Uncertainty Quantification and Quasi-Monte Carlo Exercise 6
Sommersemester 2025

Return your written solutions either in person or by email

to vesa.kaarnioja@fu-berlin.de by Tuesday 10 June 2025, 10:15 am

Please make sure to return your source code for all programming tasks

Let U :=[—1/2,1/2])° and D = (0,1). Consider the Dirichlet-Neumann problem
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endowed with the parametric coefficient
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where ag € L>(D) and ¢; € L>*(D) for all 7 > 1. Furthermore, we assume that
f e LQ(D) is given and there exist constants Gpin, Gmax > 0 such that 0 < ap, <
a(z,y) < amax < 0o for all z € D and y € Us.

The solution is given by
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1. Show that

[[f1lz2(p)

min

Oy u(r,y)| < ] '6¥ forallze D, ye U, veN],

where b = (b;)3_, with by = I21E=@) v TT* 3% and |v] = 323

Gmin ’ J= 1 j ) 3:1 V'j

2. Let ~v = (’)/u)ug{l ,,,,, s} be a sequence of positive real numbers. During the
lectures we considered an unanchored, weighted Sobolev space H, equipped
with the norm
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Fix € D and define F(y) = u(z,y — 3) for y € [0,1]*. Show that
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3. Let us consider the QMC approximation of the integral f[o,l]s F(y)dy. Using
s, n, and 4 as inputs in a component-by-component (CBC) algorithm, it is
possible to construct a QMC rule satisfying the error bound
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where p(n) = {k € N : 1 < k < n, ged(k,n) = 1}| is the Euler totient
function and ((z) = Y ;- , kK is the Riemann zeta function for z > 1.

By plugging in (2), we obtain the error bound
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Show that the upper bound (3) is minimized by choosing the weights
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where we use the convention that an empty product is equal to 1.

. Let us consider a simple numerical discretization of (1). Let xy = hk, h = 100,
k € {0,...,100}. For simplicity, let f(z) = 1. The integral in (1) can be
discretized, e.g., using the trapezoidal rule as
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This leads to the discretized solution
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u(y) = G@> (5)
where G € Ry (y) = [u(z1,y), ..., u(z100,Y)) ", a(y) = [a(z0, y), . .., a(z100, y)] ",
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and —~ = (— denotes the elementw1se rec1procal vector of a.
a(y) a(zi-1,y) /%

(a) In tasks 1-3, we analyzed the use of QMC for the non-discretized problem.
Are the conclusions still valid for the numerically discretized solution (5)7

(b) Fix x = 0.5 (= x50 in our discretization) and consider the function F(y) =
u(0.5,y — 1), y € [0,1]°. We can apply a randomly shifted rank-1 lattice
rule by drawing R shifts Ay, ..., Ag from U([0,1]°) and computing the
cubatures
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where t;, = mod(%z, 1). As our approximation of f[o s F(y)dy, we take
the average
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We can estimate the root-mean-square error by computing
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Fix a “reasonable” number of random shifts (e.g., you may choose R = 4
or R =8 or R =16 ...) and compute E, p for increasing n. As the
parameterization of the diffusion coefficient, you can consider, e.g.,

a(z,y) =1+ Zyjj_z sin(mjz), xe€ D, ye|[-1/2,1/2)°.
j=1
Fix s = 100 and, for increasing n, use two different generating vectors:

(i) a generating vector obtained using the fast CBC algorithm with
weights (4);

(ii) an “off-the-shelf” generating vector offtheshelf.txt available on
the course webpage.

Compute the root-mean-square errors for both point sets and compare
the results.



