
Uncertainty Quantification and Quasi-Monte Carlo Exercise 8
Sommersemester 2025
Return your written solutions either in person or by email
to vesa.kaarnioja@fu-berlin.de by Tuesday 24 June 2025, 10:15 am
Please make sure to return your source code for all programming tasks

Please note that there are a total of 4 tasks!

1. (Finite element error) LetD = (0, 1)2 and consider solving the Poisson problem{
−∆u(x) = x1, x = (x1, x2) ∈ D,

u|∂D = 0

using the finite element method. We showed during the lecture that the conver-
gence rate for a piecewise linear finite element approximation uh ∈ Vh satisfies

∥u− uh∥L2(D) ≤ Ch2,

where C > 0 is independent of the mesh width h (as long as the FE mesh is
regular and uniform). Let us try verifying this numerically.

Use the fem.py script on the course webpage to generate FE matrices as
well as other FEM objects corresponding to different FE discretization lev-
els of the computational domain D = (0, 1)2. First compute the finite ele-
ment solutions uh for h = 2−1, 2−2, . . . , 2−5 (corresponding to the arguments
level=1,2,3,4,5 in the script). Then, using the solution corresponding to
the densest mesh width h′ = 2−5 as the reference, approximate the FE error
by computing the values

∥uh′ − uh∥L2(D) for h = 2−1, . . . , 2−4.

To achieve this, you can interpolate the coarser FE solutions onto the densest
FE mesh corresponding to the reference solution with mesh width h′.

In tasks 2–3, we continue with the study of a parametric elliptic PDE problem. Let
D = (0, 1)2 and f(x) = x1 for x = (x1, x2) ∈ D. For all y ∈ [−1/2, 1/2]N, let
u(·,y) ∈ H1

0 (D) be such that∫
D

a(x,y)∇u(x,y) · ∇v(x) dx =

∫
D

f(x)v(x) dx for all v ∈ H1
0 (D), (1)

with the diffusion coefficient

a(x,y) = 2 +
∞∑
j=1

yjψj(x), x ∈ D, y = (yj)j≥1 ∈ [−1/2, 1/2]N, (2)

where we define ψj(x) := j−2 sin(jπx1) sin(jπx2) for x = (x1, x2) ∈ D. More-
over, we define the dimensionally-truncated solution by setting us(·, (y1, . . . , ys)) :=
u(·, (y1, . . . , ys, 0, 0, . . .)) for yj ∈ [−1/2, 1/2], 1 ≤ j ≤ s.



2. (Dimension truncation error) The dimension truncation error rate for the para-
metric PDE problem specified above satisfies∣∣∣∣ ∫

[−1/2,1/2]N
G(u(·,y)− us(·,y)) dy

∣∣∣∣ ≤ C ′s−3+ε, (3)

where the constant C ′ > 0 is independent of s with arbitrary ε > 0 and
G ∈ H−1(D). Let us try verifying this numerically.

Use the fem.py script on the course website to generate FE matrices as well as
other FEM objects corresponding to a fixed FE discretization of the computa-
tional domain D = (0, 1)2 (you can use, e.g., mesh width h = 2−5). Download
also the file offtheshelf2048.txt from the course webpage. The file contains
a 2048-dimensional generating vector z ∈ N2048 which you can truncate to any
dimension s ∈ {1, . . . , 2048} by simply extracting the first s elements and us-
ing this as your s-dimensional generating vector. Let us denote the generating
vector obtained in this way by z(s) ∈ Ns.

Let us approximate the PDE solutions appearing in (3) using the finite element
method. As the linear quantity of interest G ∈ H−1(D), take

G(v) :=

∫
D

v(x) dx, v ∈ H1
0 (D). (4)

Note that if vh =
∑N

i=1 ciϕi(x) ∈ Vh is a finite element function, we can write

G(vh) = 1TMc,

whereM is the mass matrix, c := [c1, . . . , cN ]
T are the finite element expansion

coefficients, and 1 = [1, 1, . . . , 1]T ∈ RN .

Your task is to first compute the QMC approximations

Is =
1

n

n∑
i=1

G(us,h(·, ti− 1
2
)) ≈

∫
[−1/2,1/2]s

G(us,h(·,y)) dy, ti := mod
(
iz(s)

n
, 1
)
,

for s = 2k, k = 1, . . . , 11, using n = 215 QMC cubature nodes. Then, us-
ing the 2048-dimensional solution as the reference, approximate the quantity
appearing in (3) by computing the values

|I2048 − Is| for s = 2k, k = 1, . . . , 10.

Do you observe the theoretical convergence rate s−3+ε?

3. (QMC error) Let us consider QMC cubature for the parametric PDE prob-
lem (1)–(2). Let s = 100 and use the 100-dimensional generating vector
z(100) ∈ N100, i.e., the first 100 elements of the vector contained in the file
offtheshelf2048.txt available on the course page. We can apply a randomly
shifted rank-1 lattice rule by drawing R shifts ∆1, . . . ,∆R from U([0, 1]s) and
computing the cubatures

Q(r)
n f :=

1

n

n∑
k=1

f(mod(tk +∆r, 1)− 1
2
) for r ∈ {1, . . . , R},



where f(y) := G(us,h(·,y)) for y ∈ [−1/2, 1/2]s and tk = mod
(
kz(100)

n
, 1
)
. As

our approximation of E[G(us,h)], we take the average

Qn,Rf :=
1

R

R∑
r=1

Q(r)
n f.

We can estimate the root-mean-square error by computing

En,R :=

√√√√ 1

R(R− 1)

R∑
r=1

(Qn,Rf −Q
(r)
n f)2.

Fix a “reasonable” number of random shifts (e.g., you may choose R = 4 or
R = 8 or R = 16 . . .) and compute En,R for n ∈ {210, 211, . . . , 215}. What
convergence rate do you observe?

To solve the PDE (1) numerically, use the finite element method. You can
make the computations faster by using a coarser FE mesh, e.g., corresponding
to mesh width h = 2−4 (this is especially useful for debugging).

4. (QMC error for the lognormal model) Consider the PDE problem (1) equipped
with a lognormally parameterized diffusion coefficient

a(x,y) := exp

( ∞∑
j=1

yjψj(x)

)
, x ∈ D, yj ∈ R,

where D = (0, 1)2, f(x) := x1, and ψj(x) := j−2 sin(jπx1) sin(jπx2) for x =
(x1, x2) ∈ D as before. Let G ∈ H−1(D) be defined by (4). Let s = 100
be the truncation dimension and let us,h(·,y) := us(·, (y1, . . . , ys)) denote the
dimensionally-truncated finite element approximation of the PDE solution for
y ∈ Rs. In this case, we are interested in the integral

E[G(us,h)] =
∫
Rs

G(us,h(·,y))
s∏

j=1

ϕ(yj) dy =

∫
(0,1)s

G(us,h(·,Φ−1(w)) dw,

where ϕ(y) := 1√
2π
e−

1
2
y2 denotes the probability density function of the stan-

dard normal distribution N (0, 1), Φ(y) :=
∫ y

−∞ ϕ(t) dt denotes the cumula-

tive distribution function of N (0, 1), and Φ−1(w) = [Φ−1(w1), . . . ,Φ
−1(ws)]

T,
where Φ−1(wj) denotes the inverse cumulative distribution function of N (0, 1).

Modify the program you wrote in task 3 to estimate the root-mean-square
error by computing

En,R :=

√√√√ 1

R(R− 1)

R∑
r=1

(Qn,Rf −Q
(r)
n f)2,

for n ∈ {210, 211, . . . , 215}, where

Q(r)
n f :=

1

n

n∑
k=1

f(Φ−1(mod(tk +∆r, 1))), r ∈ {1, . . . , R},

Qn,Rf :=
1

R

R∑
r=1

Q(r)
n f,



with f(y) := G(us,h(·,y)) for y ∈ Rs, ∆r ∼ U([0, 1]s), and tk := mod
(
kz(s)

n
, 1
)
,

where z(s) denotes the same generating vector as in task 3.

What convergence rate do you observe? As in task 3, you are free to choose
a “reasonable” finite element discretization level and the number of random
shifts (e.g., R = 4 or R = 8 or R = 16 . . .).

Hint: In Python, you can use the function scipy.stats.norm.ppf to evaluate
the inverse cumulative distribution function for N (0, 1).


