
Inverse Problems Exercise 8
Sommersemester 2023
Return your written solutions either in person or by email
to vesa.kaarnioja@fu-berlin.de by Tuesday 27 June, 2023, 10:15

Please note that there are a total of 3 tasks in this exercise sheet.

1. Let x, y, η ∈ R and consider a simple Bayesian inverse problem

y =
1

2
x+ η

with additive noise η ∼ N (0, 1). Assume that the prior model for the unknown
is also Gaussian x ∼ N (0, 1

α
), where α > 0 is poorly known. It is possible to

write the conditional prior for x, given α, as

P(x|α) = α1/2

√
2π

exp

(
− 1

2
αx2

)
.

Since the parameter α is not known, it is part of the inference problem. Assume
that we set the following hyperprior density for the parameter α:

P(α) =

{√
2
π
exp(−1

2
α2) if α > 0,

0 if α ≤ 0.

(a) Show that the posterior density for (x, α)|y is given by

P(x, α|y) ∝ α1/2 exp

(
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2

(
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2
x

)2
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2
αx2 − 1

2
α2

)
,

where the implied coefficient does not depend on x or α.

(b) Show that (x, α) = (1, 1/2) is the maximum a posteriori (MAP) estimate
when we observe y = 3/2.

You may assume in parts (a) and (b) that η and (x, α) are independent.

2. Let A ∈ Rk×d, x ∈ Rd, y, η ∈ Rk, and consider the linear measurement model
with additive noise:

y = Ax+ η.

During the lecture, we proved that if x is endowed with a Gaussian prior
distribution N (x0,Γpr), the noise η is assumed to have the Gaussian distri-
bution N (η0,Γn), and x and η are mutually independent, then the posterior
distribution is Gaussian with posterior covariance

Γpost = (Γ−1
pr + ATΓ−1

n A)−1 (1)

and posterior mean

µpost = Γpost(A
TΓ−1

n (y − η0) + Γ−1
pr x0). (2)



Prove that these can alternatively be written as

Γpost = Γpr − ΓprA
T(AΓprA

T + Γn)
−1AΓpr (3)

and

µpost = x0 + ΓprA
T(AΓprA

T + Γn)
−1(y − Ax0 − η0). (4)

Hint: Use the Sherman–Morrison–Woodbury formula: for any conformable ma-
trices A,B,C, and D such that A and C are invertible (square) matrices, there
holds

(A+BCD)−1 = A−1 − A−1B(C−1 +DA−1B)−1DA−1,

if A+BCD is invertible (or, equivalently, if C−1 +DA−1B is invertible).

Begin by applying the Sherman–Morrison–Woodbury formula on (1); this
should yield the formula (3). The formula (4) can then be proved by plug-
ging the formula (3) into (2) and simplifying the resulting expression.

3. Let M ∈ Rd×d and H ∈ Rk×d. Suppose that we have a sequence of mea-
surements {yj}j≥1 ⊂ Rk which correspond to a sequence of unknown states
{xj}j≥1 ⊂ Rd.

(a) Suppose that the states obey an evolution model

xj+1 = Mxj + ξj+1, ξj+1
i.i.d.∼ N (0,Σ), (5)

where Σ ∈ Rd×d is a symmetric and positive definite covariance matrix.
If xj ∼ N (mj, Cj), where mj ∈ Rd and Cj ∈ Rd×d is symmetric and
positive definite, what is the distribution of xj+1?

(b) Suppose that we have an observation model

yj+1 = Hxj+1 + ηj+1, ηj+1
i.i.d.∼ N (0,Γ), (6)

where Γ ∈ Rk×k is a symmetric and positive definite covariance matrix.
The measurement yj+1 is given, with xj+1 and ηj+1 assumed to be inde-
pendent. Using the distribution you obtained in part (a) as the prior for
xj+1, what is the posterior distribution of xj+1|yj+1?

(c) Consider the evolution-observation model (5)–(6) and suppose that we
are interested in finding the probability distribution of xj+1|y1, . . . , yj+1

(i.e., we wish to estimate the state at some future time step j + 1 given
measurements at all previous time steps 1, 2, . . . , j + 1). Consider the
following updating scheme:

(i) Set j = 0 and initialize x0 ∼ N (m0, C0) using some known mean
m0 ∈ Rd and symmetric, positive definite covariance C0 ∈ Rd×d.

(ii) (Prediction) Set xj = x0 if j = 0 and xj = xj|y1, . . . , yj otherwise.

Define xj+1 using the evolution model (5). Then xj+1 ∼ N (m̂j, Ĉj),

where m̂j and Ĉj are the mean and covariance you derived in part
(a).



(iii) (Correction) Define xj+1|yj+1 via the observation model (6), using

xj+1 ∼ N (m̂j, Ĉj) from step (ii) as the prior. Then xj+1 ∼ N (mj+1, Cj+1),
wheremj+1 and Cj+1 are the mean and covariance you derived in part
(b).

(iv) Set j = j + 1 and return to step (ii).

This algorithm is known as the Kalman filter. It produces the so-called fil-
tering distributions xj+1|y1, . . . , yj+1 ∼ N (mj+1, Cj+1) for j = 0, 1, 2, . . .

Your task is to implement this algorithm numerically for the following
model problem:

We wish to track the state xk :=

[
pk
vk

]
∈ R2 of a moving particle. The

first component pk corresponds to the position of the particle while the
second component vk is its velocity at time k = 0, 1, 2, . . .. You may
assume that you know the initial state of the particle perfectly: x0 =

E[x0] =

[
0
0

]
∈ R2 and C0 =

[
0 0
0 0

]
∈ R2×2. The evolution model for the

particle is given by M =

[
1 ∆t
0 1

]
∈ R2×2, with time step ∆ = 0.01, and

the innovation term is given by Σ =

[
1
4
∆t4 1

2
∆t3

1
2
∆t3 ∆t2

]
∈ R2×2. Meanwhile,

we only measure the location of the particle so the observation model
is given by H =

[
1 0

]
∈ R1×2 and the observational noise variance is

assumed to be Γ = [1] ∈ R1×1.

Implement the Kalman filter for this model problem and plot the filtered
positions (tk,E[pk|y1, . . . , yk])2000k=1 and velocities (tk,E[vk|y1, . . . , yk])2000k=1 as
a function of time tk = k∆t, k = 1, . . . , 2000. To simulate the noisy mea-
surements, you may assume that the true trajectory of the particle is
given by the function x(t) = 0.1(t2 − t) for t ∈ [0, 20], and the mea-
surements are given by yk = x(tk) + ηk, where ηk ∼ N (0,Γ) is additive
i.i.d. noise for k = 1, . . . , 2000.

Hint: Since all intermediate distributions in the Kalman filter algorithm are
Gaussian (as long as the initial distribution for x0 is Gaussian), from a compu-
tational point of view, we only need to keep track of the means and covariances
using the update formulae you derived in parts (a) and (b).


