
Uncertainty Quantification and Quasi-Monte Carlo Exercise 2
Sommersemester 2025
Return your written solutions either in person or by email
to vesa.kaarnioja@fu-berlin.de by Tuesday 6 May 2025, 10:15 am
Please make sure to return your source code for all programming tasks

1. Let D ⊂ Rd, d ∈ {2, 3}, be a bounded Lipschitz domain, f ∈ L2(D), and let
a ∈ L∞(D) be such that 0 < amin ≤ a(x) ≤ amax < ∞ for almost every x ∈ D
for some constants amax, amin > 0. Let u ∈ H1

0 (D) be the unique solution to
the weak formulation∫

D

a(x)∇u(x) · ∇v(x) dx =

∫
D

f(x)v(x) dx for all v ∈ H1
0 (D).

Let Vm be a finite dimensional subspace of H1
0 (D) and consider the Galerkin

solution um ∈ Vm satisfying∫
D

a(x)∇um(x) · ∇v(x) dx =

∫
D

f(x)v(x) dx for all v ∈ Vm.

Show that

∥u− um∥H1
0 (D) ≤

√
amax

amin

inf
v∈Vm

∥u− v∥H1
0 (D).

Hint: Modify the proof of Céa’s lemma from the lecture notes of week 3 by
upper bounding the term B(u−um, u−um) with B(u−v, u−v) for all v ∈ Vm,
where B(u, v) :=

∫
D
a(x)∇u(x) · ∇v(x) dx.

2. Let D ⊂ R2 be a nonempty, bounded polygon and let us consider the Poisson
problem with an inhomogeneous Dirichlet boundary condition. That is, find
u : D → R such that {

−∆u(x) = f(x), x ∈ D,

u|∂D = g,
(1)

where f : D → R and g : ∂D → R are known functions. We are interested in
solving this problem using piecewise linear FEM. To this end, suppose that
Th is a triangulation of the computational domain D with mesh size h > 0
and vertices/FE nodes (ni)

N
i=1. The FE space Vh = span(ϕi)

N
i=1 is spanned by

piecewise linear global FE basis functions (ϕi)
N
i=1 such that ϕi(nj) = δi,j, i, j ∈

{1, . . . , N}. Suppose that bnd := {i ∈ {1, . . . , N} | ni ∈ ∂D} is a set of indices
containing the labels of the FE nodes located on the boundary of the domain
D and suppose that int := {1, . . . , N} \bnd contains the labels of the interior
FE nodes. Let A ∈ RN×N denote the stiffness matrix defined elementwise by
setting Ai,j =

∫
D
∇ϕi(x) · ∇ϕj(x) dx, i, j ∈ {1, . . . , N}. Finally, let us define

the submatrices Aint,int = (Ai,j)i,j∈int and Aint,bnd = (Ai,j)i∈int,j∈bnd.



(a) Suppose that g is a piecewise linear function and consider the FE ap-
proximation uh(·) =

∑N
j=1 cjϕj(·) ∈ Vh to the Poisson problem (1). The

boundary condition can now be imposed exactly by setting ci = g(ni) for
all i ∈ bnd. Show that the expansion coefficients cint = (ci)i∈int can be
solved from the equation

Aint,intcint = F int − Aint,bndGbnd,

where F int =
( ∫

D
f(x)ϕi(x) dx

)
i∈int is the loading vector and Gbnd =

(g(ni))i∈bnd.

(b) If g is not piecewise linear, then the above method of imposing the bound-
ary condition is no longer exact but instead corresponds to a nodal inter-
polation of the boundary values. The resulting approximation error can
be controlled as long as g is sufficiently smooth, so the above method may
still be reasonable in practice. However, an alternative way to mitigate
the approximation error is to consider a Dirichlet lift:

(i) First find a function g̃ ∈ H2(D) such that g̃|∂D = g.

(ii) Solve the PDE −∆ũ = f +∆g̃ in D with ũ|∂D = 0 (in practice using
FEM).

(iii) The function u = ũ+ g̃ now satisfies −∆u = f in D with u|∂D = g.

Let D = (0, 1)2, f(x) = x1+x2, and g(x) = 1−x3
1−2x2. Solve the prob-

lem (1) using both nodal interpolation of the boundary values (method
described in part (a)) as well as using a Dirichlet lift to impose the bound-
ary values. You can modify the script fem.py available on the course web-
page for your computations. Plot the solutions you obtained and compare
them visually.

3. Let D := {(x1, x2) ∈ R2 | 0 < x1 < 1, 0 < x2 < 2} ∪ {(x1, x2) ∈ R2 |
1 ≤ x1 < 2, 0 < x2 < 1} ⊂ R2 be an L-shaped domain. Modify the func-
tion generateFEmesh in the script fem.py on the course page† to create a
uniform, regular triangulation Th of the L-shaped domain with mesh widths
h ∈ {2−1, 2−2, 2−3, . . .}. Try also plotting your triangulations. The goal is to
obtain something like these triangulations:

The exercises continue on the next page.
†Or write your own implementation using your favorite programming language! For this task, it

is enough to reproduce the finite element vertex array nodes and mesh element connectivity array
element appearing in fem.py for the L-shaped domain.



4. Let D ⊂ R2 be a bounded polyhedron. Let us consider the spectral eigenvalue
problem of finding the eigenvalues λ ∈ R and eigenfunctions u : D → R such
that 

−∆u = λu in D,

u|∂D = 0,∫
D
u(x)2 dx = 1.

The weak formulation of this problem is to find (λ, u) ∈ R × (H1
0 (D) \ {0}),

∥u∥L2(D) = 1, such that∫
D

∇u(x) · ∇v(x) dx = λ

∫
D

u(x)v(x) dx for all v ∈ H1
0 (D).

If Vm is a finite dimensional subspace of H1
0 (D), then the goal is to find

(λ, um) ∈ R× (Vm \ {0}), ∥um∥L2(D) = 1, such that∫
D

∇um(x) · ∇v(x) dx = λ

∫
D

um(x)v(x) dx for all v ∈ Vm. (2)

(a) Let Vh = span(ϕi)
m
i=1 be a finite element subspace of H1

0 (D) spanned
by continuous, piecewise linear finite element basis functions such that
ϕi(nj) = δi,j, where ni are vertices of the mesh elements lying in the
interior of the domain D. Show that (2) can be solved by considering the
generalized eigenvalue problem

Sc = λMc, cTMc = 1, (3)

where c := [c1, . . . , cm]
T are the finite element expansion coefficients

of the corresponding finite element discretized eigenfunction uh(x) =∑m
i=1 ciϕi(x) and S = (Si,j)

m
i,j=1 and M = (Mi,j)

m
i,j=1 are defined by the

formulae Si,j =
∫
D
∇ϕi(x) · ∇ϕj(x) dx and Mi,j =

∫
D
ϕi(x)ϕj(x) dx.

(b) Your task is to find the smallest eigenpair satisfying (3) and plot the
corresponding eigenfunction. As the computational domain D, consider
the L-shaped domain from task 3.

It is probably the most convenient to solve the smallest eigenpair of a
generalized eigenvalue problem using a command like
evals,evecs = scipy.sparse.linalg.eigsh(S,k=1,M=M,which=’SM’)

where S is the stiffness matrix corresponding to the Dirichlet–Laplacian
−∆ and M is the mass matrix. To obtain a FE mesh, you can either use
the script you wrote for task 3 or download the file femdata.mat from
the course webpage which contains a precomputed mesh. The file contains
an array containing the FE nodes, the element connectivity array, a list
containing the indices of the interior FE nodes, and the element centers.
You can access these via
data = scipy.io.loadmat(’femdata.mat’)

nodes = data[’nodes’]; element = data[’element’]

interior = data[’interior’][0]; centers = data[’centers’]



You can obtain the appropriate stiffness and mass matrices using the func-
tion generateFEmatrices in the fem.py script available on the course
webpage. Meanwhile, you can enforce the homogeneous Dirichlet bound-
ary conditions by slicing the matrices S and M using the list interior

corresponding to the labels of the interior FE nodes.

Hint: the eigenfunction should look like the function below:


