Inverse Problems Exercise 8
Sommersemester 2023

Return your written solutions either in person or by email

to vesa.kaarnioja@fu-berlin.de by Tuesday 27 June, 2023, 10:15

Please note that there are a total of 3 tasks in this exercise sheet.
1. Let z,y,n € R and consider a simple Bayesian inverse problem

Lot
= —X
Y 9 Ui

with additive noise n ~ N(0,1). Assume that the prior model for the unknown
is also Gaussian x ~ N(0, é), where o« > 0 is poorly known. It is possible to
write the conditional prior for z, given «, as

P(z|a) o ( : 2>
rla) = exp | — —ax® ).
V2 P 2
Since the parameter « is not known, it is part of the inference problem. Assume
that we set the following hyperprior density for the parameter «:

2 A
P(a) = \/;exp( sa”) if a >0,
0 if  <0.

(a) Show that the posterior density for (z,a)|y is given by

1 1\* 1 1
P(z, aly) o« a/? exp ( o) <y - §x> - 504;102 - §a2>,

where the implied coefficient does not depend on z or a.
(b) Show that (x,«) = (1,1/2) is the mazimum a posteriori (MAP) estimate
when we observe y = 3/2.

You may assume in parts (a) and (b) that n and (z, o) are independent.

2. Let A € R**? x € R y,n € R¥, and consider the linear measurement model
with additive noise:
y = Ax +n.

During the lecture, we proved that if z is endowed with a Gaussian prior
distribution N (2o, '), the noise n is assumed to have the Gaussian distri-
bution N (19, 'y), and z and 7 are mutually independent, then the posterior
distribution is Gaussian with posterior covariance

Ppost = (I + AT A) ™ (1)
and posterior mean

Hpost = Fpost<ATF;1(y - UO) + F;rlmo)' (2)



Prove that these can alternatively be written as
Cpost = Dpr — Tpp AT (AT, AT +T,) 7 TAT, (3)
and

Hpost = Lo + 1—‘pr14T (AA]-—‘pr‘AT + Fn)_l(y - Axo - 770> (4)

Hint: Use the Sherman—Morrison-Woodbury formula: for any conformable ma-
trices A, B, C, and D such that A and C' are invertible (square) matrices, there
holds

(A+BCD) ' =A"1"—-A'B(C'+ DA 'B)"'DA™,

if A+ BCD is invertible (or, equivalently, if C~' + DA™!'B is invertible).

Begin by applying the Sherman-Morrison-Woodbury formula on (T)); this
should yield the formula . The formula can then be proved by plug-
ging the formula into and simplifying the resulting expression.

. Let M € R™4 and H € R¥*4 Suppose that we have a sequence of mea-
surements {y;};>1 C R* which correspond to a sequence of unknown states

{;}j>1 C R

(a) Suppose that the states obey an evolution model

ii.d.
Tip1 = Mz + &1, &~ N(0,%), (5)

where ¥ € R%*? is a symmetric and positive definite covariance matrix.
If x; ~ N(m;,C;), where m; € R? and C; € R™? is symmetric and
positive definite, what is the distribution of ;4,7

(b) Suppose that we have an observation model

iid.
Yir1 = Hrjp + 041, Njp1 ~ N(0,T), (6)

where I' € RF** is a symmetric and positive definite covariance matrix.
The measurement y;,; is given, with z;,; and 7,4, assumed to be inde-
pendent. Using the distribution you obtained in part (a) as the prior for
z;+1, what is the posterior distribution of x; 1|y 417

(¢) Consider the evolution-observation model (5)—(6) and suppose that we
are interested in finding the probability distribution of x;41|y1, ..., y;j+1
(i.e., we wish to estimate the state at some future time step j + 1 given
measurements at all previous time steps 1,2,...,j + 1). Consider the
following updating scheme:

(i) Set j = 0 and initialize zg ~ N (myg, Cy) using some known mean
mo € R? and symmetric, positive definite covariance C, € R4

(i) (Prediction) Set x; = x¢ if j = 0 and x; = x|y, ..., y; otherwise.
Define ;.1 using the evolution model (f]). Then z;.1 ~ N (M, C).
where m; and @- are the mean and covariance you derived in part

(a).



(iii) (Correction) Define zj.1|y;41 via the observation model (), using
Tip1 ~ N(my, @) from step (ii) as the prior. Then z;1 ~ N (mji1, Cii1),
where m;;; and U4, are the mean and covariance you derived in part
(b).

(iv) Set j = j + 1 and return to step (ii).

This algorithm is known as the Kalman filter. It produces the so-called fil-

tering distributions xii1|y1, ..., Yj+1 ~ N(mjp1,Ciq) for 7 =0,1,2,. ..

Your task is to implement this algorithm numerically for the following

model problem:

We wish to track the state xj = [sz
k

first component p corresponds to the position of the particle while the
second component vy is its velocity at time £ = 0,1,2,.... You may
assume that you know the initial state of the particle perfectly: zy =

E[zo] = {8} € R? and Cy = {O O} € R?*2. The evolution model for the

€ R? of a moving particle. The

00
1 At s
0 1|€ R2*2 with time step A = 0.01, and
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we only measure the location of the particle so the observation model
is given by H = [1 O} € R'*2 and the observational noise variance is

assumed to be I' = [1] € R*1,

Implement the Kalman filter for this model problem and plot the filtered
positions (¢, E[pr|y1, - - -, ux]) 12} and velocities (tg, E[vg |y, - - -, yx) )220 as
a function of time ¢, = kAt, k =1,...,2000. To simulate the noisy mea-
surements, you may assume that the true trajectory of the particle is
given by the function x(t) = 0.1(t* — t) for ¢ € [0,20], and the mea-
surements are given by vy, = x(ty) + n, where g ~ N(0,T) is additive
i.i.d. noise for £ =1,...,2000.

particle is given by M = {

the innovation term is given by ¥ = ] € R?*2, Meanwhile,

Hint: Since all intermediate distributions in the Kalman filter algorithm are
Gaussian (as long as the initial distribution for z is Gaussian), from a compu-
tational point of view, we only need to keep track of the means and covariances
using the update formulae you derived in parts (a) and (b).



