
Uncertainty Quantification and Quasi-Monte Carlo Exercise 6
Sommersemester 2025
Return your written solutions either in person or by email
to vesa.kaarnioja@fu-berlin.de by Tuesday 10 June 2025, 10:15 am
Please make sure to return your source code for all programming tasks

Let Us := [−1/2, 1/2]s and D = (0, 1). Consider the Dirichlet–Neumann problem
− ∂

∂x

(
a(x,y)

∂

∂x
u(x,y)

)
= f(x), x ∈ D, y ∈ Us,

u(0,y) = 0 =
∂

∂x
u(1,y), y ∈ Us,

endowed with the parametric coefficient

a(x,y) := a0(x) +
s∑
j=1

yjψj(x), x ∈ D, y = (yj)
s
j=1 ∈ Us,

where a0 ∈ L∞(D) and ψj ∈ L∞(D) for all j ≥ 1. Furthermore, we assume that
f ∈ L2(D) is given and there exist constants amin, amax > 0 such that 0 < amin ≤
a(x,y) ≤ amax <∞ for all x ∈ D and y ∈ Us.

The solution is given by

u(x,y) =

∫ x

0

(∫ 1

w

f(z) dz

)
1

a(w,y)
dw, x ∈ D, y ∈ Us. (1)

1. Show that

|∂νyu(x,y)| ≤
∥f∥L2(D)

amin

|ν|!bν for all x ∈ D, y ∈ Us, ν ∈ Ns
0,

where b = (bj)
s
j=1 with bj =

∥ψj∥L∞(D)

amin
, bν =

∏s
j=1 b

νj
j , and |ν| :=

∑s
j=1 νj.

2. Let γ := (γu)u⊆{1,...,s} be a sequence of positive real numbers. During the
lectures we considered an unanchored, weighted Sobolev space Hs,γ equipped
with the norm

∥f∥2s,γ =
∑

u⊆{1,...,s}

1

γu

∫
[0,1]|u|

(∫
[0,1]s−|u|

∂|u|

∂yu

f(y) dy−u

)2

dyu, f ∈ Hs,γ ,

where dyu :=
∏

j∈u dyj and dy−u :=
∏

j∈{1,...,s}\u dyj for u ⊆ {1, . . . , s}.

Fix x ∈ D and define F (y) = u(x,y − 1
2
) for y ∈ [0, 1]s. Show that

∥F∥2s,γ ≤
∥f∥2L2(D)

a2min

∑
u⊆{1,...,s}

(|u|!)2
∏

j∈u b
2
j

γu
. (2)



3. Let us consider the QMC approximation of the integral
∫
[0,1]s

F (y) dy. Using

s, n, and γ as inputs in a component-by-component (CBC) algorithm, it is
possible to construct a QMC rule satisfying the error bound

R.M.S. error ≤
(

1

φ(n)

∑
∅̸=u⊆{1,...,s}

γλu

(
2ζ(2λ)

(2π2)λ

)|u|) 1
2λ

∥F∥s,γ for all λ ∈ (1
2
, 1],

where φ(n) = |{k ∈ N : 1 ≤ k ≤ n, gcd(k, n) = 1}| is the Euler totient
function and ζ(x) =

∑∞
k=1 k

−x is the Riemann zeta function for x > 1.

By plugging in (2), we obtain the error bound

R.M.S. error

≤
∥f∥L2(D)

amin

(
1

φ(n)

∑
∅̸=u⊆{1,...,s}

γλu

(
2ζ(2λ)

(2π2)λ

)|u|) 1
2λ
( ∑

u⊆{1,...,s}

(|u|!)2
∏

j∈u b
2
j

γu

) 1
2

.

(3)

Show that the upper bound (3) is minimized by choosing the weights

γu =

(
|u|!

∏
j∈u

bj√
2ζ(2λ)/(2π2)λ

) 2
1+λ

, u ⊆ {1, . . . , s}, (4)

where we use the convention that an empty product is equal to 1.

4. Let us consider a simple numerical discretization of (1). Let xk = hk, h = 1
100

,
k ∈ {0, . . . , 100}. For simplicity, let f(x) = 1. The integral in (1) can be
discretized, e.g., using the trapezoidal rule as∫ xk

0

g(w,y) dw ≈ h
k∑
i=1

g(xi,y) + g(xi−1,y)

2
for k ∈ {1, . . . , 100} with g(w,y) := 1− w

a(w,y)
.

This leads to the discretized solution

u(y) = G
1

a(y)
, (5)

whereG ∈ R100×101, u(y) = [u(x1,y), . . . , u(x100,y)]
T, a(y) = [a(x0,y), . . . , a(x100,y)]

T,
and 1

a(y)
=

(
1

a(xi−1,y)
)101i=1 denotes the elementwise reciprocal vector of a.

(a) In tasks 1–3, we analyzed the use of QMC for the non-discretized problem.
Are the conclusions still valid for the numerically discretized solution (5)?

(b) Fix x = 0.5 (= x50 in our discretization) and consider the function F (y) =
u(0.5,y− 1

2
), y ∈ [0, 1]s. We can apply a randomly shifted rank-1 lattice

rule by drawing R shifts ∆1, . . . ,∆R from U([0, 1]s) and computing the
cubatures

Q(r)
n F =

1

n

n∑
k=1

F (mod(tk +∆r, 1)) for r ∈ {1, . . . , R},



where tk = mod(kz
n
, 1). As our approximation of

∫
[0,1]s

F (y) dy, we take

the average

Qn,RF =
1

R

R∑
r=1

Q(r)
n F.

We can estimate the root-mean-square error by computing

En,R =

√√√√ 1

R(R− 1)

R∑
r=1

(Qn,RF −Q
(r)
n F )2.

Fix a “reasonable” number of random shifts (e.g., you may choose R = 4
or R = 8 or R = 16 . . . ) and compute En,R for increasing n. As the
parameterization of the diffusion coefficient, you can consider, e.g.,

a(x,y) = 1 +
s∑
j=1

yjj
−2 sin(πjx), x ∈ D, y ∈ [−1/2, 1/2]s.

Fix s = 100 and, for increasing n, use two different generating vectors:

(i) a generating vector obtained using the fast CBC algorithm with
weights (4);

(ii) an “off-the-shelf” generating vector offtheshelf.txt available on
the course webpage.

Compute the root-mean-square errors for both point sets and compare
the results.


