Uncertainty Quantification and Quasi-Monte Carlo Exercise 4
Sommersemester 2025

Return your written solutions either in person or by email

to vesa.kaarnioja@fu-berlin.de by Tuesday 27 May 2025, 10:15 am

Please make sure to return your source code for all programming tasks

1. Repeat task 3 from Exercise 3, but instead of using a Monte Carlo sample
average to compute the expected value, use instead an off-the-shelf lattice
rule. Download the file offtheshelf.txt from the course webpage. The file
contains an extensible, 100-dimensional generating vector z € N0, For n = 2%,
k € {10,11,...,20}, you can compute the n-point QMC point set using the
formula

yi:mod(ZJ) — 05, i=0,1,....n—1.
n

The QMC estimator using this deterministic point set is
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To solve the PDE numerically for each y;, you can modify the script fem.py
available on the course webpage. Fix s = 100 and estimate the L?(D) error of

the QMC approximation by using a QMC estimate corresponding to n’ > n
as a reference solution. What convergence rate do you obtain?

2. Repeat task 4 from Exercise 3, but instead of using a Monte Carlo sample
average to compute the expected value, use instead an off-the-shelf lattice
rule. Download the file offtheshelf.txt from the course webpage. The file
contains an extensible, 100-dimensional generating vector z € N1, For n = 2%,
k € {10,11,...,20}, you can compute the n-point QMC point set using the
formula

yi:mod(ﬁ,l) — 05, i=0,1,...,n—1.
n

The QMC estimators using this deterministic point set are

BDC) > Y Aw) and Elu(e,)] ~ Y ule,v)

To solve the PDE numerically for each y,, you can modify the script fem.py
available on the course webpage. Fix s = 100 and estimate the Euclidean error
of E[A(-)] and the L?*(D) error of the QMC approximations by using a QMC
estimate corresponding to n’ > n as a reference solution. What convergence
rate(s) do you obtain?

Tasks 1 and 2: If computing the reference solution using n = 22° takes too
long, you can of course use a smaller value like n = 21¢ instead.

The exercises continue on the next page.



3. Let s,n € N, z1,...,2 € U, = {k € N| 1 <k <n, ged(k,n) = 1},
and v, € Ry for all @ # u C {1,...,s}. During the lectures, we derived
the following formula for the shift-averaged worst-case error for integrands
belonging to unanchored, weighted Sobolev spaces:

e, (21, - - zs)]ZZ% > ZHBQGI%})

o#uC{1,...,s} k=0 j€u
where the braces {x} := 2 — |z] denote the fractional part of a non-negative

real number x > 0, |z| := max{k € Z : k < z} for € R, and Bs(z) :=

2 —x+ é is the Bernoulli polynomial of degree 2.

(a) When s = 1, show that

(b) Use part (a) to conclude that
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[6;}711(2’1)]2 < (gp(n) 7?1} (;(TQ)/\)) for all A € (%, 1],

where p(n) := |U,| is the Euler totient function for n € N, where the bars

| -| denote the cardinality of a set, and ¢(z) := >~ k™" is the Riemann
zeta function for x > 1.

4. Let Bo(z) = 2* —x + % be the Bernoulli polynomial of degree 2 and let
¥ = (M)ucqi,...s} be a sequence of positive weights. Recall that the weighted,
unanchored Sobolev space H; . is characterized by the reproducing kernel

Koy@y) = Y w]ln@.y), =yel01),
uC{l,..,s}  jeu
where
n(z,y) = 3Bo(lz —y) + (= 3)(y —3), x,y€l0,1].
Show that
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