1. (a) Let $(X, \langle \cdot, \cdot \rangle)$ be an inner product space and $\|\cdot\|$ is the induced norm. Prove that an inner product satisfies the so-called parallelogram identity

$$||x+y||^2 + ||x-y||^2 = 2||x||^2 + 2||y||^2$$
 for all $x, y \in X$.

(b) Consider the space C([a, b]). Show that the sup-norm

$$||f||_{\infty} = \sup_{x \in [a,b]} |f(x)|$$

is not determined by any inner product.

(c) Similarly consider the L^p norms

$$||f||_p = \left(\int_a^b |f(x)|^p \,\mathrm{d}x\right)^{1/p},$$

where $1 \le p < \infty$. Prove that if $p \ne 2$, then this norm is never determined by an inner product.

Hint: Any norm induced by an inner product satisfies the parallelogram identity.

2. Let H be a real Hilbert space. Recall that the orthogonal complement of any subset $M \subset H$ is defined as

$$M^{\perp} := \{ y \in H \mid \langle x, y \rangle = 0 \text{ for all } x \in M \}.$$

- (a) Show that for any subset $M \subset H$, M^{\perp} is a closed subspace of H and $M \subset (M^{\perp})^{\perp}$.
- (b) If M is a subspace of H, show that $(M^{\perp})^{\perp} = \overline{M}$, where the bar denotes the closure of a set.
- 3. Let H_1 and H_2 be real Hilbert spaces and let $A: H_1 \to H_2$ be a continuous linear operator. Recall that the *kernel* of operator A is defined as

$$Ker(A) := \{ x \in H_1 \mid Ax = 0 \}$$

and the *range* of operator A is defined as

 $\operatorname{Ran}(A) := \{ y \in H_2 \mid y = Ax \text{ for some } x \in H_1 \}.$

- (a) Show that Ker(A) is a *closed* subspace of H_1 .
- (b) Show that $\operatorname{Ran}(A)$ is a subspace of H_2 .

The exercises continue on the next page.

4. (a) Let $(X, \langle \cdot, \cdot \rangle)$ be a real inner product space and $\|\cdot\| = \sqrt{\langle \cdot, \cdot \rangle}$ is the induced norm. Prove the *polarization identity*

$$\langle x, y \rangle = \frac{1}{4} (\|x+y\|^2 - \|x-y\|^2) \text{ for all } x, y \in X.$$

(b) Let $(H_1, \langle \cdot, \cdot \rangle_{H_1})$ and $(H_2, \langle \cdot, \cdot \rangle_{H_2})$ be real Hilbert spaces. Suppose that $U: H_1 \to H_2$ is a linear *isometry*: $||Ux||_{H_2} = ||x||_{H_1}$ for all $x \in H_1$, where $|| \cdot ||_{H_1} := \sqrt{\langle \cdot, \cdot \rangle}_{H_1}$ and $|| \cdot ||_{H_2} := \sqrt{\langle \cdot, \cdot \rangle}_{H_2}$. Show that

$$\langle Ux, Uy \rangle_{H_2} = \langle x, y \rangle_{H_1}$$
 for all $x, y \in H_1$.