remark. We only consider the single component Gibbs sampler here. The
Gibbs sampler can be written in slightly more general form; see, e.g.,
[chapter 3.6.3, Kaipio and Somersalo 2005].



Proof. We begin with the left-hand side of the balance equation and consider∫
Rd K(y , x)dx . We integrate inductively over the variables in the order xd , xd−1, . . . , x1:∫

R
K(y , x)dxd =

∫
R

( d∏
i=1

p(xi |x1, . . . , xi−1, yi+1, . . . , yd)

)
dxd

=

( d−1∏
i=1

p(xi |x1, . . . , xi−1, yi+1, . . . , yd)

)∫
R
p(xd |x1, . . . , xd−1) dxd︸ ︷︷ ︸

=1

=
d−1∏
i=1

p(xi |x1, . . . , xi−1, yi+1, . . . , yd)

⇒
∫
R

∫
R
K(y , x)dxd dxd−1 =

∫
R

( d−1∏
i=1

p(xi |x1, . . . , xi−1, yi+1, . . . , yd)

)
dxd−1

=

( d−2∏
i=1

p(xi |x1, . . . , xi−1, yi+1, . . . , yd)

)∫
R
p(xd−1|x1, . . . , xd−1, yd)dxd−1︸ ︷︷ ︸

=1

=
d−2∏
i=1

p(xi |x1, . . . , xi−1, yi+1, . . . , yd) ⇒ . . .

Proceeding by inductively integrating over xd−2, xd−3, . . . , x1, we obtain∫
Rd K(y , x) dx = 1 and thus

∫
Rd p(y)K(y , x) dx = p(y)

∫
Rd K(y , x) dx = p(y).



Next we consider the right-hand side of the balance equation. Recall that
K(x , y) =

∏d
i=1 p(yi |y1, . . . , yi−1, xi+1 . . . , xd). We integrate inductively over the

variables, this time in the order x1, . . . , xd :∫
R
p(x)K(x , y)dx1 = K(x , y)

∫
R
p(x1, x2, . . . , xd) dx1 (K is independent of x1)

=

( d∏
i=2

p(yi |y1, . . . , yi−1, xi+1, . . . , xd)

)
p(y1|x2, . . . , xd)︸ ︷︷ ︸
=

p(y1,x2,...,xd )∫
R p(x1,x2,...,xd ) dx1

∫
R
p(x1, x2, . . . , xd) dx1

=

( d∏
i=2

p(yi |y1, . . . , yi−1, xi+1, . . . , xd)

)
p(y1, x2, . . . , xd)

⇒
∫
R

∫
R
p(x)K(x , y) dx1 dx2 =

∫
R

( d∏
i=2

p(yi |y1, . . . , yi−1, xi+1, . . . , xd)

)
p(y1, x2, . . . , xd) dx2

=

( d∏
i=3

p(yi |y1, . . . , yi−1, xi+1, . . . , xd)

)
p(y2|y1, x3, . . . , xd)︸ ︷︷ ︸
=

p(y1,y2,x3,...,xd )∫
R p(y1,x2,x3,...,xd ) dx2

∫
R
p(y1, x2, . . . , xd)dx2

=

( d∏
i=3

p(yi |y1, . . . , yi−1, xi+1, . . . , xd)

)
p(y1, y2, x3, . . . , xd) ⇒ . . .

Proceeding by inductively integrating over x3, . . . , xd , we eventually obtain∫
Rd p(x)K(x , y)dx = p(y). Therefore the balance equation holds.



Single component Gibbs sampler

1 Choose the initial value x (0) ∈ Rd and set k = 0.
2 Draw the next sample as follows:

(i) Set x = x (k) and j = 1.
(ii) Draw t ∈ R from the one-dimensional distribution

p(t | y1, . . . , yj−1, xj+1, . . . , xd) ∝ p(y1, . . . , yj−1, t, xj+1, . . . , xd)

and set yj = t.
(iii) If j = d , set y = (y1, . . . , yd) and terminate the inner loop. Otherwise,

set j ← j + 1 and return to step (ii).

3 Set x (k+1) = y , increase k ← k + 1 and return to step 2.



Example

Let us consider the density from before

p(x1, x2) =
1

Z
exp(−10(x21 − x2)

2 − (x2 − 1
4)

4),

where the normalizing constant is Z = 1.1813 . . .

This time we use the Gibbs sampler. To sample the univariate densities
that arise in the process, we use inverse transform sampling. In this case,
the explicit algorithm we use is written below.

Fix x (0) ∈ R2 and set x = x (0);

For k = 1, . . . ,N, do

Calculate Φ1(t) =
∫ t

−∞ p(x1, x2)dx1;

Draw u ∼ U([0, 1]), set x1 = Φ−1
1 (u);

Calculate Φ2(t) =
∫ t

−∞ p(x1, x2)dx2;

Draw u ∼ U([0, 1]), set x2 = Φ−1
2 (u);

Set x (k) = x .

End



Single component Gibbs sampler with 5000 samples
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Computational remarks about MCMC
As a general rule of thumb, one should aim at roughly 30%
acceptance rates when using Gaussian (or close to Gaussian) proposal
and target densities with MH.
It usually takes the Markov chain a number of iterations to reach the
steady state. To this end, it is usually advisable to discard the first
N0 obtained samples since they may not be representative of the
target distribution—this is the so-called “burn-in” period. The length
of the burn-in period varies depending on the application, but one
might consider throwing away the first ∼ 5− 10% steps for a
sufficiently large sample size as an example.
In MH, using a Gaussian kernel (e.g., random walk
Metropolis–Hastings) is a popular choice due to the ease of
implementation. While it is a safe choice, it does not take into
account the form of the posterior density. To increase efficiency, it is
advisable to take the shape of the density into account when
designing the proposal density. In the high-dimensional setting, this is
especially useful if the posterior density is anisotropic (stretched in
some directions).



Computational remarks about MCMC

The proposal distribution in MH can also be updated while the
sampling algorithm moves around the posterior density. This process
is called adaptation.

Visual assessment: we are aiming for independent sample points,
where the sample histories look like a “fuzzy worm”. One could aim
at something like the Gaussian white noise signal below:
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More quantitatively, the independence of consecutive draws can be
estimated from the sample itself by computing its (sample-based)
autocovariance.



A note on convergence

The success of the Metropolis–Hastings and Gibbs sampler algorithms
depends largely on whether they satisfy the ergodicity conditions from
before. There are known sufficient conditions concerning the density
p that guarantee the ergodicity of these methods. For example, the
following proposition gives some relatively general conditions.

Proposition (Proposition 3.12. in Kaipio and Somersalo 2005)

(a) Let p : Rd → R+ and let q : Rd × Rd → R+ be a candidate-generating
kernel. If the Markov chain corresponding to q is aperiodic, then the
Metropolis–Hastings chain is also aperiodic. Further, if the Markov chain
corresponding to q is irreducible and α(x , y) > 0 for all (x , y) ∈ E+ × E+,
where E+ := {x ∈ Rd | p(x) > 0}, then the Metropolis–Hastings chain is
irreducible.
(b) Let p be a lower semicontinuous density and E+ as above. The Gibbs
sampler defines an irreducible and aperiodic transition kernel if E+ is
connected and each (d − 1)-dimensional marginal
p(x1, . . . , xj−1, xj+1, . . . , xd) =

∫
R p(x) dxj is locally bounded.



Let us consider ∫
Rd

f (x)p(x)dx ≈ 1

N

N∑
j=1

f (xj).

Assume the variables Yj = f (xj) are i.i.d. with E[Yj ] = y and
Var(Yj) = σ2. Define

ỸN =
1

N

N∑
j=1

Yj and ZN =

√
N(ỸN − y)

σ
.

Then ỸN → E[Y ] a.s. (law of large numbers) and, asymptotically, ZN is
(standard) normally distributed according to N (0, I ) (central limit
theorem).

Loosely speaking, this means that√√√√∣∣∣∣ 1N
N∑
j=1

f (xj)−
∫
Rd

f (x)p(x) dx

∣∣∣∣2 ≈ σ√
N

for N ≫ 1

provided that xj are independent and f has finite mean and variance.



Autocovariance and correlation length

The independence of consecutive draws can be estimated from the sample
itself. Suppose that we are interested in the convergence of the integral of
f (x) with respect to the probability density p(x). Let us denote zj = f (xj),

where {x1, . . . , xN} ⊂ Rd is a MCMC sample and let z = N−1
∑N

j=1 zj .
Then we define the normalized autocovariance of the sample as

γk =
1

(N − k)γ0

N−k∑
j=1

(zj − z)(zj+k − z), k ≥ 1,

where γ0 = N−1
∑N

j=1 z
2
j .

The correlation length of the sample {zj}Nj=1 can be estimated based on
the decay of the normalized autocovariance sequence of the sample.

If every kth sample point is independent, one might expect the discrepancy
to behave as 1/

√
N/k =

√
k/N instead of 1/

√
N. In consequence, one

should try to choose the proposal distribution so that the correlation
length is as small as possible.



Normalized autocovariance sequences for the Metropolis–Hastings example
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Normalized autocovariance sequences for the Gibbs example
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Preconditioned Crank–Nicolson algorithm

The preconditioned Crank–Nicolson (pCN) algorithm is an instance of
the Metropolis–Hastings algorithm with a specially chosen proposal
density.

The proposal is drawn using the model Y =
√
1− β2X + βW , where

W ∼ N (0,C0), C0 is a symmetric and positive definite matrix, with
the (non-symmetric!) kernel

q(x , y) ∝ exp

(
− 1

2β2
(y −

√
1− β2x)TC−1

0 (y −
√
1− β2x)

)
.

Here, the step size 0 < β < 1 is a free parameter (which can be
optimized for statistical efficiency).

The pCN method is dimension robust: the acceptance probability
does not degenerate to zero as the dimension d →∞. Contrast this
with, e.g., random walk Metropolis, whose acceptance probability
degenerates to zero as the dimension d →∞.



Further variations of MCMC

We have only scratched the surface of some basic ideas surrounding
MCMC methods. In the literature and practical applications, one can find
many variations of these ideas to boost the performance of MCMC for
“difficult”/“high-dimensional” problems. To list a couple of notable ones:

Adaptive Metropolis: as the proposal density q(x , y), use a random walk model
Y = X +W with W ∼ N (0, Γ), where the covariance Γ is replaced by the sample
covariance (plus some small perturbation of identity) computed using the sample
history. The updating can happen either at every step or after every M steps of
the Metropolis iteration. The main theoretical challenge is proving the ergodicity
of the chain—this was proved by Haario, Saksman, and Tamminen (2001).
Computationally, stable updating formulae for the sample means and covariances
are needed in practice.

Independence Metropolis: as the proposal density q(x , y), use a probability density
that is independent of the previous sample x , i.e., q(x , y) = q(y). The proposal
density should be similar to the target density.

Metropolis-within-Gibbs, Delayed rejection adaptive Metropolis, . . .

Software: https://mjlaine.github.io/mcmcstat/
https://mc-stan.org/

https://mjlaine.github.io/mcmcstat/
https://mc-stan.org/
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The setting

We work in the inverse problem setting of finding x ∈ Rd from y ∈ Rk

given by
y = F (x) + η

with noise η ∼ ν and prior x ∼ π such that η ⊥ x . The posterior density
πy of x |y is given by Bayes’ theorem

πy (x) =
1

Z
ν(y − F (x))π(x).

We have the negative log-likelihood:

L(x) = − log ν
(
y − F (x)

)
,

and a regularizer
R(x) = − log π(x).



So far we have mainly discussed point estimators: the MAP estimate

x̂MAP = arg max
x∈Rd

πy (x) = arg min
x∈Rd

(L(x) + R(x))

requires solving an optimization problem, and the CM estimate

x̂CM =

∫
Rd

xπy (x)dx

requires solving a high-dimensional integral. Recall that the latter can be
achieved, e.g, by using MCMC to draw a sufficiently large sample from the
posterior and computing the sample average. If we have a sample drawn
from the posterior, we can use the sample to estimate other statistics such
as the variance or credibility regions as well. Some alternatives to MCMC
include importance sampling, high-dimensional cubature rules, etc.

Using point estimators reduces the complexity of Bayesian inference from
determination of an entire distribution to determination of a single point.
However, the approach has some limitations, in particular for noisy,
multi-peaked or high-dimensional posterior distributions, where a point
estimator may not capture enough information about the density.



Unimodal distributions
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Figure: If the posterior is single-peaked, the MAP estimator reasonably
summarizes the most likely value of the unknown parameter.



Problems with uneven distributions

Figure: If the posterior is unevenly distributed, then it is less clear that the MAP
or CM estimators usefully summarize the posterior.



Problems with rough distributions
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Figure: If the objective function J(x) is very rough (here it is a quadratic function
contaminated with white noise), then the resulting posterior density is very rough.

The objective function has small-scale roughness, but it has a larger
pattern. The MAP estimator cannot capture this larger pattern as it is
found by minimizing the objective function. Arguably, x = 0 might be a
better point estimate.



Problems with high dimension

Gaussian Annulus Theorem: Nearly all the probability of a d-dimensional
spherical Gaussian distribution with unit variance is concentrated in a thin
annulus of width O(1) at radius

√
d .

For example, if x ∼ N (0, Id), then

d P(∥x∥ < 5)

10 0.99465
50 0.00119
100 1.135e-15

A point estimator may not capture enough information about the density.
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Gaussian approximation

Instead of seeking a point estimator, we can try seeking a Gaussian
distribution p = N (µ,Σ) that minimizes the Kullback–Leibler divergence
from the posterior πy (x). Since the Kullback–Leibler divergence is not
symmetric this leads to two distinct problems, which we will consider
separately.



The Kullback–Leibler divergence

Definition

Let π, π′ > 0 be two probability distributions on Rd . The Kullback–Leibler
(KL) divergence, or relative entropy, of π with respect to π′ is defined by

dKL(π∥π′) :=

∫
Rd

log

(
π(x)

π′(x)

)
π(x)dx

= Eπ
[
log
( π

π′

)]
= Eπ′

[
log
( π

π′

) π

π′

]
.

Kullback–Leibler is a divergence in that dKL(π∥π′) ≥ 0, with equality if and
only if π = π′ a.e. However, unlike Hellinger and total variation, it is not a
distance. In particular, the KL divergence is not symmetric: in general

dKL(π∥π′) ̸= dKL(π
′∥π).



The KL divergence is useful for at least the following reasons:

it provides an upper bound for many distances;

its logarithmic structure allows explicit computations that are difficult
using actual distances;

it satisfies many convenient analytical properties such as being convex
in both arguments and lower-semicontinuous in the topology of weak
convergence;

it has an information-theoretic and physical interpretation.

Lemma

The KL divergence provides the following upper bounds for Hellinger and
total variation distance:

dH(π, π
′)2 ≤ 1

2
dKL(π∥π′), dTV(π, π

′)2 ≤ dKL(π∥π′).

Proof. Recall from Week 9 that 1√
2
dTV(π, π

′) ≤ dH(π, π
′)

⇔ dTV(π, π
′)2 ≤ 2dH(π, π

′)2. Thus the second inequality follows from the
first one. We prove only the first inequality.



Consider the function ϕ : R+ → R defined by

ϕ(x) = x − 1− log x .

Note that

ϕ′(x) = 1− 1

x
,

ϕ′′(x) =
1

x2
,

lim
x→+∞

ϕ(x) = ∞ = lim
x→0+

ϕ(x).

Thus the function is convex on its domain. As the minimum of ϕ is
attained at x = 1, and as ϕ(1) = 0, we deduce that ϕ(x) ≥ 0 for all
x ∈ (0,∞). Hence,

x − 1 ≥ log x for all x > 0,

√
x − 1 ≥ 1

2
log x for all x > 0.



We can use this last inequality to bound the Hellinger distance:

dH(π, π
′)2 =

1

2

∫
Rd

(
1−

√
π′

π

)2

π dx

=
1

2

∫
Rd

(
1 +

π′

π
− 2

√
π′

π

)
π dx

= 1−
∫
Rd

√
π′

π
π dx

=

∫
Rd

(
1−

√
π′

π

)
π dx

≤ −1

2

∫
Rd

log
(π′

π

)
π dx =

1

2

∫
Rd

log
( π

π′

)
π dx =

1

2
dKL(π∥π′).



Lemma

dKL(π∥π′) = 0 if and only if π = π′ a.e.

Proof. The sufficient direction is trivial. For the necessary direction,
suppose that dKL(π∥π′) = 0. From the previous lemma, we deduce that

0 ≤ dTV(π, π
′)2 ≤ dKL(π∥π′) = 0

and therefore

dTV(π, π
′) =

1

2

∫
Rd

|π(x)− π′(x)| dx = 0,

which can only hold if π = π′ a.e.



Best Gaussian approximation

Let π be the target distribution, e.g., the posterior. We consider two
different minimization problems, both leading to a “best Gaussian”:

inf
p∈A

dKL(p∥π) (“Mode-seeking Gaussian approximation”)

and

inf
p∈A

dKL(π∥p), (“Mean-seeking Gaussian approximation”)

where the minimization is performed over the set of Gaussian distributions
on Rd with positive definite covariance, i.e.,

A := {N (µ,Σ) | µ ∈ Rd , Σ ∈ Rd×d positive definite}.



(a) Minimizing dKL(p∥π) (b) Minimizing dKL(π∥p)

Fig. (a): Minimizing dKL(p∥π) may miss out components of π – we
want log

( p
π

)
p to be small, which can happen when p ≈ π or p ≪ π.

Minimizing dKL(p∥π) over Gaussians p can only give a single mode
approximation which is achieved by matching one of the modes; we
may think of this as “mode-seeking”.
Fig. (b): Minimizing dKL(π∥p) over Gaussians p we want log π

p to be
small where p appears as the denominator. Wherever π has some
mass we must let p also have some mass there in order to keep π

p as
close as possible to one. The mass of p is allocated in a way such
that on average the divergence between p and π attains its minimum;
hence, it can be thought of as “mean-seeking”.

Different applications will favor different choices between the mean and
mode seeking approaches to Gaussian approximation.



Best Gaussian fit by minimizing dKL(p∥π) (“mode-seeking”)

Theorem (Best Gaussian approximation / “mode-seeking”)

Suppose that the loss function L(x) := − log ν
(
y − F (x)

)
is non-negative

and bounded above and that the prior π ∼ N (0, λ−1I ). Then there exists
at least one probability distribution p ∈ A at which the infimum

inf
p∈A

dKL(p∥πy )

is attained.

Proof. Let p(x) = 1
(2π)d/2(detΣ)1/2

e−
1
2
∥x−µ∥2

Σ−1 , πy (x) = 1
Z e

−L(x)−λ
2
∥x∥2 .

Then

dKL(p∥πy )=Ep

[
log

(
1

(2π)d/2(detΣ)1/2
e−

1
2
∥x−µ∥2

Σ−1

)
−log

(
1

Z
e−L(x)−λ

2
∥x∥2

)]
= −d

2
log(2π)− 1

2
log detΣ + logZ + Ep

[
− 1

2
∥x − µ∥2Σ−1 + L(x) +

λ

2
∥x∥2

]
.



.

dKL(p∥πy ) = −
d

2
log(2π)−

1

2
log detΣ + logZ + Ep

[
−

1

2
∥x − µ∥2

Σ−1 + L(x) +
λ

2
∥x∥2

]
.

Note that Z is the normalization constant for π and is independent of p
and hence of µ and Σ. We can represent a given random variable x ∼ p by
writing x = µ+Σ1/2ξ, where ξ ∼ N (0, I ), and hence

∥x − µ∥2
Σ−1 = ∥Σ1/2ξ∥2

Σ−1 = ∥ξ∥2 ⇒ Ep

[
−

1

2
∥x − µ∥2

Σ−1

]
= −

d

2
.

Moreover,

Ep [∥x∥2] =
∫
Rd

∥x − µ+ µ∥2p(x)dx

=

∫
Rd

∥x − µ∥2p(x)dx + 2⟨µ,
∫
Rd

xp(x)dx⟩ − 2⟨µ,
∫
Rd

µp(x) dx⟩+
∫
Rd

∥µ∥2p(x) dx

= tr(Σ) + 2⟨µ, µ⟩ − 2⟨µ, µ⟩+ ∥µ∥2 = tr(Σ) + ∥µ∥2.



We obtain

dKL(p∥πy ) = −d

2
− d

2
log(2π)− 1

2
log detΣ + EpL(x) +

λ

2
∥µ∥2 + λ

2
tr(Σ) + logZ .

Define I(µ,Σ) = EpL(x) + λ
2∥µ∥

2 + λ
2 tr(Σ)−

1
2 log detΣ. Note that there

is a correspondence between minimizing dKL(p∥πy ) over p ∈ A and
minimizing I(µ,Σ) over µ ∈ Rd and positive definite Σ. Moreover:

I(0, I ) < ∞.

For any Σ, I(µ,Σ) → ∞ as ∥µ∥ → ∞.

For any µ, I(µ,Σ) → ∞ as tr(Σ) → 0 or tr(Σ) → ∞.

Therefore, there are M, r ,R > 0 such that the infimum of I(µ,Σ) over
µ ∈ Rd and positive definite Σ is equal to the infimum of I(µ,Σ) over

Ã := {(µ,Σ) : µ ∈ Rd ,Σ ∈ Rd×d positive-definite symmetric, ∥µ∥ ≤ M, r ≤ tr(Σ) ≤ R}.

Since I is continuous in Ã it achieves its infimum and the proof is
complete.

We remark that the theorem establishes the existence of a best Gaussian
approximation. However, minimizers need not be unique.



Best Gaussian fit by minimizing dKL(π∥p) (“mean-seeking”)

The best Gaussian approximation in Kullback–Leibler with respect to its
second argument is unique and given by moment matching.

Theorem (Best Gaussian by moment matching / “mean-seeking”)

Assume that µ̄ := Eπ[x ] is finite and that Σ̄ := Eπ[(x − µ̄)(x − µ̄)T] is
positive definite. (Here, π denotes the target distribution, e.g., the
posterior.) Then the infimum

inf
p∈A

dKL(π∥p)

is attained by p = N (µ̄, Σ̄).

Proof. Note that dKL(π∥p) = −Eπ[log p] +

independent of p︷ ︸︸ ︷
Eπ[log π] . Since we want

a Gaussian minimizer, write p(x) = ((2π)d | detΣ|)−1/2 exp
(
− 1

2∥x − µ∥2Σ−1

)
⇒ −Eπ[log p] = −Eπ[log

(
(2π)−d/2(detΣ)−1/2e−

1
2
∥x−µ∥2

Σ−1
)
]

= 1
2E

π[∥x − µ∥2Σ−1 ] +
1
2 log detΣ + d

2 log(2π).
Note that the final term is irrelevant for the optimization problem.



Let Λ := Σ−1. Our task is equivalent to finding the minimizer of

I (µ,Λ) :=
1

2
Eπ[(x − µ)Λ(x − µ)T]− 1

2
log det Λ.

Let Λ = (Λij)
d
i ,j=1. We can view the above functional as the d + d2 variate

function I (µ1, . . . , µd ,Λ11,Λ12, . . . ,Λdd). Thus, we only need to show that

∇I (µ̄, Σ̄−1) = 0 and ∇2I (µ,Σ−1) > 0 for all µ,Σ.

((µ̄, Σ̄−1) is the critical point and the objective function is convex.)

By defining the notations ∂µf :=
(
∂f
∂µi

)d
i=1

(gradient w.r.t. vector µ) and

∂Λf :=
(

∂f
∂Λji

)d
i ,j=1

(gradient w.r.t. vector (Λ11,Λ12, . . . ,Λdd), reshaped into

a d × d matrix), we easily see that ∇I = 0 can be expressed as the pair
0 = ∂µI = −Eπ[Λ(x − µ)] = 0

0 = ∂ΛI = 1
2∂Λ(E

π[(x − µ)Λ(x − µ)T])− 1
2 det Λ∂Λ det Λ

= 1
2E

π[(x − µ)(x − µ)T]− 1
2Λ

−1,

where we used a special case of Jacobi’s formula ∂Λ det Λ = det Λ · Λ−1.
Clearly, (x ,Λ) = (µ̄, Σ̄−1) is the critical point satisfying the above
condition.

https://en.wikipedia.org/wiki/Jacobi%27s_formula


Finally, we need to show that ∇2I (µ,Σ−1) is positive definite. To this end,
we note that

p(x) =

√
det Λ

(2π)d
e−

1
2
(x−µ)TΛ(x−µ) =

√
det Λ

(2π)d
e−

1
2
xTΛx+µTΛx− 1

2
µTΛµ

=

√
det Λ

(2π)d
e−

1
2
µTΛµe−

1
2
xTΛx+µTΛx =

e−
1
2
xTΛx+µTΛx∫

Rd e
− 1

2
xTΛx+µTΛx dx

.

Noting that xTΛx =
∑d

i ,j=1 Λijxixj =
∑d

i ,j=1 Λij(xx
T)ij , we can write

xTΛx = vec(Λ) · vec(xxT), where we define

vec(M) := (M11,M12, . . . ,Mdd)
T for M ∈ Rd×d .

In particular,

−1

2
xTΛx + µTΛx =

[
Λµ

−1
2vec(Λ)

]
︸ ︷︷ ︸

=:θ

T[
x

vec(xxT)

]
︸ ︷︷ ︸

=:T (x)

and we can write pθ(x) := p(x) = 1
Z(θ)e

θTT (x), Z (θ) :=
∫
Rd e

θTT (x) dx .



The importance of the characterization

pθ(x) =
1

Z (θ)
eθ

TT (x), Z (θ) :=

∫
Rd

eθ
TT (x) dx ,

lies in the fact that every possible Gaussian PDF can be parameterized by
the vector θ = (θ1, . . . , θd+d2)T. Thus, the KL divergence dKL(π∥pθ) that
we are interested in can be recast as

H(θ) :=dKL(π∥pθ) = −Eπ[log pθ] + Eπ[log π]

=− θTEπ[T (x)] + logZ (θ) + Eπ[log π].

Noting that ∇2
θ(θ

TEπ[T (x)]) = 0 and ∂ logZ(θ)
∂θi

= 1
Z(θ)

∫
Rd

∂
∂θi

eθ
TT (x) dx

= 1
Z(θ)

∫
Rd Ti (x)e

θTT (x) dx , we compute

[∇2
θH(θ)]ij =

∂2 logZ(θ)

∂θi∂θj
=

∂

∂θj

(
1

Z(θ)

∫
Rd

Ti (x)e
θTT (x) dx

)
= −

1

Z(θ)2

(∫
Rd

Ti (x)e
θTT (x) dx

)(∫
Rd

Tj (x)e
θTT (x) dx

)
+

1

Z(θ)

∫
Rd

Ti (x)Tj (x)e
θTT (x) dx

= Epθ [TiTj ]− Epθ [Ti ]Epθ [Tj ] = [Covpθ (T )]ij ,

which is positive definite.



Remark. Notice that the preceding proof of convexity holds for any
distribution p that can be parameterized by the following more general
expression:

pθ(x) = h(x)exp
(
θTT (x)− A(θ)

)
(1)

with A(θ) = log

[∫
Rd

h(x)exp
(
θTT (x)

)
dx

]
.

Since h(x) is independent of θ, the conclusion of the previous theorem
carries over to distributions with the form of (1). Such distributions
belong to the exponential family in the statistics literature. Here, θ is
called the natural parameter, T (x) the sufficient statistic, h(x) the base
measure, and A(θ) the log-partition.

The Gaussian distribution is a special case in which h(x) is constant with
respect to x .



Variational formulation of Bayes’ theorem

We have been concerned with finding the best Gaussian approximations to
a measure with respect to KL divergences. Bayes’ theorem itself can be
formulated through a closely related minimization principle. Consider a
posterior πy (x) in the following form:

πy (x) =
1

Z
exp
(
−L(x)

)
π(x),

where π(x) is the prior, L(x) is the negative log-likelihood, and Z the
normalization constant. We assume here for exposition that all densities
are positive. Let p be an arbitrary PDF. Then we can express dKL(p∥πy ) as

dKL(p∥πy ) =

∫
Rd

log
( p

πy

)
p dx =

∫
Rd

log
(p
π

π

πy

)
p dx

=

∫
Rd

log
(p
π
exp
(
L(x)

)
Z
)
p dx

= dKL(p∥π) + Ep[L(x)] + logZ .



If we define
J (p) = dKL(p∥π) + Ep[L(x)]

then we have the following:

Theorem (Bayes’ theorem as an optimization principle)

The posterior distribution πy is given by the following minimization
principle:

πy = argminp∈PJ (p),

where P contains all probability densities on Rd .

Proof.
Since Z is the normalization constant for πy and is independent of p, the
minimizer of dKL(p∥πy ) will also be the minimizer of J (p). Since the
global minimizer of dKL(p∥πy ) is attained at p = πy the result follows.



Why is it useful to view the posterior as the minimizer of an energy?

The variational formulation provides a natural way to approximate the
posterior by restricting the minimization problem to distributions
satisfying some computationally desirable property.

For instance, variational Bayes methods often restrict the minimization
to densities with product structure and in this chapter we have studied
restriction to the class of Gaussian distributions.

Variational formulations provide natural paths, defined by a gradient
flow, towards the posterior. Understanding these flows and their rates
of convergence is helpful in the choice of sampling algorithms.



Appendix

The material on slides 28–33 was not considered during
the 2023 course and it is not part of the course exam.



Consider still the problem of finding x ∈ Rd from y ∈ Rk given by

y = F (x) + η

with noise η ∼ ν and prior x ∼ π such that η ⊥ x . The posterior density
πy of x |y is given by Bayes’ theorem

πy (x) =
1

Z
ν(y − F (x))π(x).

We have the negative log-likelihood:

L(x) = − log ν
(
y − F (x)

)
,

and a regularizer
R(x) = − log π(x).



When added together these two functions of x comprise an objective
function of the form

J(x) = L(x) + R(x).

Furthermore

πy (x) =
1

Z
ν
(
y − F (x)

)
π(x) ∝ e−J(x).

We see that minimizing the objective function J is equivalent to
maximizing the posterior πy . Therefore, the MAP estimator can be
rewritten in terms of J as follows:

x̂MAP = arg max
x∈Rd

πy (x) = arg min
x∈Rd

J(x).

Let us consider conditions under which the MAP estimator is attained, and
characterize the MAP estimator in terms of small ball probabilities – this
interpretation generalizes the definition of MAP estimators to measures
that do not possess a Lebesgue density.



For any optimization problem for an objective function with a finite
infimum, it is of interest to determine whether the infimum is attained.

Theorem (Attainable MAP estimator)

Assume that J is non-negative, continuous and that J(x) → ∞ as
|x | → ∞. Then J attains its infimum. Therefore, the MAP estimator of x
based on the posterior πy (x) ∝ exp

(
−J(x)

)
is attained.

Proof.
By the assumed growth and non-negativity of J, there is R such that
infx∈Rd J(x) = infx∈B̄(0,R) J(x) where B̄(0,R) denotes the closed ball of
radius R around the origin. Since J is assumed to be continuous, its
infimum over B̄(0,R) is attained and the proof is complete.

Remark. The assumption that J(x) → ∞ is not restrictive: this condition
needs to hold in order to be able to normalize πy (x) ∝ exp

(
−J(x)

)
into a

PDF, which is implicitly assumed in the second part of the theorem
statement.



Example. Suppose that

1 F : Rd → Rk is continuous and η ∼ N (0, Γ);

2 the objective function J(x) = L(x) + R(x) has Γ-weighted L2 loss

L(x) =
1

2
∥y − F (x)∥2Γ−1

and Lp regularizer

R(x) =
λ

p
∥u∥pp, p ∈ (0,∞).

Then the assumptions on J in the previous theorem are satisfied, and the
infimum of J is attained at the MAP estimator of the corresponding
Bayesian problem with posterior PDF proportional to exp

(
−J(u)

)
.

Intuitively the MAP estimator maximizes posterior probability. We make
this precise in the following theorem which links the objective function J to
small ball probabilities.



Theorem (Objective function and posterior probability)

Assume that J is non-negative, continuous and that J(x) → ∞ as
|x | → ∞. Let

α(x , δ) :=

∫
B(x ,δ)

πy (v) dv = Pπy (
B(x , δ)

)
,

be the posterior probability of a ball with radius δ centered at x . Then, for
all x1, x2 ∈ Rd , we have

lim
δ→0

α(x1, δ)

α(x2, δ)
= eJ(x2)−J(x1).

Remark: For fixed x2, the right-hand side is maximized at point x1 that
minimizes J. Independently of the choice of any fixed x2, the above result
shows that the probability of a small ball of radius δ centered at x1 is,
approximately, maximized by choosing the centre at a minimizer of J.

This result essentially characterizes the MAP estimate and, since it makes
no reference to Lebesgue density, it can be generalized to infinite
dimensions.



Proof. Let x1, x2 ∈ Rd , ε > 0. By continuity of J, for all sufficiently small
δ:

x ∈ B̄(xj , δ) ⇒ |J(x)− J(xj)| ≤ ε, j ∈ {1, 2},
and therefore

e−J(x1)−ε ≤ e−J(v) ≤ e−J(x1)+ε for all v ∈ B(x1, δ),

e−J(x2)−ε ≤ e−J(v) ≤ e−J(x2)+ε for all v ∈ B(x2, δ).

It follows, for all δ sufficiently small, that

Bδe
−J(x1)−ε ≤

∫
B(x1,δ)

e−J(v) dv ≤ Bδe
−J(x1)+ε,

Bδe
−J(x2)−ε ≤

∫
B(x2,δ)

e−J(v) dv ≤ Bδe
−J(x2)+ε,

where Bδ is the Lebesgue measure of a ball with radius δ. Taking the ratio
of α’s and using the above bounds we obtain that, for all δ sufficiently
small,

eJ(x2)−J(x1)−2ε ≤ α(x1, δ)

α(x2, δ)
≤ eJ(x2)−J(x1)+2ε.

Since ε was arbitrary, the desired result follows.


