
Uncertainty Quantification and Quasi-Monte Carlo Exercise 4
Sommersemester 2025
Return your written solutions either in person or by email
to vesa.kaarnioja@fu-berlin.de by Tuesday 27 May 2025, 10:15 am
Please make sure to return your source code for all programming tasks

1. Repeat task 3 from Exercise 3, but instead of using a Monte Carlo sample
average to compute the expected value, use instead an off-the-shelf lattice
rule. Download the file offtheshelf.txt from the course webpage. The file
contains an extensible, 100-dimensional generating vector z ∈ N100. For n = 2k,
k ∈ {10, 11, . . . , 20}, you can compute the n-point QMC point set using the
formula

yi = mod

(
iz

n
, 1

)
− 0.5, i = 0, 1, . . . , n− 1.

The QMC estimator using this deterministic point set is

E[u(x, ·)] ≈ 1

n

n−1∑
i=0

u(x,yi).

To solve the PDE numerically for each yi, you can modify the script fem.py
available on the course webpage. Fix s = 100 and estimate the L2(D) error of
the QMC approximation by using a QMC estimate corresponding to n′ ≫ n
as a reference solution. What convergence rate do you obtain?

2. Repeat task 4 from Exercise 3, but instead of using a Monte Carlo sample
average to compute the expected value, use instead an off-the-shelf lattice
rule. Download the file offtheshelf.txt from the course webpage. The file
contains an extensible, 100-dimensional generating vector z ∈ N100. For n = 2k,
k ∈ {10, 11, . . . , 20}, you can compute the n-point QMC point set using the
formula

yi = mod

(
iz

n
, 1

)
− 0.5, i = 0, 1, . . . , n− 1.

The QMC estimators using this deterministic point set are

E[λ(·)] ≈ 1

n

n−1∑
i=0

λ(yi) and E[u(x, ·)] ≈ 1

n

n−1∑
i=0

u(x,yi).

To solve the PDE numerically for each yi, you can modify the script fem.py
available on the course webpage. Fix s = 100 and estimate the Euclidean error
of E[λ(·)] and the L2(D) error of the QMC approximations by using a QMC
estimate corresponding to n′ ≫ n as a reference solution. What convergence
rate(s) do you obtain?

Tasks 1 and 2: If computing the reference solution using n = 220 takes too
long, you can of course use a smaller value like n = 216 instead.

The exercises continue on the next page.



3. Let s, n ∈ N, z1, . . . , zs ∈ Un := {k ∈ N | 1 ≤ k ≤ n, gcd(k, n) = 1},
and γu ∈ R+ for all ∅ ̸= u ⊆ {1, . . . , s}. During the lectures, we derived
the following formula for the shift-averaged worst-case error for integrands
belonging to unanchored, weighted Sobolev spaces:

[eshn,s(z1, . . . , zs)]
2 =

1

n

∑
∅̸=u⊆{1,...,s}

γu

n−1∑
k=0

∏
j∈u

B2

({
kzj
n

})
,

where the braces {x} := x− ⌊x⌋ denote the fractional part of a non-negative
real number x ≥ 0, ⌊x⌋ := max{k ∈ Z : k ≤ x} for x ∈ R, and B2(x) :=
x2 − x+ 1

6
is the Bernoulli polynomial of degree 2.

(a) When s = 1, show that

[eshn,1(z1)]
2 =

γ{1}
6n2

.

(b) Use part (a) to conclude that

[eshn,1(z1)]
2 ≤

(
1

φ(n)
γλ
{1}

2ζ(2λ)

(2π2)λ

)1/λ

for all λ ∈
(
1
2
, 1
]
,

where φ(n) := |Un| is the Euler totient function for n ∈ N, where the bars
| · | denote the cardinality of a set, and ζ(x) :=

∑∞
k=1 k

−x is the Riemann
zeta function for x > 1.

4. Let B2(x) := x2 − x + 1
6
be the Bernoulli polynomial of degree 2 and let

γ = (γu)u⊆{1,...,s} be a sequence of positive weights. Recall that the weighted,
unanchored Sobolev space Hs,γ is characterized by the reproducing kernel

Ks,γ(x,y) :=
∑

u⊆{1,...,s}

γu
∏
j∈u

η(xj, yj), x,y ∈ [0, 1]s,

where

η(x, y) := 1
2
B2(|x− y|) + (x− 1

2
)(y − 1

2
), x, y ∈ [0, 1].

Show that ∫
[0,1]s

Ks,γ(x,y) dy = 1,∫
[0,1]s

∫
[0,1]s

Ks,γ(x,y) dx dy = 1,∫
[0,1]s

Ks,γ(x,x) dx =
∑

u⊆{1,...,s}

γu(
1
6
)|u|.


